KR20080069058A - Sythesis of gold nanoparticles of various crystal shapes using halide ion - Google Patents

Sythesis of gold nanoparticles of various crystal shapes using halide ion Download PDF

Info

Publication number
KR20080069058A
KR20080069058A KR1020070006663A KR20070006663A KR20080069058A KR 20080069058 A KR20080069058 A KR 20080069058A KR 1020070006663 A KR1020070006663 A KR 1020070006663A KR 20070006663 A KR20070006663 A KR 20070006663A KR 20080069058 A KR20080069058 A KR 20080069058A
Authority
KR
South Korea
Prior art keywords
gold nanoparticles
gold
nanoparticles
solution
synthesized
Prior art date
Application number
KR1020070006663A
Other languages
Korean (ko)
Other versions
KR100873176B1 (en
Inventor
정봉현
하태환
구희준
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020070006663A priority Critical patent/KR100873176B1/en
Publication of KR20080069058A publication Critical patent/KR20080069058A/en
Application granted granted Critical
Publication of KR100873176B1 publication Critical patent/KR100873176B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/0033Refuse receptacles; Accessories therefor specially adapted for segregated refuse collecting, e.g. receptacles with several compartments; Combination of receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F2240/00Types of refuse collected
    • B65F2240/156Paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Abstract

A synthesis method of gold nano particles of various crystal shapes using halogen ion is provided to control kinds and concentration of the halogen ion so as to manufacture the gold nano particles having various shapes and sizes. A synthesis method of gold nano particles comprises the steps of; synthesizing gold nano particles of various crystalline forms, using halogen ion; forming a grow liquid by mixing a surfactant with a HAuCl4 liquid and preparing for a reaction liquid by adding the halogen ion with a reductant; and adding a gold seed crystal with the reaction liquid and agitating the reaction liquid. The gold seed crystal is synthesized by reducing a mixed liquid of HAuCl4 and sodium citrate into NaBH4.

Description

할로겐 이온을 이용한 다양한 결정형의 금 나노입자의 합성방법{Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion}Synthesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion

도 1은 금 나노입자의 성장을 위하여, 성장용액 내의 브롬화 세틸트리메틸암모늄(CTAB)이 단층을 형성하는 모습을 나타낸 것이다.Figure 1 shows the appearance of a monolayer of cetyl trimethylammonium bromide (CTAB) in the growth solution for the growth of gold nanoparticles.

도 2는 본 발명에 따라 제조된 금 나노입자의 투과전자현미경 사진이다.2 is a transmission electron micrograph of the gold nanoparticles prepared according to the present invention.

도 3은 본 발명에 따라 제조된 금 나노입자의 자외선/가시광선 분광 스펙트럼을 나타낸 것이다.Figure 3 shows the ultraviolet / visible spectrum spectra of the gold nanoparticles prepared according to the present invention.

도 4는 본 발명에 따른 금 나노입자의 합성방법에서, 성장용액의 pH를 달리하여 합성한 금 나노입자의 투과전자현미경 사진이다.4 is a transmission electron micrograph of the gold nanoparticles synthesized by varying the pH of the growth solution in the synthesis method of gold nanoparticles according to the present invention.

도 5는 본 발명에 따른 금 나노입자의 합성방법에서, 할로겐 이온을 첨가하지 않았을 경우에 합성된 금 나노입자의 투과전자현미경 사진이다.5 is a transmission electron micrograph of the gold nanoparticles synthesized in the method of synthesizing the gold nanoparticles according to the present invention when no halogen ions are added.

본 발명은 할로겐 이온을 이용한 다양한 결정형의 금 나노입자의 합성방법에 관한 것으로, 보다 상세하게는, (a) 계면활성제 및 HAuCl4 용액을 혼합하여 성장용액을 형성한 다음, 할로겐 이온과 환원제를 첨가하여 반응용액을 준비하는 단계 및 (b) 상기 반응용액에 금 씨드(seed) 결정을 첨가하고 교반하는 단계를 포함하는 금 나노입자의 합성방법에 관한 것이다.The present invention relates to a method for synthesizing gold nanoparticles of various crystalline forms using halogen ions, and more particularly, (a) a surfactant and a HAuCl 4 solution are mixed to form a growth solution, and then halogen ions and a reducing agent are added. It relates to a method for synthesizing gold nanoparticles comprising the steps of preparing a reaction solution and (b) adding and stirring gold seed crystals (seed) to the reaction solution.

