KR20080086213A - Manufacture of acid-resistant repair materials for section restoration and its application method - Google Patents

Manufacture of acid-resistant repair materials for section restoration and its application method Download PDF

Info

Publication number
KR20080086213A
KR20080086213A KR20070028093A KR20070028093A KR20080086213A KR 20080086213 A KR20080086213 A KR 20080086213A KR 20070028093 A KR20070028093 A KR 20070028093A KR 20070028093 A KR20070028093 A KR 20070028093A KR 20080086213 A KR20080086213 A KR 20080086213A
Authority
KR
South Korea
Prior art keywords
weight
acid
concrete
repair
parts
Prior art date
Application number
KR20070028093A
Other languages
Korean (ko)
Inventor
도정윤
Original Assignee
도정윤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도정윤 filed Critical 도정윤
Priority to KR20070028093A priority Critical patent/KR20080086213A/en
Publication of KR20080086213A publication Critical patent/KR20080086213A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/165Ceramic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4598Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with waste materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4826Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/23Acid resistance, e.g. against acid air or rain
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

An acid-resistant repair material composition is provided to ensure functionalities, to save energy, to reduce environment load, and to have improved chemical bonding force and adhesive force to an inorganic material. An acid-resistant repair material composition for section restoration comprises 100 parts by weight of UP resin as a binder, 800-650 parts by weight, based on the UP resin, of fine aggregate, 0-100%(w/w), based on the weight of the fine aggregate, of waste glass, 100 parts by weight of calcium carbonate, fly ash, blast furnace slag, and 1 part by weight of methyl ethyl ketone peroxide as an initiator for ambient-temperature curing of the UP resin, wherein 1 part by weight, based on 100 parts by weight of the UP resin, of an acrylic silane coupling agent is contained to improve adhesiveness with concrete cement.

Description

폐유리를 활용한 단면수복형 내산성 보수재료의 조성물 및 적용방법{Manufacture of acid-resistant repair materials for section restoration and its application method}Manufacturing and acid-resistant repair materials for section restoration and its application method using waste glass

도1은 본 발명의 폐유리를 활용한 단면복구형 내산성 보수재료 조성물을 제조하는 절차를 설명하고 있는 요약도.Figure 1 is a summary diagram illustrating a procedure for producing a cross-sectional recovery type acid-resistant repair material composition utilizing the waste glass of the present invention.

도2는 본 발명을 통해 조성 및 제조된 내산성 보수재를 산침식에 의해 결손/탈락된 콘크리트 부위에 적용하는 방법 및 절차를 나타내는 요약도.FIG. 2 is a summary diagram showing a method and procedure for applying an acid resistant repair material prepared and manufactured through the present invention to a concrete part that is missing / deleted by erosion.

도3은 산 침식에 의해 콘크리트 부재가 결손/탈락된 상황을 나타내는 그림.3 is a view showing a situation in which the concrete member is missing / dropped by acid erosion.

도4는 산 침식에 의해 결손/탁락된 콘크리트 부위에 대하여 본 발명의 보수재를 적용하는 방법을 나타내는 그림.4 is a diagram showing a method of applying the repairing material of the present invention to a concrete part which is missing / condensed by acid erosion.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 구체 콘크리트10: concrete concrete

20: 콘크리트 구조물의 주근20: the main root of the concrete structure

30: 콘크리트 구조물의 보조철근30: Auxiliary rebar of concrete structure

40: 산의 침식에 의해 결손/탈락된 콘크리트40: Concrete missing / deleted by acid erosion

50: 보수된 콘크리트 부위의 표면 강화 및 보수재와의 접착성 증대를 위한 함침재50: Impregnation material for surface reinforcement of repaired concrete part and increase adhesion with repair material

60: 본 발명의 단면수복형 보수재료60: Sectional repair type repair material of the present invention

70: 보수 부위의 보호 및 보강을 위한 표면보호재70: surface protection material for protection and reinforcement of repair

10-2000-0036149 스프레이 공법을 이용한 폴리머 모르터 단면수복 보수공법10-2000-0036149 Polymer mortar cross section repair repair method using spray method

10-2000-0078654 방청성이 있는 철근콘크리트구조물의 알칼리 회복제10-2000-0078654 Alkali recovery agent of anti-corrosive reinforced concrete structure

10-1999-0039326 스프레이공법을 이용한 폴리머시멘트 모르터 단면수복 보수공법10-1999-0039326 Polymer cement mortar cross section repair repair method using spray method

10-1999-0034046 콘크리트 구조물 보강용 침투성 폴리머 조성물 및 그 제조방법10-1999-0034046 Permeable polymer composition for reinforcement of concrete structures and method of manufacturing the same

10-2003-0023873 내산성 단면복구 모르타르의 제조방법 및 조성물10-2003-0023873 Preparation and composition of acid resistant cross-sectional recovery mortar

본 발명은 건설 폐기물의 하나인 폐유리의 우수한 내산성과 잔골재 대체가능성을 활용하여 산에 의한 화학적 침식을 받은 철근콘크리트 구조물의 부재를 보수하기 위한 단면 수복형 내산성 보수재료의 조성물과 그 적용법에 관한 것이다.The present invention relates to a composition and application method of a cross-sectional restoring acid resistant repair material for repairing a member of a reinforced concrete structure subjected to chemical erosion by acid utilizing the excellent acid resistance and fine aggregate replacement possibility of waste glass, which is one of construction wastes. .

산 침식 환경에 노출되어 있는 콘크리트 구조물은 신축과 동시에 부식환경에 노출되며, 황산염과 같은 유해 이온이 콘크리트를 통과하여 내부로 침입하면 석고(gypsum; Calcium Sulfate, CaSO4H2O), 에트링가이트(Delayed Ettringite, 3CaOAl2O33CaSO432H2O), 토모사이트(Thaumasite; Calcium Silicate Sulfate Carbonate Hydrate, Ca6(Si(OH)6(SO4)2(CO3)224H2O)) 등의 팽창성 물질을 생성하며, 또한 황산, 염산이나 이산화탄소를 많이 함유하고 있는 탄산수같은 수용액은 콘크리트의 pH를 떨어뜨리고 다양한 경화체의 화학적 분해를 일으켜 골재를 노출시키거나 체적의 변화를 초래하여 결손 및 탈락을 유도한다. 즉 콘크리트 내부에 경화체로 존재하며 콘크리트가 강알칼리성을 가지는 데 지대한 영향을 미치는 수산화 칼슘(Calcium Hydroxide, Ca(OH)2,과 콘크리트 경화체의 치밀한 조직을 형성하여 소정의 기계적, 물리적 성능을 발휘하도록 하는 C-S-H 겔(Calcium Silicate Hydrates gel)의 침식을 일으켜 콘크리트의 박리/박락을 일으킨다.Concrete structures exposed to acid erosion are exposed to corrosive environments as they are stretched. When harmful ions such as sulphate penetrate through concrete and enter inside, gypsum (Calcium Sulfate, CaSO 4 H 2 O), etringite (Delayed Ettringite, 3CaOAl 2 O 3 3CaSO 4 32H 2 O), Tomosite (Calcium Silicate Sulfate Carbonate Hydrate, Ca 6 (Si (OH) 6 (SO 4 ) 2 (CO 3 ) 2 24H 2 O)), etc. Aqueous solutions such as sulfuric acid, hydrochloric acid, or carbonated water containing a lot of carbon dioxide can lower the pH of the concrete and cause chemical decomposition of various hardeners, exposing aggregates or changing the volume, resulting in defects and dropouts. Induce. In other words, it is present as a hardening material inside the concrete and forms a dense structure of calcium hydroxide (Calcium Hydroxide, Ca (OH) 2 ) and hardened concrete which have a great influence on the strong alkalinity of concrete. It causes erosion of the CSH gel (Calcium Silicate Hydrates gel), which causes the concrete to peel off and fall off.