금속 재료는 입자의 크기가 작아질수록 입자의 내부에 존재하는 원자 대비 표면을 구성하는 원자의 비율이 증가하면서 표면적이 늘어나게 되고, nm 수준이 되면 입자의 내부에 존재하는 원자에 대해 표면에 존재하는 원자의 비율이 커지므로 거시적 물질 수준에서 보이는 전기적, 자기적 및 광학적 성질과는 다른 독특한 성질을 나타낸다. 이렇게 입자의 크기가 작아지게 되면, 입자 내부로의 빛의 침투가 용이해지며, 상기 입자는 특정 파장의 빛을 흡수하여 입자의 크기 또는 모양에 따라 다른 색으로 보이기도 한다. 나노입자의 이러한 특성들은 광전자 소자, 바이오센서, 바이오 이미징 및 바이오 칩의 분야에서 유용하게 사용될 수 있다. As the size of particles decreases, the surface area increases as the ratio of atoms constituting the surface to the atoms present inside the particles increases. As the ratio of atoms increases, they exhibit unique properties that differ from the electrical, magnetic and optical properties seen at the macroscopic material level. As the size of the particles becomes smaller, the penetration of light into the particles becomes easier, and the particles absorb light of a specific wavelength and may appear to be different colors depending on the size or shape of the particles. These properties of nanoparticles can be usefully used in the fields of optoelectronic devices, biosensors, bio imaging and biochips.

여러 금속 중 금은 인체에 무해하며 다른 물질과 쉽게 반응하지 않는 안정성을 가지고 있기 때문에, 특정 모양 또는 크기를 가지는 금 나노입자를 합성하기 위한 연구, 약물전달 매체로서 작용하는 금 나노입자에 대한 의약학적인 연구 및 금 나노입자를 화장품, 치약 등과 같은 생활용품에 적용하기 위한 연구들이 진행되어 오고 있으며, 상기 연구들에 의한 다양한 결과들이 상업화되고 있다.Among other metals, gold is harmless to the human body and has a stability that does not easily react with other substances. Therefore, research for synthesizing gold nanoparticles having a specific shape or size, and pharmaceuticals for gold nanoparticles serving as a drug delivery medium Researches and studies for applying gold nanoparticles to household goods such as cosmetics and toothpaste have been conducted, and various results by the above studies have been commercialized.

금 나노입자를 합성하는 방법으로는 전기화학적 또는 광화학적 환원방법, 다 양한 템플릿(template)을 이용하는 방법 및 씨드기반-결정성장 방법(seed growth method)이 있는데, 이 중 씨드기반-결정성장 방법은 금 나노막대를 합성하기 위하여 가장 널리 쓰이고 있으며, 상기 방법은 단계가 간단하고 금 나노막대의 가로 세로 비율을 용이하게 조절할 수 있다. Methods of synthesizing gold nanoparticles include electrochemical or photochemical reduction methods, using various templates, and seed-based crystal growth methods, among which seed-based crystal growth methods are used. Most widely used for synthesizing gold nanorods, the method is simple in steps and can easily adjust the aspect ratio of the gold nanorods.

구체적으로, 씨드기반-결정성장 방법은 계면활성제로 사용되는 브롬화 세틸트리메틸암모늄이 수용액 내에서 층을 형성하는 구조로 배열되면서, 씨드 결정이 성장할 수 있는 공간을 확보하며, 상기 씨드 결정과 아스코르브산에 의해 환원된 금 이온이 결합하여 특정 모양을 가지는 금 나노입자를 생성하는 방법으로, 프리즘, 구형태 또는 막대형과 같은 다양한 모양 및 크기의 나노입자를 합성할 수 있다. Specifically, the seed-based crystal growth method is arranged in a structure in which cetyltrimethylammonium bromide used as a surfactant to form a layer in an aqueous solution, to secure a space for seed crystals to grow, and to the seed crystals and ascorbic acid By the reduced gold ions are combined to produce a gold nanoparticles having a specific shape, it is possible to synthesize nanoparticles of various shapes and sizes, such as prisms, spheres or rods.

그러나, 이러한 연구들의 대부분은 최종 생성되는 금 나노입자의 수득률을 높이거나, 크기를 조절하며, 또는 막대형 금 나노입자의 가로 세로 비율을 조절하는 것에만 초점을 맞추고 있을 뿐이다. 따라서, 최근에는 이러한 금 나노입자의 합성과정에 질산은(AgNO3)과 같은 다른 물질을 첨가하거나, 또는 합성된 금 나노입자를 가열하는 등의 물리적인 변형을 가하는 새로운 연구들이 수행되고 있다.Most of these studies, however, focus only on increasing the yield, size, or adjusting the aspect ratio of the rod-shaped gold nanoparticles. Therefore, recently, new studies have been conducted to add physical materials such as adding silver nitrate (AgNO 3 ) to the synthesis process of gold nanoparticles or heating the synthesized gold nanoparticles.

특히, 쉘(shell) 형태의 나노입자가 개발되어 의약학 분야에서 많이 응용되고 있으며, 최근에 미국의 Univerty of Houston System은 나노쉘 형태의 나노입자,나노막대 형태의 나노입자 및 나노쉘 내부에 나노막대를 함유하는 나노입자와 같은 신규한 나노입자 및 불연속 고분자로 코팅된 나노입자를 개발하여, 약물전달체 분 야, 병리학적 치료분야, 진단분야 및 전자기분야와 같은 다양한 산업부분에의 응용을 시도하고 있다 (WO 2005/092286).In particular, shell-type nanoparticles have been developed and widely applied in the pharmaceutical field, and recently, the Univerty of Houston System in the United States has nanoshell-type nanoparticles, nanorod-shaped nanoparticles, and nanorods inside the nanoshell. We have developed new nanoparticles such as nanoparticles containing nanoparticles and nanoparticles coated with discontinuous polymers, and are trying to apply them to various industrial sectors such as drug delivery, pathological treatment, diagnostics and electromagnetic fields. (WO 2005/092286).

또한, 이스라엘의 Ben Gurion University는 내부에 무기핵(inorganic core)을 내포하는 나노입자를 제조한 바 있으며, 이를 생체적합성 약물 분야에 적용할 수 있다고 제시하고 있다 (WO 2006/072943).In addition, Israel's Ben Gurion University has produced nanoparticles that contain an inorganic core inside and suggests that they can be applied to the field of biocompatible drugs (WO 2006/072943).

한편, 국내에서는 화학적인 환원이 아닌 레이저 어블레이션(laser ablation)을 이용하여 금-백금(Au-Pt) 바이메탈 나노입자를 제조하는 기술이 공개되었으며, 상기 금-백금 바이메탈 나노입자는 필라멘트 형태를 가지고 있고, 주축 및 종축의 비율은 변화할 수 있는 것을 특징으로 하는 비구형의 Au-Pt 바이메탈 나노입자이다 (대한민국 등록특허 10-0540887).Meanwhile, in Korea, a technology for manufacturing gold-platinum (Au-Pt) bimetallic nanoparticles using laser ablation, rather than chemical reduction, has been disclosed, and the gold-platinum bimetallic nanoparticles have a filament form. And the ratio of the principal axis and the longitudinal axis is a non-spherical Au-Pt bimetallic nanoparticles, characterized in that it can be changed (Korea Patent 10-0540887).

이와 같이, 현대의 주요 기술분야 중 하나인 나노입자에 대한 다양한 측면에서의 연구가 진행되고 있으나, 실제 산업에 나노입자의 적용여부를 결정하는데 주요한 조건인 나노입자의 결정형, 즉 나노입자의 모양 또는 크기를 조절하며 변형시킬 수 있는 기술에 대한 연구성과가 미비하여, 나노입자를 산업에 적용하여 활용하는데 한계가 있다.As such, research on various aspects of nanoparticles, which is one of the major technical fields, is being conducted, but the crystalline form of nanoparticles, that is, the shape of nanoparticles, The research results on the technology that can adjust the size and deformation is insufficient, and there is a limit in applying nanoparticles to industry.

따라서, 당업계에서는 상기의 문제점을 해결하기 위하여, 다양한 크기 및 모양의 결정형을 가지는 금 나노입자를 합성할 수 있는 방법에 대한 기술개발이 절실하게 요구되고 있다. Therefore, in order to solve the above problems, there is an urgent need for technical development of a method for synthesizing gold nanoparticles having crystalline forms of various sizes and shapes.

이에, 본 발명자들은 상기 종래기술의 문제점을 개선하고자 예의 노력한 결과, 계면활성제를 사용한 성장용액에 금 씨드 결정을 첨가하는 씨드기반-결정성장 방법에, 할로겐 이온을 추가로 첨가함으로써, 다양한 모양의 금 나노입자를 합성할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to improve the problems of the prior art. As a result, by adding additional halogen ions to the seed-based crystal growth method of adding gold seed crystals to a growth solution using a surfactant, various shapes of gold It was confirmed that the nanoparticles can be synthesized, and the present invention was completed.

본 발명의 목적은 할로겐 이온을 이용한 다양한 결정형의 금 나노입자의 합성방법을 제공하는 데 있다.An object of the present invention is to provide a method for synthesizing various types of gold nanoparticles using halogen ions.

상기 목적을 달성하기 위하여, 본 발명은 (a) 계면활성제 및 HAuCl4 용액을 혼합하여 성장용액을 형성한 다음, 할로겐 이온과 환원제를 첨가하여 반응용액을 준비하는 단계 및 (b) 상기 반응용액에 금 씨드(seed) 결정을 첨가하고 교반하는 단계를 포함하는 할로겐 이온을 이용한 다양한 결정형의 금 나노입자의 합성방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of (a) mixing the surfactant and HAuCl 4 solution to form a growth solution, and then adding a halogen ion and a reducing agent to prepare a reaction solution and (b) to the reaction solution Provided are methods for synthesizing various types of gold nanoparticles using halogen ions, including adding and stirring gold seed crystals.

본 발명에 있어서, 상기 금 씨드 결정은 HAuCl4와 구연산 나트륨의 혼합용액을 NaBH4로 환원하여 합성된 것을 특징으로 할 수 있다.In the present invention, the gold seed crystals may be synthesized by reducing the mixed solution of HAuCl 4 and sodium citrate with NaBH 4 .