이상에서처럼, 산 침식환경에 노출되어 있는 콘크리트 부재는 기존 보수재료의 대부분을 차지하고 있는 염해나 중성화 환경과는 전혀 다른 물리 화학적 침식 메카니즘을 보인다. 따라서 이에 대한 보수 시 원할 성능을 발휘하기 위해서는 보수재료로써 기본적인 기계적, 물리적 특성을 가지면서 산 침식에 대한 저항성이 높은 재료가 필요하다.As described above, the concrete member exposed to the acid erosion environment exhibits a physicochemical erosion mechanism that is completely different from the salt damage or neutralization environment that occupies most of the existing repair materials. Therefore, in order to exhibit the desired performance during repair, a material that has basic mechanical and physical properties and has high resistance to acid erosion is required.

현재 철근콘크리트구조물의 보수는 염해와 중성해를 입은 부재에 대한 보수가 대부분으로 여기에 대응하여 제조된 보수재료가 다른 양상으로 피해를 입은 부재의 부재에도 적용되고 있는 실정이다. 하지만 염해나 중성화에 의한 피해와 산과 그 염에 의한 화학적 피해는 작용하는 환경부터 엄연히 다르기 때문에 보수 후의 보수재의 열화 혹은 피해를 없애기 위해서는 산의 침식작용이 있는 환경에서는 내산성이 우수한 보수재료가 필요하다. 이에 본 발명은 폐유리의 우수한 내산성을 활용하며, 또한 현재 자원이 부족한 상태에 있는 잔골재의 대체재로 활용함으로써 자원재활용을 통한 환경부하를 저감할 수 있는 고부가가치의 단면수복형 내산성 보수재료를 제조하는 것이다.Currently, the repair of reinforced concrete structures is mostly for repairing damaged and neutralized members, and the repair materials manufactured in response to this are applied to the members of damaged members. However, damage caused by salting or neutralization and chemical damage caused by acid and its salts are radically different from the working environment. Therefore, in order to eliminate deterioration or damage of repairing materials after repair, an acid-resistant repairing material is required in an environment with acid erosion. Therefore, the present invention utilizes the excellent acid resistance of waste glass, and is also used as a substitute for fine aggregates that are currently lacking in resources to produce high value-added cross-sectional repair type acid-resistant repair materials that can reduce environmental load through resource recycling. will be.

콘크리트 구조물의 보수를 위한 재료 중 단면수복형 보수재료는 시멘트계 재료부터 합성수지 제품에 이르기까지 다양하게 존재하지만, 거의 대부분이 염해나 중성화를 입은 부재를 대상으로 개발되었기에 산성환경에 대한 영향이나 거동은 제품개발 및 설계단계에서 검토되지 않았거나, 검증되지 않은 성능으로 산 및 그 염에 의한 침식 열화를 입은 콘크리트 부재에 만능재료인 것처럼 적용되고 있는 실정이다.Among the materials for repairing concrete structures, cross-sectional repair type repair materials exist from cement-based materials to synthetic resin products, but most of them have been developed for salt or neutralized members. It has been applied as if it is an all-round material to concrete members that have not been reviewed at the development and design stages or have not been verified and have been subjected to erosion deterioration by acids and salts thereof.

콘크리트 구조물이 노출될 수 있는 산 침식환경은 석유화학공장, 제지공장, 석탄공장, 도시쓰레기 소각시설물 등 및 그 인근 구조물과 황산염이 많이 존재하는 도시하수구 및 각 가정의 생활 하수시설, 그리고 공동구나 지하구조물 같은 시설 구조물들과 농어업용 수로, 선착장, 부두와 같은 시설물들이 해당되는 등 무수히 많은 구조물들의 부재가 산 및 그 염의 침식 환경에 노출되어 있으며, 자원 절약 및 에너지절약, 건설산업의 환경부하를 줄이기 위한 목적으로 구조물의 사용연한의 증대가 필요하며, 이를 위해서는 부재에 대한 침식원인에 직접적으로 대응하여 충분한 보수능력을 발휘할 수 있는 보수재료를 적시에 보수를 실시하는 조치가 필요하다. Acid erosion environments that can expose concrete structures include petrochemical plants, paper mills, coal plants, urban waste incineration facilities, and urban sewers and residential sewage facilities where many sulfates are present, as well as the municipal sewers, and common areas Numerous structures are exposed to acid and salt erosion environments, including structures such as structures and facilities such as waterways, marinas and docks for agriculture and fisheries, saving resources, conserving energy and reducing environmental load in the construction industry. For this purpose, it is necessary to increase the service life of the structure, and in order to do so, it is necessary to take timely repair of repair materials that can exhibit sufficient repair ability in response to the erosion cause of the member.

자원의 재활용의 측면에서 폐유리를 활용한 종래의 기술을 검토하여 보면, 폐유리를 기타의 광물질과 혼합한 후 용융하여 제조한 다공 유리나, 벽돌, 타일 등을 제조하는 기술이 존재하며, 폐유리를 콘크리트에 혼합하여 유리콘크리트를 제조하는 기술이 존재한다. 또한 시멘트나, 석고, 소석회 등과 혼합하여 보도블록, 가로수 보호대 등의 2차제품을 제조하는 기술도 존재한다. 하지만 이들 대부분은 폐유리를 재활용하기 위해서는 고온에서 가공하는 추가적인 에너지 소비를 필요로 하거나, 타대체재의 성능이나 수요가 많고 종류가 다양하게 존재하는 이유로 인하여 개발된 제품에 대한 적용실적이나 수요가 많지 않은 실정이다.Considering the conventional technology using waste glass in terms of recycling of resources, there is a technology for manufacturing porous glass, brick, tile, etc., which are produced by mixing waste glass with other minerals and melting it. Is mixed with concrete to produce glass concrete. In addition, there is a technology for manufacturing secondary products such as sidewalk blocks, roadside guards by mixing with cement, gypsum, slaked lime and the like. However, most of them do not have much application performance or demand for products developed because of the need for additional energy consumption to process at high temperature to recycle waste glass, or because of the high performance, demand, and variety of other materials. It is true.

이상에서의 설명과 같이, 콘크리트 구조물에 대한 열화 환경 중 이미 일반적인 침식환경이라 볼 수 있는 산 및 그 염에 의한 침식환경 하에서 보수 성능을 충분히 발휘할 수 있는 보수재료가 필요하며, 본 발명은 현재 거의 대부분을 매립에 의존하고 있는 건설 폐기물인 폐유리를 활용하여 산에 의한 침식피해를 입은 콘크리트 구조물의 부재를 경제적인 방법으로 효율적인 성능을 발휘할 수 있는 단면복구형 내산성 보수재료의 조성물과 그 적용방법에 대하여 제안한다.As described above, there is a need for a repair material capable of sufficiently exhibiting a repair performance under an erosion environment caused by acids and salts, which are already considered to be general erosion environments among concrete deterioration environments. The composition and application method of the cross-sectional recovery type acid-resistant repair material which can use the waste glass, which is a construction waste depending on the landfill, to efficiently perform the concrete structure which is damaged by acid erosion by economic method Suggest.

2004년의 통계조사 자료를 기준으로 보면, 전체 배출 폐기물 중 유리제품류는 연간 114,245톤이 발생하여 이 중 81,030톤이 재활용되고 33,215톤이 매립되고 있어, 재활용률이 높아 보이지만, 재활용되는 재활용품 중 대부분은 생활쓰레기의 형태로 배출되는 유리병이며, 건설현장에서 배출되는 폐유리는 아직 대부분 매립되고 있는 실정이다. 이에 건설현장에서 제로 이미션을 실현하고 환경부하량을 저감시키기 위해서는 폐유리의 재활용이 필요하다.Based on 2004 survey data, 114,245 tons of glass products are generated annually, of which 81,030 tons are recycled and 33,215 tons are reclaimed, resulting in high recycling rates. The glass bottles are discharged in the form of garbage, and the waste glass discharged from the construction site is still mostly buried. Therefore, waste glass needs to be recycled in order to realize zero emission at construction sites and to reduce environmental load.