본 발명에 있어서, 상기 계면활성제는 CTAB, CTAC 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the surfactant may be selected from the group consisting of CTAB, CTAC, and mixtures thereof.

본 발명에 있어서, 상기 할로겐 이온은 Br-, Cl- 및 I-로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the halogen ions Br - can be characterized as being selected from the group consisting of -, Cl - and I.

본 발명에 있어서, 상기 첨가되는 할로겐 이온의 농도를 변화시켜 생성되는 금 나노입자의 크기를 조절하는 것을 특징으로 할 수 있다.In the present invention, the size of the gold nanoparticles generated by changing the concentration of the added halogen ions may be characterized.

본 발명에 있어서, 상기 할로겐이온의 농도는 0.01~50mM인 것을 특징으로 할 수 있다.In the present invention, the concentration of the halogen ions may be characterized in that 0.01 ~ 50mM.

본 발명에 있어서, 상기 성장용액의 pH를 변화시켜 생성되는 금 나노입자의 크기를 조절하는 것을 특징으로 할 수 있다.In the present invention, it may be characterized by adjusting the size of the gold nanoparticles produced by changing the pH of the growth solution.

본 발명에 있어서, 상기 성장용액의 pH는 1~12인 것을 특징으로 할 수 있다.In the present invention, the pH of the growth solution may be characterized in that 1 to 12.

본 발명에 있어서, 상기 환원제는 아르코르브산인 것을 특징으로 할 수 있다.In the present invention, the reducing agent may be characterized in that the ascorbic acid.

본 발명은 또한 상기 방법으로 제조되는 프리즘 및 구형의 모양을 가지는 다양한 결정형의 금 나노입자를 제공한다.The present invention also provides various crystalline gold nanoparticles having the shape of prisms and spheres prepared by the above method.

본 발명에 있어서, 상기 금 나노입자의 크기는 5~1000 nm인 것을 특징으로 할 수 있다.In the present invention, the size of the gold nanoparticles may be characterized in that 5 ~ 1000 nm.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 계면활성제를 이용하여 생성한 성장용액에 금 씨드 결정을 첨가하는 씨드기반-결정성장 방법에, 할로겐 이온(halide ion)을 첨가하는 단계를 추가하여, 다양한 모양의 금 나노입자를 합성하는 것을 특징으로 한다.The present invention adds a step of adding a halogen ion to a seed-based crystal growth method for adding gold seed crystals to a growth solution produced using a surfactant, to synthesize gold nanoparticles of various shapes. It is characterized by.

본 발명에 따른 다양한 모양의 금 나노입자를 합성하기 위하여 우선, 구연산 나트륨(sodium citrate)을 NaBH4로 환원하여 금 씨드 결정을 합성한 후 반응이 완결되도록 약 2시간 동안 상온에 보관하였다. 한편, CTAB(cetyltrimethylammonium bromide) 및 CTAC(cetyltrimethylammonium chloride) 혼합용액에 HAuCl4 용액을 혼합하여 성장용액을 생성하고, 상기 성장용액에 약한 환원제인 아스코르브산(ascorbic acid) 및 Cl-, Br- 및 I-와 같은 할로겐 이온을 첨가하여 반응용액을 준비한 후, 상기 반응용액에 상기 합성된 금 씨드 결정을 첨가하였다. 이때, CTAB 또는 CTAC는 자체적으로 금 입자표면에 템플릿(template)을 형성하고, 금 이온이 씨드 결정에 결합하여 나노입자로 성장하게 된다. 이때, 첨가된 할로겐 이온이 나노입자 성장의 방향성에 영향을 끼침으로써, 다양한 모양을 갖는 나노입자를 합성할 수 있다 (도 1).In order to synthesize gold nanoparticles of various shapes according to the present invention, sodium citrate was first reduced to NaBH 4 to synthesize gold seed crystals, and then stored at room temperature for about 2 hours to complete the reaction. Meanwhile, CTAB (cetyltrimethylammonium bromide) and CTAC (cetyltrimethylammonium chloride) mixed with HAuCl 4 solution to the mixed solution to produce a growth solution, the ascorbic acid (ascorbic acid) weak reducing agents in the growth solution and Cl -, Br - and I - After preparing a reaction solution by adding a halogen ion such as, the synthesized gold seed crystals were added to the reaction solution. At this time, CTAB or CTAC itself forms a template on the surface of gold particles, and gold ions are bonded to seed crystals to grow into nanoparticles. In this case, the added halogen ions affect the direction of nanoparticle growth, thereby synthesizing nanoparticles having various shapes (FIG. 1).

본 발명에서, 성장용액은 계면활성제와 HAuCl4 용액을 혼합하여 생성하는데, 상기 계면활성제는 CTAB 또는 CTAC 단독으로 사용될 수도 있고, CTAB 및 CTAC가 임의의 비율로 혼합된 혼합용액일 수도 있다.In the present invention, the growth solution is produced by mixing a surfactant and HAuCl 4 solution, the surfactant may be used alone or CTAB or CTAC, may be a mixed solution mixed CTAB and CTAC in any ratio.

본 발명은 기존의 씨드기반-결정성장 방법에 할로겐 이온을 첨가하여 다양한 모양의 금 나노입자를 제조할 수 있으며, 첨가되는 할로겐 이온의 농도에 따라 생성되는 금 나노입자의 크기를 조절할 수 있다.The present invention can produce gold nanoparticles of various shapes by adding halogen ions to the existing seed-based crystal growth method, and can control the size of the gold nanoparticles produced according to the concentration of the halogen ions added.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의 해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1: 금 씨드 결정의 합성 1: Synthesis of Gold Seed Crystals

본 실시예에서는 금 씨드 결정을 합성하기 위하여, 0.25 mM의 구연산 나트륨 및 0.25 mM의 HAuCl4의 혼합용액을 20 ml 준비하고, 0.1 M의 NaBH4 용액을 약 10분 동안 얼음에 담가놓아 냉각시켜 0.6 ml를 취한 후, 상기 혼합용액에 첨가하여 약 2분 동안 교반하였다. 반응이 완결되도록 상온에서 2시간 동안 보관하여 금 씨드 결정을 합성하였다.In this example, to synthesize gold seed crystals, 20 ml of 0.25 mM sodium citrate and 0.25 mM HAuCl 4 solution was prepared, and 0.1 M NaBH 4 solution was immersed in ice for about 10 minutes to cool. Take ml, add to the mixed solution and stir for about 2 minutes. Gold seed crystals were synthesized by storing at room temperature for 2 hours to complete the reaction.

실시예Example 2: 할로겐 이온농도와 금 나노입자 크기의 상관관계 실험 2: Experiment of Correlation between Halogen Ion Concentration and Gold Nanoparticle Size

실시예 1에서 합성된 금 씨드 결정을 성장시키기 위하여, 0.1 M의 CTAB 및 0.25 mM의 HAuCl4 을 혼합하여 성장용액을 제조하였다. 상기 성장용액을 10 ml씩 3개를 준비하고, 상기 3개의 성장용액에, I-가 각기 다른 농도가 되도록 0.5 M의 KI 용액을 10 ㎕, 30 ㎕ 및 50 ㎕로 각각 첨가한 후 환원제 역할을 하는 0.1 M의 아스코르브산을 0.2 ml씩 첨가하였다. 아스코르브산을 첨가했을 때, 성장용액은 노란색에서 무색으로 변하였고, 이때, 금 씨드 결정용액 25 ㎕를 첨가하여 교반하여, 금 나노입자를 합성하였다.In order to grow the gold seed crystals synthesized in Example 1, 0.1M CTAB and 0.25 mM HAuCl 4 was mixed to prepare a growth solution. 10 ml of the growth solution was prepared, and 10 μl, 30 μl, and 50 μl of 0.5 M KI solution were added to each of the three growth solutions to have different concentrations of I . 0.2 ml of 0.1 M ascorbic acid was added. When ascorbic acid was added, the growth solution changed from yellow to colorless, at which time 25 μl of the gold seed crystal solution was added and stirred to synthesize gold nanoparticles.

상기 합성된 금 나노입자를 투과전자현미경으로 관찰한 결과, 도 2에 나타난 바와 같이, 3개의 혼합용액의 금 입자는 각기 다른 크기의 프리즘 및 구형의 모양을 가지는 금 나노입자로 성장하였음을 알 수 있었다.As a result of observing the synthesized gold nanoparticles with a transmission electron microscope, as shown in FIG. 2, it can be seen that the gold particles of the three mixed solutions grew into gold nanoparticles having different sizes of prisms and spherical shapes. there was.

또한, 상기 합성된 금 나노입자의 용액을 자외선/가시광선 분광계로 분석한 결과, 도 3에 나타난 바와 같이, 같은 모양의 금 나노입자의 경우, 용액 내에 존재하는 나노입자의 크기가 커질수록 그래프의 피크(peak)의 파장이 커지고, 첨가한 KI의 양이 증가할수록 생성된 금 나노입자의 크기는 감소하였다 (표 1).In addition, as a result of analyzing the solution of the synthesized gold nanoparticles by UV / visible spectrometer, as shown in Figure 3, in the case of gold nanoparticles of the same shape, the larger the size of the nanoparticles present in the solution of the graph As the peak wavelength was increased and the amount of added KI was increased, the size of the gold nanoparticles produced decreased (Table 1).

KI 첨가량KI addition amount 피크의 파장Peak wavelength 생성된 금 나노입자 크기Gold Nanoparticle Size Created 10 ml10 ml 약 950 nmAbout 950 nm 약 85~100nmAbout 85 ~ 100nm 30 ml30 ml 약 850 nmAbout 850 nm 약 75~90nmAbout 75 ~ 90nm 50 ml50 ml 약 780 nmAbout 780 nm 약 65~80nm65-80 nm

결국, 합성되는 금 나노입자의 크기는 할로겐 이온농도에 반비례한다는 것을 알 수 있었다.As a result, the size of the synthesized gold nanoparticles was found to be inversely proportional to the halogen ion concentration.