콘크리트 구조물은 내구연한 동안에 외부환경 열화인자로부터 침식을 받아 콘크리트가 박리 박락되며, 그 정도가 심해지면 콘크리트 속에 매입된 철근이 부식을 초래하여 내하력(load carrying capacity)등의 성능저하 현상이 발생하므로 내구연한 동안 구조물이 원활한 기능을 수행하도록 수시로 보수를 하게 된다. Concrete structures are subjected to erosion from external environmental deterioration factors during durability, and concrete peels and falls off, and if the degree becomes severe, the reinforced steel embedded in concrete causes corrosion and performance degradation such as load carrying capacity occurs. Over time, the structure will be repaired from time to time to ensure a smooth function.

다음은 경화 콘크리트 내부로 침식이온이 침투하였을 때의 콘크리트의 침식성 화학반응을 나타낸다.The following shows the erosive chemical reaction of concrete when erosion ion penetrates into the hardened concrete.

<황산(H2SO4) 수용액에 의한 침식반응>Erosion Reaction with Sulfuric Acid (H 2 SO 4 ) Solution

Ca(OH)2 + HSO4 CaSO42H2O //이수석고 생성// Ca (OH) 2 + HSO 4 CaSO 4 2H 2 O // create gypsum plaster //

3CaOAl2O3 + CaSO4+2H2O ⇒ 3CaOAl2O33CaSO432H2O //에트링가이트(팽창성물질)//3CaOAl 2 O 3 + CaSO 4 + 2H 2 O ⇒ 3CaOAl 2 O 3 3CaSO 4 32H 2 O // etringite (expandable material) //

3CaOAl2O33CaSO432H2O + 2(33CaOAl2O3)⇒3CaOAl 2 O 3 3CaSO 4 32H 2 O + 2 (33CaOAl 2 O 3 ) ⇒

3(CaOAl2O3CaSO412H2O) //모노설페이트(수분흡수로 인한 추가팽창)//3 (CaOAl 2 O 3 CaSO 4 12H 2 O) // monosulfate (additional expansion due to moisture absorption) //

<황산나트륨(Na2SO4) 수용액에 의한 침식반응>Erosion Reaction with Sodium Sulphate (Na 2 SO 4 ) Aqueous Solution

Ca(OH)2 + Na2SO4 ⇒ CaSO42H2O + 2NaOH //이수석고 생성//Ca (OH) 2 + Na 2 SO 4 ⇒ CaSO 4 2H 2 O + 2NaOH // Isohydrate Formation //

2(3CaOAl2O312H2O + 3(Na2SO410H2O) ⇒2 (3CaOAl 2 O 3 12H 2 O + 3 (Na 2 SO 4 10H 2 O) ⇒

3(CaOAl2O33CaSO431H2O + 2Al(OH)3 + 6NaOH + 17H2O //에트링가이트(팽창성물질)//3 (CaOAl 2 O 3 3CaSO 4 31H 2 O + 2Al (OH) 3 + 6NaOH + 17H 2 O // etringite (expandable material) / /

3CaOAl2O3 + CaSO4+2H2O ⇒ 3CaOAl2O33CaSO432H2O //에트링가이트(팽창성물질)//3CaOAl 2 O 3 + CaSO 4 + 2H 2 O ⇒ 3CaOAl 2 O 3 3CaSO 4 32H 2 O // etringite (expandable material) //

<염산(HCl) 수용액에 의한 침식반응>Erosion Reaction with Hydrochloric Acid (HCl) Aqueous Solution

Ca(OH)2 + HCl ⇒ CaCl2 + 2H2O //수산화칼슘의 분해로 인한 pH감소//Ca (OH) 2 + HCl ⇒ CaCl 2 + 2H 2 O // reduced pH due to decomposition of calcium hydroxide //

C-S-H gel + HCl ⇒ CaCl2 + 2H2SiO3 //토버모라이트겔의 분해//CSH gel + HCl ⇒ CaCl 2 + 2H 2 SiO 3 // decomposition of Tobermorite gel //

<탄산수(H2CO3)에 의한 침식반응>Erosion Reaction with Carbonated Water (H 2 CO 3 )

CO2 + H2O ⇒ H2CO3 //탄산의 생성//CO 2 + H 2 O ⇒ H 2 CO 3 // production of carbonic acid //

H2CO3 + H2O ⇒ H3O+ + HCO3- //탄산의 이온화//H2CO 3 + H 2 O ⇒ H 3 O + + HCO 3 -// ionization of carbonic acid //

CaCO3 + H2CO3 ⇒ Ca(HCO3)2 //탄산칼슘의 분해//CaCO 3 + H 2 CO 3 ⇒ Ca (HCO 3 ) 2 // decomposition of calcium carbonate //

이상의 침식반응에 대하여 적절하게 대응할 수 있는 보수재료가 개발되어야 하지만, 대부분 염해와 중성화 피해에 대한 보수에 한정되어 개발이 되었음에도 마치 만능재료인 것처럼 손상을 입은 거의 모든 콘크리트 부재에 적용되고 있는 실정에 있으므로 경제적인 방법으로 산 침식피해를 입은 부위를 보수하기 위한 보수재료가 필요하다. Repair materials should be developed to properly respond to the above erosion reactions. However, although most of them have been developed for repair of salt and neutralization damage, they are applied to almost all damaged concrete parts as if they were all-round materials. Repairing materials are needed to repair damaged areas of acid erosion in an economic way.

이에 본 발명은 구성분 중 70%이상이 SiO2성분인 건설폐기물의 형태로 배출되고 있는 폐유리에 대하여 내산성이 우수한 점을 활용하고 간단한 기계적 처리를 통해 입도조절이 가능하다는 점을 활용하여 콘크리트 구조물에 대한 단면수복형 내산성 보수재료의 조성물을 제조한다.Therefore, the present invention utilizes the excellent acid resistance of the waste glass discharged in the form of construction waste containing more than 70% of the SiO 2 component, and the concrete structure by utilizing the fact that the particle size can be adjusted through a simple mechanical treatment A composition of a cross-sectional repair type acid resistant repair material is prepared.

또한 폐유리를 활용한 단면수복형 내산성 보수재료 조성물의 실제 열화된 콘크리트 부위에 적용시 구체 콘크리트와의 호환성을 증대시키기 위해 바탕조정용 재료로 Methyl Methacrylate(MMA)모노머와 아크릴계 실란 커플링제, 그리고 MEKP로 구성된 아크릴계 함침재가 조성되어 적용된다.In addition, Methyl Methacrylate (MMA) monomer, acrylic silane coupling agent, and MEKP are used for the background adjustment material to increase the compatibility with concrete concrete when applied to the actual deteriorated concrete part of the cross-sectional repair type acid-resistant repair material composition using waste glass. The composed acrylic impregnation material is applied and applied.

<폐유리를 활용한 단면수복형 보수재료 조성물의 제조><Preparation of Sectional Repair Type Repair Material Composition Using Waste Glass>

본 발명은 폐유리의 내산성과 잔골재 대체 가능성을 활용하여 내산성 보수재료 조성물을 제조하는 것으로 보수재료로써 원활한 성능 발휘하기 위해서는 보수 재료에 기본적으로 요구되는 물리적 화학적 성능을 충분히 만족하여야 한다.The present invention is to produce an acid-resistant repair material composition by utilizing the acid resistance of the waste glass and the possibility of replacing the aggregate aggregate, in order to exhibit smooth performance as a repair material, the physical and chemical performance basically required for the repair material should be sufficiently satisfied.

먼저, 폐유리가 잔골재로 활용되기 위해서는 No.4체(지름 5mm)를 통과하는 입도가 필요하다. 따라서 수집된 폐유리를 No.4체로 체가름하여 이를 통과하지 않은 폐유리에 대해서는 파쇄기를 이용하여 입경을 5mm미만이 되도록 조정한다. 표 1에는 입도조정이 된 폐유리의 입도분포와 조립률이 나타나 있다. First, in order for the waste glass to be used as fine aggregate, the particle size passing through No. 4 sieve (diameter 5mm) is required. Therefore, the collected waste glass is sifted into No. 4 sieves, and the waste glass which does not pass through it is adjusted to a particle size of less than 5 mm using a crusher. Table 1 shows the particle size distribution and assembly rate of the waste glass with particle size adjustment.