실시예Example 3: 성장용액의  3: growth solution pHpH 와 금 나노입자 크기의 상관관계 실험Experiment of Correlation between Gold and Gold Nanoparticles

실시예 1에서 합성한 금 씨드 결정을 성장시키기 위하여, 0.1 M의 CTAB 및 0.25 mM의 HAuCl4을 혼합하여 성장용액을 제조한 다음, 상기 성장용액에 I-를 첨가하였다. 이때, 상기 성장용액의 pH는 약 3.0이며, 염산 또는 수산화나트륨을 이용하여 pH가 약 2.2 ~ 3.5로 되도록 조절하였다. 마지막으로, 상기 성장용액에 금 씨드 결정용액 25 ㎕를 첨가하여 교반한 후, 금 나노입자를 합성하였다.In order to grow the gold seed crystals synthesized in Example 1, 0.1M CTAB and 0.25 mM HAuCl 4 were mixed to prepare a growth solution, and then I was added to the growth solution. At this time, the pH of the growth solution was about 3.0, the pH was adjusted to about 2.2 ~ 3.5 using hydrochloric acid or sodium hydroxide. Finally, 25 μl of the gold seed crystal solution was added to the growth solution, followed by stirring, to synthesize gold nanoparticles.

상기 합성된 금 나노입자를 투과전자현미경으로 관찰한 결과, 도 4에 나타난 바와 같이 pH가 낮을수록 작은 크기의 금 나노입자가 합성되었고, pH가 클수록 큰 크기의 금 나노입자가 합성된다는 것을 알 수 있었다.As a result of observing the synthesized gold nanoparticles with a transmission electron microscope, as shown in FIG. 4, as the pH is lowered, gold nanoparticles of smaller size were synthesized, and as the pH was higher, the gold nanoparticles of larger size were synthesized. there was.

결국, 합성되는 금 나노입자의 크기는 성장용액의 pH에 비례한다는 것을 알 수 있었다.As a result, it was found that the size of the gold nanoparticles synthesized is proportional to the pH of the growth solution.

비교예Comparative example 1: 할로겐 이온을 첨가하지 않은 금 나노입자의 합성 1: Synthesis of Gold Nanoparticles without Halogen Ions

실시예 1에서 합성된 금 씨드 결정을 성장시키기 위하여, 0.1 M의 CTAB 및 0.25 mM의 HAuCl4 을 혼합하여 성장용액을 제조한 다음, 상기 성장용액에 환원제 역할을 하는 0.1 M의 아스코르브산을 0.2 ml 첨가하였다. 아스코르브산을 첨가했을 때, 성장용액은 노란색에서 무색으로 변하였고, 이때, 금 씨드 결정용액 25 ml를 첨가하여 교반하여, 금 나노입자를 합성하였다.To grow the gold seed crystals synthesized in Example 1, a growth solution was prepared by mixing 0.1 M CTAB and 0.25 mM HAuCl 4 , and then 0.2 ml of 0.1 M ascorbic acid serving as a reducing agent to the growth solution. Added. When ascorbic acid was added, the growth solution changed from yellow to colorless, at which time, 25 ml of gold seed crystal solution was added and stirred to synthesize gold nanoparticles.

상기 합성된 금 나노입자를 투과전자현미경으로 관찰한 결과, 금 나노입자의 모양은 막대형 및 구형임을 알 수 있었다 (도 5).As a result of observing the synthesized gold nanoparticles with a transmission electron microscope, the shape of the gold nanoparticles was found to be rod-shaped and spherical (Fig. 5).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따 라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

이상 설명한 바와 같이, 본 발명은 금 나노입자의 모양 및 크기를 임의로 선택하여 제조할 수 있는, 할로겐 이온을 이용한 다양한 결정형의 금 나노입자의 합성방법을 제공하는 효과가 있다. 본 발명에 따르면, 첨가하는 할로겐 이온의 종류 및 농도를 조절함으로써, 다양한 모양 및 크기의 금 나노입자를 제조할 수 있고, 제조된 금 나노입자는 바이오센서, 바이오칩, 바이오 이미징 및 광전자소자에 광범위하게 활용할 수 있다.As described above, the present invention has an effect of providing a method for synthesizing various types of gold nanoparticles using halogen ions, which can be prepared by arbitrarily selecting the shape and size of the gold nanoparticles. According to the present invention, gold nanoparticles of various shapes and sizes can be prepared by controlling the type and concentration of halogen ions to be added, and the gold nanoparticles prepared are widely used in biosensors, biochips, bio-imaging and optoelectronic devices. It can be utilized.

Claims (11)

다음을 포함하는 할로겐 이온을 이용한 다양한 결정형의 금 나노입자를 합성하는 방법:Methods for synthesizing gold nanoparticles of various crystalline forms using halogen ions, including: (a) 계면활성제 및 HAuCl4 용액을 혼합하여 성장용액을 형성한 다음, 할로겐 이온과 환원제를 첨가하여 반응용액을 준비하는 단계; 및(a) mixing a surfactant and a HAuCl 4 solution to form a growth solution, and then preparing a reaction solution by adding halogen ions and a reducing agent; And (b) 상기 반응용액에 금 씨드(seed) 결정을 첨가하고 교반하는 단계.(b) adding gold seed crystals to the reaction solution and stirring. 제1항에 있어서, 상기 금 씨드 결정은 HAuCl4와 구연산 나트륨의 혼합용액을 NaBH4로 환원하여 합성된 것을 특징으로 하는 금 나노입자 합성방법. The method of claim 1, wherein the gold seed crystals are synthesized by reducing a mixed solution of HAuCl 4 and sodium citrate with NaBH 4 . 제1항에 있어서, 상기 계면활성제는 CTAB, CTAC 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 금 나노입자 합성방법.The method of claim 1, wherein the surfactant is selected from the group consisting of CTAB, CTAC, and mixtures thereof. 제1항에 있어서, 상기 할로겐 이온은 Br-, Cl- 및 I-로 구성된 군에서 선택되는 것을 특징으로 하는 금 나노입자 합성방법.According to claim 1, wherein said halogen ion is Br -, Cl - and I - Gold nanoparticles synthesized wherein is selected from the group consisting of. 제4항에 있어서, 첨가되는 할로겐 이온의 농도를 변화시켜 생성되는 금 나노입자의 크기를 조절하는 것을 특징으로 하는 금 나노입자 합성방법.The method of synthesizing gold nanoparticles according to claim 4, wherein the size of the gold nanoparticles produced is controlled by changing the concentration of halogen ions to be added. 제5항에 있어서, 할로겐 이온의 농도는 0.01~50mM인 것을 특징으로 하는 금 나노입자 합성방법.The method of synthesizing gold nanoparticles according to claim 5, wherein the concentration of the halogen ions is 0.01 to 50 mM. 제1항에 있어서, 상기 성장용액의 pH를 변화시켜 생성되는 금 나노입자의 크기를 조절하는 것을 특징으로 하는 금 나노입자 합성방법.The method of claim 1, wherein the size of the gold nanoparticles is adjusted by changing the pH of the growth solution. 제7항에 있어서, 상기 성장용액의 pH는 1~12인 것을 특징으로 하는 금 나노입자 합성방법.The method of claim 7, wherein the pH of the growth solution is 1-12. 제1항에 있어서, 상기 환원제는 아르코르브산인 것을 특징으로 하는 금 나노입자 합성방법.The method of claim 1, wherein the reducing agent is ascorbic acid. 제1항 내지 제9항 중 어느 한 항의 방법으로 제조되는 프리즘 또는 구형의 모양을 가지는 금 나노입자.Gold nanoparticles having a prism or spherical shape prepared by the method of any one of claims 1 to 9. 제10항에 있어서, 상기 금 나노입자의 크기는 5~1000 nm인 것을 특징으로 하는 금 나노입자.The gold nanoparticles of claim 10, wherein the size of the gold nanoparticles is 5 to 1000 nm.
KR1020070006663A 2007-01-22 2007-01-22 Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion KR100873176B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070006663A KR100873176B1 (en) 2007-01-22 2007-01-22 Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070006663A KR100873176B1 (en) 2007-01-22 2007-01-22 Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion

Publications (2)

Publication Number Publication Date
KR20080069058A true KR20080069058A (en) 2008-07-25
KR100873176B1 KR100873176B1 (en) 2008-12-10

Family

ID=39822488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070006663A KR100873176B1 (en) 2007-01-22 2007-01-22 Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion

Country Status (1)