표 1Table 1

체의 크기Sieve size 통과율Pass rate No. 4No. 4 99.8599.85 No. 8No. 8 74.7774.77 No. 16No. 16 31.4531.45 No. 30 No. 30 14.3514.35 No. 50 No. 50 11.3311.33 No. 100  No. 100 2.002.00 조립율 (F.M) : 3.76Assembly rate (F.M): 3.76

입도 조정이 된 폐유리를, 화학적으로 안정하여 내수성, 내산성, 내용제성 등 내약품성이 우수하고 타재료와의 접착성이 우수한 불포화폴리에스테르수지(Unsaturated Polyester resin)와 배합을 한다. Waste glass with particle size adjustment is chemically stable and is compounded with Unsaturated Polyester resin which is excellent in chemical resistance such as water resistance, acid resistance and solvent resistance and excellent adhesion to other materials.

여기서, 폐유리는 각이 진 입형을 띄고 있으므로 최종 배합물의 내부에는 갖힌 공극(entrapped air)을 많이 만들어 성능저하를 초래하고, 시공성을 저하시키므로 탄 산칼슘(CaCO3), 플라이애쉬(fly ash), 그리고 고로슬래그 미분말(ground granulated blast furnace slag)를 충전재로 첨가함으로써 최밀충전을 유도하여 배합 조성물의 성능을 개선하고 작업성을 증가시킨다. 표 2에는 본 발명에 충전재로 사용된 각 재료의 물리적 화학적 특성이 나타나 있다.In this case, the waste glass has an angle of ingress, which causes a lot of entrapped air inside the final compound, resulting in deterioration of performance and deterioration of workability. Therefore, calcium carbonate (CaCO 3 ) and fly ash In addition, ground granulated blast furnace slag is added as a filler to induce close filling, thereby improving performance and increasing workability of the blended composition. Table 2 shows the physical and chemical properties of each material used as filler in the present invention.

표 2TABLE 2

구분division 비표면적(/g)Specific surface area (/ g) 비중 (20)Specific gravity (20) SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO SO3 SO 3 Na2ONa 2 O K2OK 2 O 플라아애쉬Fly Ash 3,6133,613 2.222.22 52.652.6 33.433.4 4.604.60 0.70.7 0.70.7 0.30.3 0.60.6 4.54.5 고로슬래그Blast furnace slag 4,6474,647 3.903.90 33.133.1 13.813.8 -- 42.442.4 6.16.1 -- 0.230.23 0.310.31 탄산칼슘Calcium carbonate 2,5002,500 2.702.70 CaCO3 99.9%CaCO 3 99.9%

산 및 그 염에 의한 침식은 결국 산성이온들과 그 염이 콘크리트 내부로의 침투하여 앞서 설명한 열화 메카니즘에 의한 결과이기 때문에 이들 충전재는 최밀충전을 유도하여 공극감소를 통한 강도 및 유해이온 침투저항을 향상시킬 수 있을 뿐만 아니라 본 발명에서 결합재로 사용된 UP 수지의 사용량을 줄이는 역할을 한다.Since the erosion by acid and its salts is the result of acidic ions and their salts penetrating into the concrete and the deterioration mechanism described above, these fillers induce the closest filling and thus increase the strength and resistance to harmful ion penetration through the reduction of voids. Not only can improve, but also serves to reduce the amount of UP resin used as a binder in the present invention.

본 발명의 단면수복형 내산성 보수재료의 조성물은 UP수지 100중량부와, 이에 대한 잔골재 800중량부 내지 650중량부와 잔골재 중량에 대한 폐유리의 대체율 0%(w/w)내지 100%(w/w), 탄산칼슘, 플라이애쉬, 고로슬래그 미분말 100중량부, UP수지의 상온 경화를 위한 개시제(initiator)인 메틸 에틸 케튼 퍼옥사이드(Methyl Ethyl Keton Peroxide; 이하 MEKP라함) 1중량부로 구성된다. 표 3은 본 발명에 사용된 UP수지의 특성을 나타내고 있다.The composition of the cross-sectional repair type acid-resistant repairing material of the present invention is 100 parts by weight of the UP resin, and 800 to 650 parts by weight of the aggregate and the replacement ratio of the waste glass to the weight of the aggregate from 0% (w / w) to 100% (w) / w), calcium carbonate, fly ash, blast furnace slag fine powder 100 parts by weight, Methyl Ethyl Keton Peroxide (hereinafter referred to as MEKP) which is an initiator (initiator) for room temperature curing of UP resin. Table 3 shows the characteristics of the UP resin used in the present invention.

표 3TABLE 3

산가(Acid value)Acid value 비중importance 점도Viscosity 스틸렌 함량 (%)Styrene Content (%) 23.023.0 1.121.12 125125 4040

<제조된 보수재료의 적용><Application of manufactured repair materials>

본 발명의 폐유리를 활용한 단면수복형 내산성 보수재료의 조성물을 침식이 일어난 콘크리트 보수재료에 적용하는 경우에는 보수재료와 구체콘크리트 사이의 일체화와 호환성을 증대시키기 위해서 매개체역할을 할 수 있는 바탕조정용 함침재가 필요한 데, 본 발명에서는 MMA계 아크릴 함침재가 제시되며, 이 함침재는 보수재료와 고압수로 처리된 구체 콘크리트 노출면과의 화학적 결합력 및 접착력을 향상시키기 위한 재료로써 MMA 모노머 100중량부와 이에 대한 MEKP 개시제 1중량부, 그리고 아크릴계 실란 커플링제 1중량부로 구성된다. 표 4는 본 발명에서 함침재로 사용된 재료의 특성을 나타내고 있다.When the composition of the cross-sectional repair type acid-resistant repair material using waste glass of the present invention is applied to the erosion-concrete repair material, it can be used as a mediator to increase the integration and compatibility between the repair material and concrete concrete. Impregnating material is required, MMA-based acrylic impregnating material is presented in the present invention, the impregnating material is 100 parts by weight of the MMA monomer and as a material for improving the chemical bonding and adhesion between the concrete and the exposed concrete concrete surface treated with high-pressure water 1 part by weight of the MEKP initiator, and 1 part by weight of the acrylic silane coupling agent. Table 4 shows the properties of the material used as the impregnating material in the present invention.

표 4Table 4

구분division 제조처Manufacturer 비중importance 분자량Molecular Weight MMAMMA 국산Domestic 0.940.94 100100 실란 커플링제Silane coupling agent 국산Domestic 1.051.05 250250

<조성물의 <Composition 적용방밥Applied Bangbab >>

이상에서는 본 발명의 조성물을 제조하는 방법을 설명하였으며, 여기서는 제조된 조성물을 산 및 그 염에 의해 침식된 콘크리트 부위에 적용하는 방법에 대해서는 아래 도면을 통해 상세한 설명을 하도록 한다.In the above described the method for producing a composition of the present invention, the method of applying the prepared composition to the concrete site eroded by the acid and its salts will be described in detail through the drawings below.

<도면에 대한 상세한 설명><Detailed Description of Drawings>

발명의 해결 방법에 대한 이상의 설명에 도면을 참조하여 상세한 설명을 한다.The above description of the solution method of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 폐유리를 입도조정하여 단면수복형 내산성 보수재료를 만들기 위한 제조과정을 도식적으로 표현한 작업이다.Figure 1 is a schematic representation of the manufacturing process for producing a cross-sectional repair type acid-resistant repair material by adjusting the size of the waste glass.

도1의 부호 1은 수집된 폐유리를 잔골재로 활용하기 위해 최대치수가 5mm이하가 되도록 No.4체를 이용하여 체가름을 실시하는 작업이다.Reference numeral 1 of FIG. 1 is a work for sieving using No. 4 sieve so that the maximum dimension is 5 mm or less in order to utilize the collected waste glass as fine aggregate.

부호 2는 체가름을 실시한 폐유리 시료 중에서 체에 남는지의 여부를 판단하는 단계이다.Reference numeral 2 is a step of determining whether or not remains in the sieve among the waste glass sample subjected to the sifting.

부호 3은 체가름 후 No4. 체에 남아 있는 시료에 대하여 파쇄기를 이용하여 파쇄를 하는 작업이다.Code 3 represents No4. This is a process of crushing the sample remaining in the sieve using a crusher.

부호 4는 체가름을 통해 최대 크기가 5mm이하가 되도록 입도조정이 된 폐유리와 충전재로 사용하게 될 탄산칼슘, 플라이애쉬, 고로슬래그, 결합재인 UP수지를 계량하는 작업이다.The sign 4 is to measure the waste glass whose particle size is adjusted so that the maximum size is 5mm or less through sieving, and UP resin, which is calcium carbonate, fly ash, blast furnace slag, and binder, to be used as a filler.

부호 5는 계량된 재료 중에서 폐유리, 잔골재, 충전재를 건비빔을 충분히 실시하는 작업이다.Numeral 5 denotes a task to sufficiently dry the waste glass, fine aggregate, and filler in the weighed material.

부호 6은 건비빔을 실시한 시료에 결합재인 UP수지를 혼입하여 교반기를 이용해 3분간 충분히 예비 혼합을 실시하는 작업을 나타낸다.Reference numeral 6 denotes an operation in which UP resin, which is a binder, is mixed into the sample subjected to the dry beam beam and sufficiently premixed for 3 minutes using a stirrer.

부호 7은 예비 홉합된 시료에 상온에서 경화가 되도록 경화개시제인 MEKP를 혼입하여 교반기를 이용하여 1분 30초간 충분히 혼합하는 작업을 나타낸다.Reference numeral 7 denotes an operation in which the pre-mixed sample is mixed with MEKP, which is a curing initiator, so as to be cured at room temperature, and sufficiently mixed for 1 minute and 30 seconds using a stirrer.

도 2는 도 1을 통해 준비된 본 발명의 단면수복형 내산성 보수재료에 대하여 실제 산 침식을 받아 열화된 콘크리트 부위에 적용하는 절자를 도식적으로 표현한 것이다.Figure 2 is a schematic representation of the procedure applied to the concrete part subjected to the actual acid erosion for the cross-sectional repair type acid-resistant repair material of the present invention prepared through FIG.

도 2의 부호 1은 산 침식에의해 열화된 콘크리트 부위를 정, 망치, 브레커를 이용하여 제거하고, 고압수를 이용하여 깨끗하게 정리하는 작업을 나타낸다.Reference numeral 1 of FIG. 2 represents a work of removing concrete parts deteriorated by acid erosion using tablets, hammers, and breakers, and cleaning them using high pressure water.

부호 2는 고압수를 이용하여 정리된 콘크리트 노출면을 표면 함침재가 잘 침투할 수 있도록 건조시키는 작업을 나타낸다.Reference numeral 2 denotes an operation for drying the concrete exposed surface arranged using high pressure water to allow the surface impregnation material to penetrate well.

부호 3은 건조된 콘크리트 노출면에 결합수지인 MMA 100중량부와 MMA 중량부에 대하여 개시제인 MEKP 1중량부, 촉진제 DMA(N,N-dimethyl aniline) 1중량부로 구성되는 표면 함침재를 도포하는 작업을 나타낸다.3 is applied to the surface of the dried concrete surface impregnated material consisting of 100 parts by weight of the binding resin MMA, 1 part by weight of the initiator MEKP and 1 part by weight of accelerator DMA (N, N-dimethyl aniline) relative to the MMA parts by weight Represent work.

부호 4는 폐유리를 활용한 단면수복형 내산성 보수재료 배합물의 타설을 준비하는 작업을 나타낸다.Numeral 4 denotes the preparation of the casting of the cross-sectional restorative acid-resistant repair material compound using waste glass.

부호 5는 본 발명의 단면수복형 내산성 보수재료 배합물을 흙손을 이용하여 골고루 펴바르는 작업을 나타낸다.Reference numeral 5 denotes an operation of evenly spreading the cross-sectional repair type acid-resistant repair material formulation of the present invention using a trowel.

부호 6은 보수 부위를 보호하고, 원활한 양생이 되도록 상업적으로 널리 알려져 있는 MMA 모르타르를 표면보호재로 도포하는 작업이다.Reference numeral 6 denotes an operation of applying MMA mortar, which is widely known commercially, as a surface protective material to protect the repair site and to facilitate smooth curing.

도면 3은 산 및 그 염이 콘크리트 내부로 침입하여 팽창성물질을 생성함으로써 콘크리트 부재의 일부를 탈락시키는 상황에 대하여 도식적으로 표현한 것으로, 침식을 받은 콘크리트는 앞서 설명바와 같이 대부분 팽창성 물질을 생성함으로써 팽창압이 콘크리트의 인장강도를 초과하는 경우 최초 균열을 발생하며, 그 상황이 더욱 가속화된다. 침식이 더욱 심하게 되면 침식면적과 침식부위가 확대되면서 콘크리트 덮개가 떨어져나가는 현상이 발생하게 된다.Figure 3 is a schematic representation of the situation in which the acid and its salts to break down a part of the concrete member by invading the concrete to create an expandable material, the eroded concrete is the expansion pressure by generating the most expandable material as described above If the tensile strength of this concrete is exceeded, an initial crack occurs, which accelerates the situation further. If the erosion is more severe, the concrete cover is falling off as the erosion area and erosion area are enlarged.

도면 4는 산 및 그 염에 의해 침식을 받은 콘크리트 부재에 대하여 본 발명에서 조성된 보수재료와 적용방법을 토대로 실시되는 보수작업을 도식적으로 표현한 것으로 산 침식이 발생했을 경우에는 침식 받은 부위를 벗겨내고, 그 위에 본 발명에서의 제시하고 있는, 구체 콘크리트와 보수재료사이의 호환성과 일체성을 높이기 위해 MMA100중량부에 대하여 1중량부의 아크릴계 실란 커플링제가 포함된 바탕조정용 MMA계 아크릴 함침재를 도포하여 표면부의 강성과 탄성계수를 높이는 작업을 한다. 함침재가 도포된 면 위에는 본 발명의 폐유리를 활용한 단면수복형 내산성 보수재료를 펴발라서 탈락된 콘크리트 부재의 단면을 복구한다. 마직막으로 보수부위 양생과 보호를 위해 MMA 폴리머 모르타르를 적용한다.Figure 4 is a schematic representation of the repair work carried out based on the repair material and application method formed in the present invention for the concrete member eroded by the acid and salts thereof, when the acid erosion occurs, peeled off the eroded part On top of that, in order to increase the compatibility and integrity between the concrete concrete and the repairing material proposed in the present invention, the MMA-based acrylic impregnant for ground adjustment containing 1 part by weight of an acrylic silane coupling agent is applied to 100 parts by weight of MMA. Work to increase the surface rigidity and modulus of elasticity. On the surface of the impregnating material is applied to recover the cross section of the dropped concrete member by spreading the cross-sectional repair type acid-resistant repair material using the waste glass of the present invention. Finally, MMA polymer mortar is applied to repair and protect the repair area.

발명의 중요한 용도Important uses of the invention

본 발명은 자원의 재활용률을 높임으로써 자연 환경을 보호하고 환경부하를 저감시키는 차원에서 건설폐기물인 폐유리의 재활용률을 높임과 동시에 산 침식환경에 노출되어 있는 콘크리트 구조물의 단면수복형 보수재료로 활용함으로써 새로운 가치를 창출할 수 있도록 고안되었다.The present invention increases the recycling rate of waste glass, which is a construction waste, in order to protect the natural environment and reduce the environmental load by increasing the recycling rate of resources, and by utilizing it as a cross-sectional repair type repair material for concrete structures exposed to acid erosion environment. It is designed to create new value.

또한 산성부식환경에 대한 맞춤형 보수재를 제조함으로써 콘크리트 유지보수 관련 기술에서 요소 기술화할 수 있을 뿐만 아니라 건축공학적 측면에서는 구조물의 수명증대를 꾀할 수 있으며, 자원재활용 측면에서는 에너지를 절약하고, 건설현장에 서 제로 이미션을 실현하는 중요한 기술이다.In addition, by manufacturing customized repair materials for acid corrosive environment, not only element technology can be described in concrete maintenance-related technologies, but also construction life can be extended in terms of construction engineering, energy can be saved in terms of resource recycling, and construction sites can be improved. This is an important technique for achieving zero emission.

또한 본 발명에서의 폐유리를 활용한 단면수복형 보수재료의 조성물과 그 적용방법은, 구조물의 수명증대를 위해서 구조물의 보수와 보강이 무엇보다도 중요한 시점에서 산 및 그 염의 침식환경에 노출된 콘크리트 부재의 기능과 성능을 회복하는 데 중요한 역할을 수행할 것으로 기대되며, 내산성과 부착강도, 경화수축 등의 기계적 특성면에서 우수하다는 장점으로 시멘트계 단면수복형 보수재료나 폴리머 모르타르 등에 대한 대체재로 활용이 기대된다.In addition, the composition of the cross-sectional repair type repair material using the waste glass in the present invention and the method of applying the same, the concrete exposed to the erosion environment of the acid and its salt when the repair and reinforcement of the structure is most important to increase the life of the structure It is expected to play an important role in restoring the function and performance of the member, and it is excellent in terms of mechanical properties such as acid resistance, adhesive strength, and hardening shrinkage.It can be used as a substitute for cement-based repair repair materials or polymer mortar. It is expected.

실시예Example

본 발명에서의 조성물에 대한 실시예 중 일부분을 다음과 같이 나타낸다.Some of the examples for the compositions in the present invention are shown as follows.

[실시예1]Example 1

<폐유리를 활용한 단면수복형 내산성 보수재료 조성물 특성><Characteristics of Sectional Repair Type Acid-Resistant Repair Material Using Waste Glass>

실시예1은 결합재인 UP수지 100중량부에, 폐유리 800중량부과 고로슬래그 100중량부, MEKP 1중량부로 구성된 조성물을 상기의 배합 방법에 따라서 교반한다.In Example 1, a composition consisting of 800 parts by weight of waste glass, 100 parts by weight of blast furnace slag and 1 part by weight of MEKP was stirred according to the above mixing method.

비교예1은 보통포틀랜드 시멘트100중량부, 이에 대한 실리카흄 10중량부, 규사 6호 200중량부를 혼합하여 단면수복용 보수재료로 사용되는 배합으로 구성되어 있다.Comparative Example 1 is composed of 100 parts by weight of ordinary Portland cement, 10 parts by weight of silica fume, and 200 parts by weight of silica sand No. 6 to be used as a repair material for cross-sectional restoration.

비교예2는 현장에서 보수재료로 사용되고 있는 에폭시 레진모르타르의 배합이다.Comparative Example 2 is a compounding of epoxy resin mortar used as a repair material in the field.

실시예의 결과를 비교예의 결과와 비교하여 보면, 전반적으로 우수한 물리적 성능을 가지고 있으며, 산 및 그 염에 대한 저항성에서도 비교예1과 2와 비교하여 우수 한 성능을 가지고 있다.Comparing the results of the examples with the results of the comparative example, it has excellent overall physical performance, and also excellent performance compared to Comparative Examples 1 and 2 in the resistance to acids and salts thereof.

시험결과 시험 세부항목           Test Result Test Details 시험방법Test Methods 실시예1 시험결과Example 1 Test Results 비교예1Comparative Example 1 비교예2Comparative Example 2 추천 성능기준*1 Recommended performance standard * 1 구분division 세부구분Details 기초물성Basic property 압축강도Compressive strength 재령 28일28 days of age 80.6MPa80.6 MPa 45.8MPa45.8 MPa 64.2MPa64.2 MPa >40MPa> 40 MPa 휨강도Flexural strength 재령 28일28 days of age 20.7MPa20.7 MPa 3.7MPa3.7 MPa 32MPa32 MPa -- 경화수축Hardening shrinkage 재령 28일28 days of age 2.2 ×10-4 2.2 × 10 -4 128×10-4 128 × 10 -4 246×10-4 246 × 10 -4 <4×10-4 <4 × 10 -4 부착강도*2 Adhesion Strength * 2 구체콘크리트Concrete 2.4MPa2.4 MPa 0.8MPa0.8 MPa 2.7MPa2.7 MPa >2.5MPa> 2.5 MPa 침지기간Immersion period 침지기간Immersion period 침지기간Immersion period 3일3 days 28일28 days 91일91 days 3일3 days 28일28 days 91일91 days 3일3 days 28일28 days 91일91 days 내산성Acid resistance 중량변화 (%)Weight change (%) H2SO4 10% 수용액H 2 SO 4 10% aqueous solution 1.2%1.2% 3.4%3.4% 3.6%3.6% 19%19% 42%42% 64%64% 1.8%1.8% 4.8%4.8% 7.1%7.1% -- Na2SO4 5% 수용액Na 2 SO 4 5% aqueous solution 0.0%0.0% 0.8%0.8% 1.1%1.1% 8%8% 23%23% 35%35% 0.3%0.3% 1.0%1.0% 2.3%2.3% -- 압축강도 (MPa)Compressive strength (MPa) H2SO4 10% 수용액H 2 SO 4 10% aqueous solution 77.477.4 70.970.9 64.564.5 27.927.9 20.220.2 17.917.9 55.255.2 48.248.2 37.937.9 -- Na2SO4 5% 수용액Na 2 SO 4 5% aqueous solution 78.278.2 74.274.2 70.170.1 39.439.4 33.433.4 30.230.2 62.362.3 52.052.0 47.547.5 -- 휨강도 (MPa)Flexural strength (MPa) H2SO4 10% 수용액H 2 SO 4 10% aqueous solution 18.818.8 17.417.4 16.116.1 13.013.0 9.59.5 7.77.7 29.129.1 26.626.6 24.024.0 -- Na2SO4 5% 수용액Na 2 SO 4 5% aqueous solution 20.120.1 18.218.2 16.416.4 17.817.8 9.99.9 8.18.1 31.431.4 29.829.8 27.527.5 -- *1 추천성능기준이라 함은 콘크리트 보수재료로써 최소한으로 만족해야하는 요구성능을 말한다. 비록 규격서에는 아직 규정되어 있지 않지만, 보편적으로 요구되는 성능 수치이다. *2 부착강도는 함침재가 도포되지 않은 구체콘크리트 위에서 실시되었음. * 1 Recommended performance standard refers to the required performance that must be satisfied to the minimum as concrete repair material. Although not specified in the specification, this is a commonly required performance figure. * 2 Adhesion strength was performed on concrete concrete without impregnated material.

<제조된 보수재료 조성물의 열화된 콘크리트 부재에 적용 시험><Application test of deteriorated concrete member of manufactured repair material composition>

제조된 보수재료의 조성물에 대하여 실제 열화된 콘크리트 부재에 적용하기 위해 앞서 설명한 바와같이 사전에 콘크리트 열화부위를 제거한 후 고압수로 보수면을 세척하고 건조하는 과정이 필요하다. 건조후 노출면에 상기에서 기술한 본 발명의 아크릴계 실란 커플링제를 함유하고 있는 바탕조정용 MMA계 아크릴 함침재를 도포 한다. 도포된 면 위에 본 발명의 단면수복형 내산성 보수재료를 타설함으로써 보수가 완료되며, 적용된 보수재의 성능은 표 6의 적용예와 같다.As described above, in order to apply the composition of the prepared repair material to the actual deteriorated concrete member, it is necessary to remove the concrete deterioration site and then wash and dry the repair surface with high pressure water. After drying, the surface-adjusted MMA-based acrylic impregnating material containing the above-described acrylic silane coupling agent of the present invention is applied to the exposed surface. Repair is completed by pouring the cross-sectional repair type acid resistant repair material of the present invention on the coated surface, and the performance of the applied repair material is shown in the application example of Table 6.

본 발명의 보수재료를 열화 부위에 적용한 결과, 적용 전 파악된 물리적 성능과 비슷하게 나타났으며, 본 발명에서 제시된 아크릴계 실란 커플링제를 함유한 MMA계 아크릴 함침재와의 호환성이 양호한 것으로 파악되지만, 비교예1과 2의 경우에는 적용 시 물리적 성능이 다소 떨어지는 현상을 보였다. As a result of applying the repairing material of the present invention to the deterioration site, it appeared to be similar to the physical performance found before application, and the compatibility with the MMA acrylic impregnant containing the acrylic silane coupling agent presented in the present invention was found to be good. In the case of Examples 1 and 2, the physical performance decreased slightly when applied.

시험항목Test Items 시험방법Test Methods 시험결과Test result 비교예1Comparative Example 1 비교예2Comparative Example 2 비고Remarks 구분division 세부구분Details 기초물성Basic property 부착강도Adhesion strength 재령 28일28 days of age 3.8MPa3.8 MPa 0.7MPa0.7 MPa 1.6MPa1.6 MPa 압축강도(시료채취)Compressive Strength (Sample Collection) 재령 28일28 days of age 79.4MPa79.4 MPa 43.7MPa43.7 MPa 63.1MPa63.1 MPa 휨강도 (시료채취)Flexural Strength (Sample Collection) 재령 28일28 days of age 28.3MPa28.3 MPa 11.4MPa11.4 MPa 25.2MPa25.2 MPa

[실험예2]Experimental Example 2

<폐유리를 활용한 단면수복형 내산성 보수재료 조성물 제조><Production of Sectional Repair Type Acid-Resistant Repair Material Using Waste Glass>

실시예2는 결합재인 UP수지 100중량부에, 폐유리 150중량부, 규사 650중량부와 플라이애쉬 100중량부, MEKP 1중량부로 구성된 조성물을 상기의 배합 방법에 따라서 교반한 배합물에 대한 물리적 성능과 내산성을 파악한 것이다.Example 2 is a physical performance of the blend of a mixture of 100 parts by weight of UP resin as a binder, 150 parts by weight of waste glass, 650 parts by weight of silica sand, 100 parts by weight of fly ash, and 1 part by weight of MEKP according to the above mixing method. And acid resistance.

비교예1과 비교예2는 앞선 실시예1에서의 비교예와 같은 배합물로 이뤄졌다.Comparative Example 1 and Comparative Example 2 consisted of the same formulation as in Comparative Example 1 above.

시험결과 시험 세부항목           Test Result Test Details 시험방법Test Methods 실시예1 시험결과Example 1 Test Results 비교예1Comparative Example 1 비교예2Comparative Example 2 추천 성능기준*1 Recommended performance standard * 1 구분division 세부구분Details 기초물성Basic property 압축강도Compressive strength 재령 28일28 days of age 90.7MPa90.7 MPa 45.8MPa45.8 MPa 64.2MPa64.2 MPa >40MPa> 40 MPa 휨강도Flexural strength 재령 28일28 days of age 20.3MPa20.3 MPa 3.7MPa3.7 MPa 32MPa32 MPa -- 경화수축Hardening shrinkage 재령 28일28 days of age 2.8×10-4 2.8 × 10 -4 128×10-4 128 × 10 -4 246×10-4 246 × 10 -4 <4×10-4 <4 × 10 -4 부착강도*2 Adhesion Strength * 2 구체콘크리트Concrete 3.1MPa3.1 MPa 0.8MPa0.8 MPa 2.7MPa2.7 MPa >2.5MPa> 2.5 MPa 침지기간Immersion period 침지기간Immersion period 침지기간Immersion period 3일3 days 28일28 days 91일91 days 3일3 days 28일28 days 91일91 days 3일3 days 28일28 days 91일91 days 내산성Acid resistance 중량변화 (%)Weight change (%) H2SO4 10% 수용액H 2 SO 4 10% aqueous solution 0.2%0.2% 1.4%1.4% 2.8%2.8% 19%19% 42%42% 64%64% 1.8%1.8% 4.8%4.8% 7.1%7.1% -- Na2SO4 5% 수용액Na 2 SO 4 5% aqueous solution 0.0%0.0% 0.3%0.3% 0.8%0.8% 8%8% 23%23% 35%35% 0.3%0.3% 1.0%1.0% 2.3%2.3% -- 압축강도 (MPa)Compressive strength (MPa) H2SO4 10% 수용액H 2 SO 4 10% aqueous solution 85.285.2 75.075.0 68.268.2 27.927.9 20.220.2 17.917.9 55.255.2 48.248.2 37.937.9 -- Na2SO4 5% 수용액Na 2 SO 4 5% aqueous solution 88.988.9 85.385.3 80.780.7 39.439.4 33.433.4 30.230.2 62.362.3 52.052.0 47.547.5 -- 휨강도 (MPa)Flexural strength (MPa) H2SO4 10% 수용액H 2 SO 4 10% aqueous solution 19.119.1 17.117.1 15.815.8 13.013.0 9.59.5 7.77.7 29.129.1 26.626.6 24.024.0 -- Na2SO4 5% 수용액Na 2 SO 4 5% aqueous solution 20.120.1 18.118.1 16.816.8 17.817.8 9.99.9 8.18.1 31.431.4 29.829.8 27.527.5 -- *1 추천성능기준이라 함은 콘크리트 보수재료로써 최소한으로 만족해야하는 요구성능을 말한다. 비록 규격서에는 아직 규정되어 있지 않지만, 보편적으로 요구되는 성능 수치이다. *2 부착강도는 함침재가 도포되지 않은 구체콘크리트 위에서 실시되었음. * 1 Recommended performance standard refers to the required performance that must be satisfied to the minimum as concrete repair material. Although not specified in the specification, this is a commonly required performance figure. * 2 Adhesion strength was performed on concrete concrete without impregnated material.

<제조된 보수재료 조성물의 열화된 콘크리트 부재에 적용><Applied to deteriorated concrete member of manufactured repair material composition>

실험예2에는 제조된 내산성 보수재료에 대하여 실제열화된 보수 부위에 적용실험한 결과가 표 8에 나타나 있다.In Experimental Example 2, the results of experiments applied to the actual deteriorated repair site for the prepared acid resistant repair material are shown in Table 8.

시험항목Test Items 시험방법Test Methods 시험결과Test result 비교예1Comparative Example 1 비교예2Comparative Example 2 비고Remarks 구분division 세부구분Details 기초물성Basic property 부착강도Adhesion strength 재령 28일28 days of age 2.8MPa2.8 MPa 0.7MPa0.7 MPa 1.6MPa1.6 MPa 압축강도(시료채취)Compressive Strength (Sample Collection) 재령 28일28 days of age 89.5MPa89.5 MPa 43.7MPa43.7 MPa 63.1MPa63.1 MPa 휨강도 (시료채취)Flexural Strength (Sample Collection) 재령 28일28 days of age 32.3MPa32.3 MPa 11.4MPa11.4 MPa 25.2MPa25.2 MPa

본 발명을 통해 건설 현장에서 폐기물로 방출되어 대부분 매립에 의존하고 있는 폐유리에 대하여 단면수복형 내산성 보수재료의 구성물로 제조함으로써 자원 재활용을 통한 에너지 절약 및 환경부하를 감소시키는 효과를 거둘 수 있을 것으로 기대한다. 또한 상기의 실험예에서 보인 바와 같이 기존의 단면수복재와의 성능 비교에서 우수한 성능을 보이고 있기 때문에 구조물의 장수명화를 꾀하고, 유지관리의 효율성을 증대시킬 수 있는 유용한 보수재료 활용이 가능할 것으로 기대되며, 또한 근래의 자연환경이 산성화되고, 콘크리트 구조물이 혹독한 환경에 노출됨에 따라 사용수명 내에 원활하게 기능을 유지하기 위해서는 적절한 시기에 열화 원인에 맞는 보수가 이뤄져야 한다. 특히 산성 환경에 노출된 부재의 경우, 기존에는 염해나 중성화를 입은 부재를 대상으로 한 보수재료가 적용되어왔지만, 산 및 그 염에 대한 저항성이 우수한 재료로 열화원인에 잘 대응할 수 있는 보수재료가 필요하기에 본 발명의 단면수복형 내산성 보수재료가 중요한 역할을 할 수 있을 것으로 기대한다.Through the present invention, it is possible to achieve the effect of saving energy and reducing the environmental load through recycling of resources by manufacturing a composition of a cross-sectional repair type acid-resistant repair material for waste glass which is released as waste at construction sites and relies mostly on landfill. Expect. In addition, as shown in the above experimental example, it shows excellent performance in comparison with the performance of the existing cross-sectional restorative materials, and thus it is expected to be useful for the use of useful repair materials to increase the life of the structure and increase the efficiency of maintenance. In addition, as the natural environment in recent years is acidified and the concrete structure is exposed to the harsh environment, it is necessary to perform repairs in accordance with the cause of deterioration at an appropriate time in order to maintain a smooth function within the service life. In particular, in the case of a member exposed to an acidic environment, a repair material for a member that has been subjected to salt damage or neutralization has been applied. However, a repair material that can cope with the cause of deterioration is excellent because it is a material resistant to acid and its salt. It is expected that the cross-sectional repair type acid-resistant repair material of the present invention may play an important role.

Claims (2)

건설 폐기물인 폐유리를 콘크리트 구조물 보수를 위한 단면 복구형 내산성 보수재료로 재활용하기 위한 조성물에 있어서In the composition for recycling waste glass, which is a construction waste, as a cross-sectional recovery type acid-resistant repair material for repairing concrete structures, 아크릴계 실란 커플링재가 구체 콘크리트와의 접착력을 향상시키기 위해 UP수지 100중량부에 대하여 1중량부 포함되도록 함을 특징으로하는 단면복구형 내산성 보수재료 조성물.A cross-sectional recovery type acid-resistant repair material composition characterized in that the acrylic silane coupling material to include 1 part by weight based on 100 parts by weight of the UP resin in order to improve the adhesion to the concrete concrete. 제 1항에 있어서, 결합재인 UP수지 100중량부와 이에 대한 잔골재 800중량부 내지 650중량부와 잔골재 중량에 대한 폐유리의 대체율 0%(w/w)내지 100%(w/w), 탄산칼슘, 플라이애쉬, 고로슬래그 미분말 100중량부, UP수지의 상온경화를 위한 개시제(initiator)인 MEKPO 1중량부로 구성된 단면수복형 내산성 보수재료 조성물According to claim 1, 100% by weight of the UP resin as a binder and 800 parts by weight to 650 parts by weight of the aggregate and the replacement ratio of the waste glass to the weight of the fine aggregate 0% (w / w) to 100% (w / w), carbonic acid 100 parts by weight of fine powder of calcium, fly ash, blast furnace slag, and 1 part by weight of MEKPO, an initiator for room temperature curing of UP resin
KR20070028093A 2007-03-22 2007-03-22 Manufacture of acid-resistant repair materials for section restoration and its application method KR20080086213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070028093A KR20080086213A (en) 2007-03-22 2007-03-22 Manufacture of acid-resistant repair materials for section restoration and its application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070028093A KR20080086213A (en) 2007-03-22 2007-03-22 Manufacture of acid-resistant repair materials for section restoration and its application method

Publications (1)

Publication Number Publication Date
KR20080086213A true KR20080086213A (en) 2008-09-25

Family

ID=40025617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070028093A KR20080086213A (en) 2007-03-22 2007-03-22 Manufacture of acid-resistant repair materials for section restoration and its application method

Country Status (1)

Country Link
KR (1) KR20080086213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595277B1 (en) * 2014-09-29 2016-02-18 (주)청우산업개발 Repair and reinforcement for concrete structures and mesh repair method using the same
CN105417998A (en) * 2015-12-01 2016-03-23 福建师范大学 Resin concrete
CN107602018A (en) * 2017-10-11 2018-01-19 东南大学 Silane coupler fly ash float high-strength light foam concrete and preparation method
CN113737859A (en) * 2021-08-27 2021-12-03 昆明理工大学 Multi-layer die-pressing high-bearing municipal road well lid and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595277B1 (en) * 2014-09-29 2016-02-18 (주)청우산업개발 Repair and reinforcement for concrete structures and mesh repair method using the same
CN105417998A (en) * 2015-12-01 2016-03-23 福建师范大学 Resin concrete
CN107602018A (en) * 2017-10-11 2018-01-19 东南大学 Silane coupler fly ash float high-strength light foam concrete and preparation method
CN107602018B (en) * 2017-10-11 2019-12-10 东南大学 silane coupling agent-fly ash floating bead light high-strength foam concrete and preparation method thereof
CN113737859A (en) * 2021-08-27 2021-12-03 昆明理工大学 Multi-layer die-pressing high-bearing municipal road well lid and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Wong et al. Potential use of brick waste as alternate concrete-making materials: A review
KR102274310B1 (en) Eco-friendly polymer mortar coposition for improving long-term durability and method of cross section recovery using the same
KR101694807B1 (en) Mortar with chloride resistance and acid resistance for repairing and reinforcing concrete using eco-friendly green cement, finishing materials for protecting concrete surface and method for repairing and reinforcing concrete using the same
KR101709240B1 (en) Mortar composition for recovering cross section of eco-friendly cement with sulphate resistance
KR102362416B1 (en) Mortar composition for repairing and reinforcing concrete structure of road gutter and damaged part of road and the method of repairing and reinforcing concrete structure of road gutter and damaged part of road using thereof
KR100895497B1 (en) The structure repair and reinforcement method for which a concrete structure neutralization, a cement mortar composition for damage from salt water prevention and this were used
KR101634367B1 (en) Concrete waterproofing method using resin mortar
KR102323780B1 (en) Environmentally Friendly Mortar Composition for Repairing Concrete Structure Using Cold-Warm Slag Powder and Method for Repairing Concrete Structure Using the Same
KR101962249B1 (en) Eco-friendly sulfate-resisting mortar composition for repairing the surface of concrete structures and construction method using the same
KR102322804B1 (en) Eco-friendly polymer mortar coposition for improving long-term durability, chemical resistanc and adhesion and method of cross section recovery using the same
KR102105862B1 (en) Rapid hardening concrete composition for bridge deck overlay concrete pavement using ferro-nickel slag and the costruction method of bridge deck overlay concrete pavement thereof
KR102373902B1 (en) Concrete mortar for repairing cross-section of concrete structure having sulfate and salt resistance and the method of repairing cross-section of concrete structure using the same
KR102251021B1 (en) Crack-reducing Polymer Mortar Composition for Repair Section
KR101352937B1 (en) A high early strength concrete composition using the eco-friendly cycling silica sand and repairing method of concrete pavement using the same
JP4842050B2 (en) Section repair material and section repair method
KR102329183B1 (en) Surround fixing composition in the pile reclamation method using ferro-nickel slag powder and pile reclamation method using the same
KR20110022776A (en) A composition of reinforcement mortar having quick-hardening and lightweight
KR101682612B1 (en) Concrete repair mortar with improved durability
Chindaprasirt et al. Reuse of recycled aggregate in the production of alkali-activated concrete
KR102388100B1 (en) Road pavement and repair method using eco-friendly concrete composition comprising ferro-nickel slag powder
KR102105860B1 (en) Rapid hardening concrete composition for bridge deck overlay concrete pavement using furnace slag and flyash powder and the costruction method of bridge deck overlay concrete pavement thereof
KR20080086213A (en) Manufacture of acid-resistant repair materials for section restoration and its application method
KR102084250B1 (en) Repair and reinforcement method of underwater structure with separable cement mortar composition and sewage culvert using the same
KR101745405B1 (en) Freezing and thawing-resistant concrete waterway using eco-friendly recycled silica sand and its manufacturing method
CN113185203A (en) Preparation method of recycled concrete

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
E801 Decision on dismissal of amendment