Country Link
KR (1) KR100873176B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137807A3 (en) * 2009-05-28 2011-03-03 주식회사 인포피아 Method for signal amplification during lateral-flow analysis
CN103572060A (en) * 2013-11-26 2014-02-12 厦门大学 Method for recycling gold ions from water solution
KR101468441B1 (en) * 2013-03-14 2014-12-03 한림대학교 산학협력단 Size-controllable synthetic method of gold bipyramid nanocrystal
KR101532881B1 (en) * 2014-08-11 2015-06-30 성균관대학교산학협력단 Method of producinig gold structure with platium frame located inside and chemical/bio sensor comprising gold structure with platium frame located inside
US9718132B2 (en) 2014-04-14 2017-08-01 Korea Basic Science Institute Manufacturing method of spherical gold (Au) nanoparticles and spherical gold (Au) nanoparticle manufactured by using the same
CN107741418A (en) * 2017-10-19 2018-02-27 重庆大学 Method based on pinpoint enhanced Raman technology for detection Metal Packaging interior molecules signal
KR20180110384A (en) * 2017-03-29 2018-10-10 강원대학교산학협력단 Lateral Flow Assay-based Biosensors Using Size-controlled Gold Nanoparticles and Method for Diagnosing Hepatitis B Virus
WO2019147056A1 (en) * 2018-01-26 2019-08-01 서울대학교 산학협력단 Method for manufacturing metal nanocube with controlled edge sharpness index
KR102103261B1 (en) * 2018-11-28 2020-04-24 한국생산기술연구원 Method for manufacturing quantum dots using quantum dots seed and quantum dots manufactured by the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107283B (en) * 2010-11-24 2013-04-24 沈阳工业大学 Chemical preparation method for gold nanoparticle hydrosols
KR101523065B1 (en) 2013-06-19 2015-05-27 한국기초과학지원연구원 A method for preparing size-controlled gold nanoparticles and colorimetric detection of strong acid using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636454B2 (en) * 2003-05-13 2011-02-23 三菱マテリアル株式会社 Manufacturing method and use of metal nanorods
EP2189232A1 (en) * 2003-09-05 2010-05-26 Mitsubishi Materials Corporation Metal microparticle, composition containing the same and process for producing metal microparticle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137807A3 (en) * 2009-05-28 2011-03-03 주식회사 인포피아 Method for signal amplification during lateral-flow analysis
KR101027036B1 (en) * 2009-05-28 2011-04-11 주식회사 인포피아 Method for amplification of signal in lateral flow assay by reduction of gold ion and lateral flow assay device using the method
KR101468441B1 (en) * 2013-03-14 2014-12-03 한림대학교 산학협력단 Size-controllable synthetic method of gold bipyramid nanocrystal
CN103572060A (en) * 2013-11-26 2014-02-12 厦门大学 Method for recycling gold ions from water solution
CN103572060B (en) * 2013-11-26 2016-04-06 厦门大学 A kind of method of gold recovering ion from the aqueous solution
US9718132B2 (en) 2014-04-14 2017-08-01 Korea Basic Science Institute Manufacturing method of spherical gold (Au) nanoparticles and spherical gold (Au) nanoparticle manufactured by using the same
KR101532881B1 (en) * 2014-08-11 2015-06-30 성균관대학교산학협력단 Method of producinig gold structure with platium frame located inside and chemical/bio sensor comprising gold structure with platium frame located inside
KR20180110384A (en) * 2017-03-29 2018-10-10 강원대학교산학협력단 Lateral Flow Assay-based Biosensors Using Size-controlled Gold Nanoparticles and Method for Diagnosing Hepatitis B Virus
CN107741418A (en) * 2017-10-19 2018-02-27 重庆大学 Method based on pinpoint enhanced Raman technology for detection Metal Packaging interior molecules signal
WO2019147056A1 (en) * 2018-01-26 2019-08-01 서울대학교 산학협력단 Method for manufacturing metal nanocube with controlled edge sharpness index
KR102103261B1 (en) * 2018-11-28 2020-04-24 한국생산기술연구원 Method for manufacturing quantum dots using quantum dots seed and quantum dots manufactured by the method

Also Published As

Publication number Publication date
KR100873176B1 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
KR100873176B1 (en) Sythesis of Gold Nanoparticles of Various Crystal Shapes Using Halide Ion
Sreeprasad et al. Noble metal nanoparticles
Tsuji et al. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2
KR100802139B1 (en) Gold nanocages containing magnetic nanoparticles
Bian et al. Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal therapy
Yuan et al. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions
EP2648866B1 (en) A method of synthesizing branched gold nanoparticles having controlled size and branching
Jankiewicz et al. Silica–metal core–shell nanostructures
Anh et al. Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement
US20110189483A1 (en) Gram-Scale Synthesis of Well-Defined Gold Nanorods
Jiang et al. Au–Ag@ Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment
Barhoum et al. Seed-mediated hot-injection synthesis of tiny Ag nanocrystals on nanoscale solid supports and reaction mechanism
CN106141201B (en) A method of improving gold nanorods light thermal property and photo and thermal stability
TWI458833B (en) Nanometal dispersion and method for preparing the same
Torras et al. From silver plates to spherical nanoparticles: snapshots of microwave-assisted polyol synthesis
JP4779118B2 (en) Method for producing noble metal nanosheet
Jiang et al. Noble metal nanomaterials: synthetic routes, fundamental properties, and promising applications
CN111347059A (en) Synthesis method of porous gold @ silver @ gold nanocubes
Siegel et al. Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles
US10016745B2 (en) Multifunctional nanomaterials and methods of photothermal heating and catalysis using the same
Karimi et al. Controlled synthesis of colloidal monodisperse gold nanoparticles in a wide range of sizes; investigating the effect of reducing agent
Liu et al. Activation of Oxygen-Mediating Pathway Using Copper Ions: Fine-Tuning of Growth Kinetics in Gold Nanorod Overgrowth
Capek et al. Noble metal nanoparticles
Requejo et al. Improving the shape yield and long-term stability of gold nanoprisms with Poly (Vinylpyrrolidone)
Ramos et al. Hyperbranched Au nanocorals for SERS detection of dye pollutants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111202

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20121109

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee