KR20080064592A - P-type transparent oxide semiconductor composition - Google Patents

P-type transparent oxide semiconductor composition Download PDF

Info

Publication number
KR20080064592A
KR20080064592A KR1020070001670A KR20070001670A KR20080064592A KR 20080064592 A KR20080064592 A KR 20080064592A KR 1020070001670 A KR1020070001670 A KR 1020070001670A KR 20070001670 A KR20070001670 A KR 20070001670A KR 20080064592 A KR20080064592 A KR 20080064592A
Authority
KR
South Korea
Prior art keywords
substrate
composition
thin film
oxide semiconductor
type
Prior art date
Application number
KR1020070001670A
Other languages
Korean (ko)
Other versions
KR100849538B1 (en
Inventor
김세기
최병현
지미정
이미재
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR1020070001670A priority Critical patent/KR100849538B1/en
Publication of KR20080064592A publication Critical patent/KR20080064592A/en
Application granted granted Critical
Publication of KR100849538B1 publication Critical patent/KR100849538B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A p-type transparent oxide semiconductor composition is provided to control electrical and optical characteristics according to the composition of CuAlO2 and CuGaO2. A p-type transparent oxide semiconductor composition includes a solid-solution composite metal oxide which is represented by a formula of Cu(Al_(1-x)Ga_x)O2, wherein x ranges from 0 to 1, and comprises CuAlO2 having a delafossite structure and CuGaO2 having a delafossite structure. When the x ranges from 0.3 to 0.7, the composition has a transmittance of 80% or greater. The solid-solution composite metal oxide has a delafossite structure.

Description

피형 투명 산화물 반도체 조성물{p-type Transparent Oxide Semiconductor Composition}P-type Transparent Oxide Semiconductor Composition

도 1은 본 발명의 델라포사이트 구조도1 is a structural diagram of the delafossite of the present invention

도 2는 본 발명의 실시예에 따라 제조된 Cu(Al1-xGax)O2 조성 박막의 각도에 따른 관계 명암도를 나타낸 그래프FIG. 2 is a graph showing the relationship contrast between angles of a Cu (Al 1-x Ga x ) O 2 composition thin film prepared according to an embodiment of the present invention

도 3은 본 발명의 실시예에 따라 제조된 Cu(Al1-xGax)O2 조성 박막의 특성(투과율, 파장)을 나타낸 그래프Figure 3 is a graph showing the characteristics of the Cu (Al 1-x Ga x) 2 O thin film composition produced according to an embodiment of the present invention (transmittance wavelength)

도 4는 본 발명의 실시예에 따라 제조된 Cu(Al1-xGax)O2 조성 박막의 모습을 나타낸 상세도Figure 4 is a detailed view showing the appearance of the Cu (Al 1-x Ga x ) O 2 composition thin film prepared according to an embodiment of the present invention

본 발명은 TFT LCD, 투명태양전지 등의 능동형 반도체 소자로의 응용이 가능한 p형의 반도성을 가지는 투명한 산화물 조성물에 관한 것으로, 보다 상세하게는 조성식 Cu(Al1-xGax)O2 (여기서, 0≤x≤1)의 델라포사이트(delafossite) 구조를 가지는 CuAlO2와 CuGaO2의 고용체 복합금속산화물 조성물로 이루어진 것을 특징으로 하는 p형 투명 산화물 반도체 조성물에 관한 것이다.The present invention relates to a transparent oxide composition having a p-type semiconductivity that can be applied to active semiconductor devices such as TFT LCDs and transparent solar cells. More specifically, the composition Cu (Al 1-x Ga x ) O 2 ( Here, the present invention relates to a p-type transparent oxide semiconductor composition comprising a solid solution metal oxide composition of CuAlO 2 and CuGaO 2 having a delafossite structure of 0 ≦ x ≦ 1).

현재 전자디바이스에 사용되는 반도체 재료로는 Si계 반도체나 GaN 등의 화합물반도체를 중심으로 전개 되고 있으나, 광기능을 활용한 광디바이스는 상기의 Si계 반도체나 GaN 등의 화합물반도체가 가지는 작은 밴드갭(Eg)으로 인한 불투명성 등의 제약으로 인하여 투명하면서도 전도성을 나타내는 새로운 재료의 개발을 필요로 하고 있다.At present, semiconductor materials used in electronic devices have been developed based on compound semiconductors such as Si-based semiconductors and GaN. However, optical devices utilizing optical functions have a small bandgap of the compound semiconductors such as Si-based semiconductors and GaN. Constraints such as opacity due to Eg) require the development of new materials that are transparent and conductive.

이러한 개발에 대한 요구에 응하여 1997년 일본 동경공대의 호소노 그룹에서는 p형 전도성 투명 산화물로 CuAlO2를 과학저널 네이처(H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, "P-type electrical conduction in transparent thin films of CuAlO2", Nature 389(1997) 939.)를 통해 보고한 바 있으며, In response to these developments, the Hosono Group of the Tokyo Institute of Technology in 1997 used CuAlO 2 as a p-type conductive transparent oxide (H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, "P-type electrical conduction in transparent thin films of CuAlO 2 ", Nature 389 (1997) 939.)

이후 Cu계 델라포사이트(delafossite) 구조를 가지는 화합물군을 중심으로 가시광 투과도와 전기전도성을 동시에 높이려는 시도가 활발히 이루어지고 있음을 일렉트세라믹 저널(H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, and H. Hosono, "Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides", J. Electroceramics, 4(2000), pp. 407-414.)을 통해 알 수 있다.Since then, attempts have been made to increase visible light transmittance and electrical conductivity at the same time, focusing on a compound group having a Cu-based delafossite structure (H. Yanagi, H. Kawazoe, A. Kudo, M). Yasukawa, and H. Hosono, "Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides", J. Electroceramics, 4 (2000), pp. 407-414.

이하, 관련된 선행특허기술을 살펴보면, 대한민국특허청 등록특허공보 등록번호 제10-0582250호에는 투명기판 상에 적층한 밴드 갭 부근의 고유 발광만을 나 타내는 n형 ZnO층 상에 SrCu2O2, CuAlO2 또는 CuGaO2로 이루어지는 p형 반도체 중의 하나를 적층하여 형성한 p-n접합으로 이루어진 자외 발광 다이오드에 있어서, 상기 투명기판은 원자형상 평탄화 구조로 한 산화이트륨 부분안정화 지르코니아(YSZ) 단결정 기판이고, 상기 투명 기판 상에 헤테로 에피택셜 성장한 인듐 주석산화물(ITO)층을 투명 부전극층(負電極層)으로서 가지며, ITO층 상에 헤테로 에피택셜 성장한 ZnO층을 발광층으로서 가지며, ZnO층 상에 p형 반도체층을 정공주입층(正孔注入層)으로서 가지고 있는 것을 특징으로 하는 자외 발광 다이오드에 관한 기술이 공지되어 있고,Hereinafter, referring to the related prior art, Korean Patent Office Publication No. 10-0582250 is made of SrCu2O2, CuAlO2 or CuGaO2 on an n-type ZnO layer showing only intrinsic emission in the vicinity of the band gap stacked on a transparent substrate. In an ultraviolet light emitting diode comprising a pn junction formed by stacking one of p-type semiconductors, the transparent substrate is a yttrium partially stabilized zirconia (YSZ) single crystal substrate having an atomic planarization structure, and heteroepitaxial on the transparent substrate. It has a grown indium tin oxide (ITO) layer as a transparent negative electrode layer, has a ZnO layer heteroepitaxially grown on an ITO layer as a light emitting layer, and a p-type semiconductor layer has a hole injection layer on a ZnO layer. The technology regarding the ultraviolet light-emitting diode which is characterized by having is known,

동 공보 등록번호 제10-0660135호에는 기판, 버퍼층, n-GaN 접촉층, n-클래드층, 활성층, p-클래드층 및 p-GaN 접촉층으로 구성된 질화물 반도체 발광소자에 있어서, 상기 n-GaN 접촉층의 상부에 오믹 접촉되는 n형 전극과; 상기 p-GaN 접촉층의 상부에 오믹 접촉되는 투명전극과; 상기 투명전극의 상부에 오믹 접촉되는 금속 전극층과 상기 금속 전극층의 상부에 증착된 본딩 패드를 구비하고; 상기 투명전극은 (Sr,A)TiO3(A=La,Nb), (La,Sr)CoO3, (Sr,A)RuO3(A=Ca,Mg) 및 LaNiO3으로 구성된 퍼로프스카이트 물질의 그룹에서 선택된 전도성 산화막, 또는 RuO2, IrO2, Co3O4 및 Fe3O4로 구성된 그룹에서 선택된 전도성 물질과 TiO2, ZrO2, Bi2O3, SnO2 및 Al2O3로 구성된 그룹에서 선택된 안정화 물질의 복합재료인 것을 특징으로 하는 질화물 반도체 발광소자가 공지되어 있으며,Korean Patent Publication No. 10-0660135 discloses a nitride semiconductor light emitting device comprising a substrate, a buffer layer, an n-GaN contact layer, an n-clad layer, an active layer, a p-clad layer, and a p-GaN contact layer. An n-type electrode in ohmic contact with the upper portion of the contact layer; A transparent electrode in ohmic contact with the p-GaN contact layer; A metal electrode layer in ohmic contact on the transparent electrode and a bonding pad deposited on the metal electrode layer; The transparent electrode is a group of perovskite materials consisting of (Sr, A) TiO 3 (A = La, Nb), (La, Sr) CoO 3, (Sr, A) RuO 3 (A = Ca, Mg) and LaNiO 3. A nitride semiconductor light emitting device characterized in that it is a composite material of a selected conductive oxide film or a conductive material selected from the group consisting of RuO2, IrO2, Co3O4 and Fe3O4 and a stabilizing material selected from the group consisting of TiO2, ZrO2, Bi2O3, SnO2 and Al2O3. It is

동 공보 등록번호 제10-0459888호에는 소자의 최하부에 위치된 기판; 상기 기판의 상면에 적층 형성된 제1 n형 GaN층; 상기 제1 n형 GaN층의 상면에 적층 형 성된 n형 AlxGa1-xN 클래딩 층; 상기 n형 AlxGa1-xN층 상면의 대략 중심부에 소정 폭의 리지 스트라이프 형태로 적층 형성된 제2 n형 GaN층; 상기 제2 n형 GaN층의 상면에 제2 n형 GaN층과 동일한 리지 스트라이프 형태로 적층 형성된 활성층; 상기 활성층의 상면에 활성층과 동일한 리지 스트라이프 형태로 적층 형성된 p형 GaN층; 상기 p형 GaN층 상면에 p형 GaN층과 동일한 리지 스트라이프 형태로 적층 형성된 p형 Alx'Ga1-x'N 클래딩 층; 및 상기 제2 n형 GaN층, 활성층, p형 GaN층 및 p형 Alx'Ga1-x'N 클래딩 층으로 구성된 리지 스트라이프 양측의 상기 n형 AlxGa1-xN 클래딩 층 상면에 리지 스트라이프의 상단부까지 적층 형성된 비도핑의 AlxGa1-xN 전류 제한층을 포함하는 것을 특징으로 하는 반도체 레이저 다이오드가 공지되어 있고,Publication No. 10-0459888 includes a substrate located at the bottom of the device; A first n-type GaN layer formed on the upper surface of the substrate; An n-type Al x Ga 1-x N cladding layer laminated on the top surface of the first n-type GaN layer; A second n-type GaN layer formed in a ridge stripe shape having a predetermined width at a substantially center portion of an upper surface of the n-type Al x Ga 1-x N layer; An active layer stacked on the top of the second n-type GaN layer in the same ridge stripe form as the second n-type GaN layer; A p-type GaN layer formed on the top surface of the active layer in the same ridge stripe form as the active layer; A p-type Alx'Ga1-x'N cladding layer formed on the p-type GaN layer in the same ridge stripe form as the p-type GaN layer; And stacked up to an upper end of the ridge stripe on an upper surface of the n-type AlxGa1-xN cladding layer on both sides of the ridge stripe composed of the second n-type GaN layer, the active layer, the p-type GaN layer, and the p-type Alx'Ga1-x'N cladding layer. Semiconductor laser diodes are known which comprise an undoped Al x Ga 1-x N current limiting layer,

일본 공개특허공보 공개번호 제1999-112082호에는 p형 반도체층과 p측 전극 금속에 끼였던 p형 콘택트 층이 p형ZnSe와,조성이 다른 여러의 p형 ZnSe1-xTex와,적어도 한층 이상의 p형 ZnSTe를 갖는 적층 구조로 된 것을 특징으로 한 반도체 소자가 공지되어 있으며,Japanese Laid-Open Patent Publication No. 1999-112082 discloses that a p-type semiconductor layer and a p-type contact layer sandwiched between a p-side electrode metal are p-type ZnSe, various p-type ZnSe 1-x Te x having different compositions, and at least BACKGROUND OF THE INVENTION A semiconductor device is known which has a laminated structure having at least one p-type ZnSTe.

일본 특허공개공보 공개번호 제2001-148507에는 기판상에 n형 질화물 반도체층을 이용하고 활성층을 구비한 질화물 반도체 소자에 있어, 상기 활성층이 InaGa1-aN(0≤a<1)을 포함하고 된 다중 양자 우물 구조이고이면서, 상기 활성층상에, Al을 포함한 제 1의 질화물 반도체층과, 그 제 1의 질화물 반도체층과 다른 조성을 갖는 제 2의 질화물 반도체층이 적층되고 되고, 또한 그 제 1의 질화물 반도체층 및 제 2의 질화물 반도체층의 적어도 한편에 p형 불순물을 함유해 된 p형 다층막층과, 그 p형 다층막 층상에 상기 p형 다층막층의 p형 불순물 농도보다 저농도로 p형 불순물을 함유한 p형 저농도 도프 층과, 그 p형 저농도 도프 층상에 상기 p형 다층막층 및 p형 저농도 도프 층의 p형 불순물 농도보다 고농도로 p형 불순물을 함유한 p 형 콘택트 층을 갖는 것을 특징으로 한 질화물 반도체 소자가 공지되어 있다. Japanese Patent Laid-Open No. 2001-148507 discloses a nitride semiconductor device having an n-type nitride semiconductor layer on a substrate and having an active layer, wherein the active layer is formed of In a Ga 1-a N (0 ≦ a <1). A first nitride semiconductor layer containing Al and a second nitride semiconductor layer having a composition different from that of the first nitride semiconductor layer are laminated on the active layer while being a multi-quantum well structure included. P-type multilayer film layer containing p-type impurity in at least one of the first nitride semiconductor layer and the second nitride semiconductor layer, and p on the p-type multilayer film layer at a lower concentration than p-type impurity concentration of the p-type multilayer film layer A p-type low concentration dope layer containing a p-type impurity, and a p-type contact layer containing p-type impurity at a higher concentration than the p-type impurity concentration of the p-type multilayer film layer and the p-type low concentration dope layer on the p-type low concentration dope layer Characteristic A nitride semiconductor element is known.

일반적으로 재료의 설계에 있어서 ITO, ATO 등과 같은 전도성 산화물을 이용한 전극재료 등으로의 활용을 고려한 경우에 요구되는 성능은 높은 가시광 투과도와 동시에 높은 전기전도도(캐리어 밀도 1017cm-3 이상) 및 대면적 또는 저가격화 기술 등이 있다. 한편, 광디바이스 등으로의 응용을 고려하는 경우에는 재료의 높은 전기전도도가 디바이스로써의 고성능을 보장하는 것은 아니다. 예를 들어, p-n 접합에 있어서 1017cm-3의 높은 캐리어 밀도는 오히려 정류특성이나 역방향에서의 내전압의 열화를 초래한다.In general, in the design of materials, the performance required in consideration of the use of an electrode material using a conductive oxide such as ITO, ATO, etc. is high visible light transmittance and high electrical conductivity (carrier density 10 17 cm -3 or more) and large Area or low cost technology. On the other hand, when considering applications to optical devices and the like, high electrical conductivity of the material does not guarantee high performance as a device. For example, a high carrier density of 10 17 cm −3 for pn junctions results in deterioration of rectification characteristics or withstand voltage in the reverse direction.

따라서 디바이스에서의 성능을 좌우하는 것은 사용하고자 하는 소재의 광범위한 캐리어 밀도 제어 기술이라고 할 수 있다. 그러나 현재 보고되고 있는 p형의 반도성을 가지는 투명한 산화물 조성물들은 상기의 디바이스에서 요구되는 광범위한 캐리어 밀도 제어 기술보다는 p형의 반도성을 가지는 새로운 조성물 및 박막 합성 방법에 대한 보고가 대부분으로서, 조성 제어와 같은 조성설계 관점에서의 시도는 거의 없는 실정으로 실용화를 위해서는 조성 설계에 의한 투과도 및 전기전도성 등의 제 성능 제어 기술 개발이 시급하다는 문제점을 가지고 있다.        Thus, what determines the performance of the device is the wide range of carrier density control techniques of the materials to be used. However, currently reported transparent oxide compositions having a p-type semiconductivity are mostly reported on new compositions and thin film synthesis methods having a p-type semiconductivity rather than a wide range of carrier density control techniques required for the above devices. There are few attempts in terms of compositional design, and for practical use, there is a problem in that it is urgent to develop a performance control technology such as transmittance and electrical conductivity by compositional design.

본 발명은 전기전도도 및 가시광투과율 등의 상기와 같은 문제점을 해소하기 위하여 Cu계 델라포사이트(delafossite) 구조를 가지는 화합물군에서 대표적인 CuAlO2와 CuGaO2의 고용 조성을 선택하여 그 조성에 따른 전기적, 광학적 특성의 제어가 가능한 조성물을 제공하는 것에 본 발명의 목적이 있다. The present invention is to select the solid solution composition of representative CuAlO 2 and CuGaO 2 in the compound group having a Cu-based delafossite structure in order to solve the above problems such as electrical conductivity and visible light transmittance electrical and optical It is an object of the present invention to provide a composition capable of controlling properties.

상기와 같은 목적 달성을 위한 본 발명은 TFT LCD, 투명태양전지 등의 능동형 반도체 소자로의 응용이 가능한 p형의 반도성을 가지는 투명한 산화물 조성물에 관한 것으로, 보다 상세하게는 아래의 조성식으로 표시되는 델라포사이트(delafossite) 구조를 가지는 CuAlO2와 CuGaO2의 고용체 복합금속산화물 조성물로 이루어진 것을 특징으로 하는 p형 투명 산화물 반도체 조성물에 관한 것이다.The present invention for achieving the above object relates to a transparent oxide composition having a p-type semi-conductivity that can be applied to active semiconductor devices such as TFT LCD, transparent solar cell, and more specifically represented by the following formula The present invention relates to a p-type transparent oxide semiconductor composition comprising a solid solution metal oxide composition of CuAlO 2 and CuGaO 2 having a delafossite structure.

Cu(Al1-xGax)O2 (여기서, 0 ■■ x ■■ 1)Cu (Al 1-x Ga x ) O 2 (where 0 ■ x x ■ 1)

아울러 상기 x가 0.3 내지 0.7인 경우 p형 투명 산화 투과도가 80%이상 되며, 상기 고용체 복합금속산화물은 델라포사이트 구조를 가진다.In addition, when x is 0.3 to 0.7, the p-type transparent oxide transmittance is 80% or more, and the solid solution metal oxide has a delafossite structure.

이하, 본 발명을 실시예를 통해 보다 상세히 설명한다. 하기의 실시예에 의해 본 발명을 한정하는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples do not limit the invention.

[실시예 1] CuAlO2 조성 박막의 제조Example 1 Preparation of CuAlO 2 Composition Thin Film

순도 4N의 산화동(CuO)과 알루미나(Al2O3) 분말을 화학양론조성이 되도록 볼밀로 혼합한 후, 이 혼합물을 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 4 시간 하소한 다음, 여기서 얻어진 분체를 325메쉬(45㎛) 체로 분급한 뒤 볼밀을 이용하여 다시 미분쇄한 다음, 이를 일축가압 성형한 후, 다시 1,200kg/cm2의 성형압으로 정수압성형을 한 후, 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 12 시간 소성하여 표면을 연마, 세척하여 박막 제조용 타겟을 제조한 다음, After ballistically mixing copper oxide (CuO) and alumina (Al 2 O 3 ) powders with a purity of 4N in a stoichiometric composition, the mixture was calcined at 1100 ° C. for 4 hours in a nitrogen (N 2 ) gas stream in an electric furnace, The powder thus obtained was classified into a 325 mesh (45 μm) sieve and finely pulverized using a ball mill, and then uniaxially press-molded, and then hydrostatically molded at a molding pressure of 1,200 kg / cm 2 , followed by nitrogen in an electric furnace. After firing at 1100 ° C. for 12 hours in a (N 2 ) gas stream, the surface was polished and washed to prepare a target for manufacturing a thin film.

상기 타겟을 통상의 DC/RF 스퍼터링 장치에 장착하여 하기의 [표 1]에 나타낸 바와 같은 조건으로 석영유리 및 (0001)면의 결정 석영기판 상에 박막을 제조한다.The target is mounted on a conventional DC / RF sputtering apparatus to produce a thin film on a quartz glass and a (0001) crystalline quartz substrate under the conditions as shown in Table 1 below.

이때 DC 스퍼터링의 경우, 타겟과 기판의 거리는 2cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다. 또한 RF 스퍼터링의 경우, 타겟과 기판의 거리는 8cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다. In this case, in the case of DC sputtering, the distance between the target and the substrate was fixed at 2 cm, the substrate was rotated four times per minute, and the temperature of the substrate was set at 150 ° C. In the case of RF sputtering, the distance between the target and the substrate was fixed at 8 cm, the substrate was rotated four times per minute, and the temperature of the substrate was set at 150 ° C.

DC/RF 스퍼터링 모두 본 스퍼터링 전에 타겟의 오염물질을 제거하기 위하여 5분간 셔터를 닫고 스퍼터링을 하고 본 스퍼터링을 행하였다. Both DC / RF sputtering was performed by closing the shutter for 5 minutes, sputtering, and bone sputtering to remove contaminants of the target before the main sputtering.

[실시예 2] Cu(Al0.7Ga0.3)O2 조성 박막의 제조Example 2 Preparation of Cu (Al 0.7 Ga 0.3 ) O 2 Composition Thin Film

순도 4N의 산화동(CuO)과 알루미나(Al2O3) 분말을 화학양론조성이 되도록 볼밀로 혼합한 후, 이 혼합물을 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 4 시간 하소한 다음, 여기서 얻어진 분체를 325메쉬(45㎛) 체로 분급한 뒤 볼밀을 이용하여 다시 미분쇄한 다음, 이를 일축가압 성형한 후, 다시 1,200kg/cm2의 성형압으로 정수압성형을 한 후, 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 12 시간 소성하여 표면을 연마, 세척하여 박막 제조용 타겟을 제조한 다음,After ballistically mixing copper oxide (CuO) and alumina (Al 2 O 3 ) powders with a purity of 4N in a stoichiometric composition, the mixture was calcined at 1100 ° C. for 4 hours in a nitrogen (N 2 ) gas stream in an electric furnace, The powder thus obtained was classified into a 325 mesh (45 μm) sieve and finely pulverized using a ball mill, and then uniaxially press-molded, and then hydrostatically molded at a molding pressure of 1,200 kg / cm 2 , followed by nitrogen in an electric furnace. After firing at 1100 ° C. for 12 hours in a (N 2 ) gas stream, the surface was polished and washed to prepare a target for manufacturing a thin film.

상기 타겟을 통사의 RF 스퍼터링 장치에 장착하여 하기의 [표 1]에 나타낸 바와 같은 조건으로 석영유리 및 (0001)면의 결정 석영기판 상에 박막을 제조하였다.The target was mounted on a conventional RF sputtering device to produce a thin film on a quartz glass and a (0001) face crystal quartz substrate under the conditions as shown in Table 1 below.

이때 상기 RF 스퍼터링은 타겟과 기판의 거리를 8cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다. At this time, the RF sputtering fixed the distance between the target and the substrate to 8 cm and the substrate was rotated four times per minute, the temperature of the substrate was set to 150 ℃.

본 스퍼터링 전에 타겟의 오염물질을 제거하기 위하여 5분간 셔터를 닫고 스퍼터링을 하고 본 스퍼터링을 행한다.In order to remove contaminants on the target before bone sputtering, the shutter is closed for 5 minutes, sputtered and bone sputtered.

[실시예 3] Cu(Al0.5Ga0.5)O2 조성 박막의 제조Example 3 Preparation of Cu (Al 0.5 Ga 0.5 ) O 2 Composition Thin Film

순도 4N의 산화동(CuO)과 알루미나(Al2O3) 분말을 화학양론조성이 되도록 볼밀로 혼합한 후에 이 혼합물을 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 4 시간 하소한 후, 여기서 얻어진 분체를 325메쉬(45㎛) 체로 분급한 뒤 볼밀을 이용하여 다시 미분쇄한 다음, 이를 일축가압 성형한 후, 다시 1,200kg/cm2의 성형압으로 정수압성형을 한 후, 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 12 시간 소성하여 표면을 연마, 세척하여 박막 제조용 타겟을 제조한 다음,After mixing the copper oxide (CuO) and alumina (Al 2 O 3 ) powder of purity 4N with a stoichiometric composition, the mixture was calcined at 1100 ° C. for 4 hours in a nitrogen (N 2 ) gas stream in an electric furnace, where The obtained powder was classified into a 325 mesh (45 μm) sieve and finely pulverized using a ball mill, and then uniaxially press-molded, and then hydrostatically molded at a molding pressure of 1,200 kg / cm 2 , followed by nitrogen (in an electric furnace). N 2 ) by firing at 1100 ° C. for 12 hours in a gas stream to polish and wash the surface to prepare a thin film target.

상기 타겟을 통상의 RF 스퍼터링 장치에 장착하여 하기의 [표 1]에 나타낸 바와 같은 조건으로 석영유리 및 (0001)면의 결정 석영기판 상에 박막을 제조하였다.The target was mounted on a conventional RF sputtering apparatus to produce a thin film on a quartz glass and a (0001) crystalline quartz substrate under the conditions as shown in Table 1 below.

이때 상기 RF 스퍼터링은 타겟과 기판의 거리를 8cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다. At this time, the RF sputtering fixed the distance between the target and the substrate to 8 cm and the substrate was rotated four times per minute, the temperature of the substrate was set to 150 ℃.

본 스퍼터링 전에 타겟의 오염물질을 제거하기 위하여 5분간 셔터를 닫고 스퍼터링을 하고 본 스퍼터링을 행한다. In order to remove contaminants on the target before bone sputtering, the shutter is closed for 5 minutes, sputtered and bone sputtered.

[실시예 4] Cu(Al0.3Ga0.7)O2 조성 박막의 제조Example 4 Preparation of Cu (Al 0.3 Ga 0.7 ) O 2 Composition Thin Film

순도 4N의 산화동(CuO)과 알루미나(Al2O3) 분말을 화학양론조성이 되도록 볼밀로 혼합한 후, 이 혼합물을 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 4 시간 하소한 다음, 여기서 얻어진 분체를 325메쉬(45㎛) 체로 분급한 뒤 볼밀을 이용하여 다시 미분쇄한 다음, 이를 일축가압 성형한 후, 다시 1,200kg/cm2의 성형압으로 정수압성형을 한 다음, 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 12 시간 소성하여 표면을 연마, 세척하여 박막 제조용 타겟을 제조한 다음,After ballistically mixing copper oxide (CuO) and alumina (Al 2 O 3 ) powders with a purity of 4N in a stoichiometric composition, the mixture was calcined at 1100 ° C. for 4 hours in a nitrogen (N 2 ) gas stream in an electric furnace, The powder thus obtained was classified into a 325 mesh (45 μm) sieve, finely pulverized again using a ball mill, uniaxially press-molded, and hydrostatically molded at a molding pressure of 1,200 kg / cm 2 , followed by nitrogen in an electric furnace. After firing at 1100 ° C. for 12 hours in a (N 2 ) gas stream, the surface was polished and washed to prepare a target for manufacturing a thin film.

상기 타겟을 통상의 RF 스퍼터링 장치에 장착하여 하기의 [표 1]에 나타낸 바와 같은 조건으로 석영유리 및 (0001)면의 결정 석영기판 상에 박막을 제조하였다.The target was mounted on a conventional RF sputtering apparatus to produce a thin film on a quartz glass and a (0001) crystalline quartz substrate under the conditions as shown in Table 1 below.

이때 상기 RF 스퍼터링은 타겟과 기판의 거리를 8cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다. At this time, the RF sputtering fixed the distance between the target and the substrate to 8 cm and the substrate was rotated four times per minute, the temperature of the substrate was set to 150 ℃.

본 스퍼터링 전에 타겟의 오염물질을 제거하기 위하여 5분간 셔터를 닫고 스퍼터링을 하고 본 스퍼터링을 행하였다.In order to remove the contaminants of the target before bone sputtering, the shutter was closed for 5 minutes, sputtered, and bone sputtering was performed.

[실시예 5] CuGaO2 조성 박막의 제조Example 5 Preparation of CuGaO 2 Composition Thin Film

순도 4N의 산화동(CuO)과 알루미나(Al2O3) 분말을 화학양론조성이 되도록 볼밀로 혼합한 후, 이 혼합물을 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 4 시간 하소한 다음, 여기서 얻어진 분체를 325메쉬(45㎛) 체로 분급한 뒤 볼밀을 이용하여 다시 미분쇄한 다음, 이를 일축가압 성형한 후, 다시 1,200kg/cm2의 성형압으로 정수압성형을 한 다음, 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 12 시간 소성하여 표면을 연마, 세척하여 박막 제조용 타겟을 제조한 다음,After ballistically mixing copper oxide (CuO) and alumina (Al 2 O 3 ) powders with a purity of 4N in a stoichiometric composition, the mixture was calcined at 1100 ° C. for 4 hours in a nitrogen (N 2 ) gas stream in an electric furnace, The powder thus obtained was classified into a 325 mesh (45 μm) sieve, finely pulverized again using a ball mill, uniaxially press-molded, and hydrostatically molded at a molding pressure of 1,200 kg / cm 2 , followed by nitrogen in an electric furnace. After firing at 1100 ° C. for 12 hours in a (N 2 ) gas stream, the surface was polished and washed to prepare a target for manufacturing a thin film.

상기와 타겟을 통상의 DC/RF 스퍼터링 장치에 장착하여 하기의 [표 1]에 나타낸 바와 같은 조건으로 석영유리 및 (0001)면의 결정 석영기판 상에 박막을 제조 하였다.The thin film was prepared on the quartz glass and the (0001) crystalline quartz substrate under the conditions as shown in Table 1 below by attaching the target and the target to a conventional DC / RF sputtering apparatus.

이때 DC 스퍼터링의 경우, 타겟과 기판의 거리는 2cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다.In this case, in the case of DC sputtering, the distance between the target and the substrate was fixed at 2 cm, the substrate was rotated four times per minute, and the temperature of the substrate was set at 150 ° C.

또한 RF 스퍼터링의 경우, 타겟과 기판의 거리는 8cm로 고정하였고 기판은 분당 4회 회전하도록 하였으며, 기판의 온도는 150℃로 하였다. In the case of RF sputtering, the distance between the target and the substrate was fixed at 8 cm, the substrate was rotated four times per minute, and the temperature of the substrate was set at 150 ° C.

DC/RF 스퍼터링 모두 본 스퍼터링 전에 타겟의 오염물질을 제거하기 위하여 5분간 셔터를 닫고 스퍼터링을 하고 본 스퍼터링을 행한다.In both DC / RF sputtering, the shutter is closed, sputtered and bone sputtered for 5 minutes to remove contaminants of the target before the sputtering.

성막 조건에 따른 Cu(Al1 - xGax)O2 조성물의 제 물성 Properties of Cu (Al 1 - x Ga x ) O 2 Compositions According to Deposition Conditions 구 분division 성막조건Deposition Conditions 성막속도(nm/min)Deposition rate (nm / min) 상온저항 (Ω·cm)Room temperature resistance (Ωcm) 광투과도(550nm)Light transmittance (550nm) CuAlO2 CuAlO 2 DCDC 400V, 13.8mA/cm2,10mim, Ar : O2 = 40 : 10400 V, 13.8 mA / cm 2 , 10 mim, Ar: O 2 = 40: 10 70.270.2 8585 50.550.5 RF 150WRF 150W 10min, Ar : O2 = 40 : 1010 min, Ar: O 2 = 40: 10 4141 412412 64.964.9 Cu(Al0.7Ga0.3)O2 Cu (Al 0.7 Ga 0.3 ) O 2 RF 150WRF 150W 10min, Ar : O2 = 40 : 1010 min, Ar: O 2 = 40: 10 143143 655655 87.787.7 Cu(Al0.5Ga0.5)O2 Cu (Al 0.5 Ga 0.5 ) O 2 RF 150WRF 150W 10min, Ar : O2 = 40 : 1010 min, Ar: O 2 = 40: 10 283283 910910 79.079.0 Cu(Al0.3Ga0.7)O2 Cu (Al 0.3 Ga 0.7 ) O 2 RF 150WRF 150W 10min, Ar : O2 = 40 : 1010 min, Ar: O 2 = 40: 10 251251 1,1161,116 85.185.1 CuGaO2 CuGaO 2 DCDC 400V, 13.8mA/cm2,10mim, Ar : O2 = 40 : 10400 V, 13.8 mA / cm 2 , 10 mim, Ar: O 2 = 40: 10 285285 467467 62.262.2 RF 150WRF 150W 10min, Ar : O2 = 40 : 1010 min, Ar: O 2 = 40: 10 219219 1,6351,635 72.172.1

본 발명에 따른 p형 투명 산화물 반도체 조성물은 Cu계 델라보사이트(delafossite) 구조를 가지는 화합물군에서 대표적인 CuAlO2와 CuGaO2의 고용 조성을 이용함으로써 CuAlO2나 CuGaO2 같은 단일 조성의 조성물보다 향상된 전기전도도와 가시광 투과도의 제공이 가능하며 상기의 특성 제어가 가능한 조성물을 제공하는 효과가 있다.The p-type transparent oxide semiconductor composition according to the present invention has improved electrical conductivity than a single composition such as CuAlO 2 or CuGaO 2 by using a solid solution of CuAlO 2 and CuGaO 2 in a compound group having a Cu-based delafossite structure. And it is possible to provide the visible light transmittance and there is an effect of providing a composition capable of controlling the above properties.

Claims (6)

p형 투명 산화물 반도체 조성물에 있어서, 델라포사이트 구조를 가지는 CuAlO2와; A p-type transparent oxide semiconductor composition comprising: CuAlO 2 having a delafossite structure; 델라포사이트 구조를 가지는 CuGaO2;를 포함하여 아래의 조성식과 같이 이루어지는 고용체 복합금속산화물로 구성되는 것을 특징으로 하는 p형 투명 산화물 반도체 조성물.A p-type transparent oxide semiconductor composition comprising CuGaO 2 having a delafossite structure; and composed of a solid solution metal oxide formed as follows. Cu(Al1-xGax)O2 (여기서, 0≤x≤1)Cu (Al 1-x Ga x ) O 2 , where 0 ≦ x ≦ 1 제 1항에 있어서, The method of claim 1, 상기 x가 0.3 내지 0.7인 경우 투과도가 80%이상 되는 것을 특징으로 하는 p형 투명 산화물 반도체 조성물.When x is 0.3 to 0.7 p-type transparent oxide semiconductor composition, the transmittance is characterized in that more than 80%. 제 1항에 있어서,The method of claim 1, 상기 고용체 복합금속산화물은 델라포사이트 구조를 가지는 것을 특징으로 하는 p형 투명 산화물 반도체 조성물.The solid-solution composite metal oxide is p-type transparent oxide semiconductor composition, characterized in that it has a delafossite structure. Cu(Al1-xGax)O2(0≤x≤1) 조성 박막의 제조 방법에 있어서, 순도 4N의 산화동(CuO)과 알루미나(Al2O3) 분말을 화학양론조성이 되도록 볼밀로 혼합한 후, 이 혼 합물을 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 4 시간 하소한 다음, 여기서 얻어진 분체를 325메쉬(45㎛) 체로 분급한 뒤 볼밀을 이용하여 다시 미분쇄한 다음, 이를 일축가압 성형한 후, 다시 1,200kg/cm2의 성형압으로 정수압성형을 한 후, 전기로에서 질소(N2)가스 기류 중에서 1100℃에서 12 시간 소성하여 표면을 연마, 세척하여 박막 제조용 타겟을 제조한 다음, 상기 타겟을 통상의 DC/RF 스퍼터링 장치에 장착하여 석영유리 및 (0001)면의 결정 석영기판 상에 박막을 제조함을 특징으로 하는 Cu(Al1-xGax)O2(0≤x≤1) 조성 박막의 제조 방법.In the method for producing a Cu (Al 1-x Ga x ) O 2 (0 ≦ x ≦ 1) composition thin film, a ball mill is prepared by using a copper oxide (CuO) and alumina (Al 2 O 3 ) powder having a purity of 4N so as to form a stoichiometric composition. After mixing, the mixture was calcined at 1100 ° C. for 4 hours in a nitrogen (N 2 ) gas stream in an electric furnace, and then the powder obtained was classified into a 325 mesh (45 μm) sieve, and then pulverized again using a ball mill. After uniaxial pressure molding, the hydrostatic pressure molding was carried out at a molding pressure of 1,200 kg / cm 2 , and then the surface was calcined and washed at 1100 ° C. for 12 hours in a nitrogen (N 2 ) gas stream in an electric furnace to polish and wash the surface. After manufacturing the Cu (Al 1-x Ga x ) O 2 characterized in that the target is mounted on a conventional DC / RF sputtering apparatus to produce a thin film on the quartz glass and the (0001) surface crystal quartz substrate (0 ≦ x ≦ 1) A method for producing a composition thin film. 제 4항에 있어서, The method of claim 4, wherein DC 스퍼터링의 경우, 타겟과 기판의 거리는 2cm로 고정되고, 상기 기판은 분당 4회 회전되며, 상기 기판의 온도는 150℃로 하는 것을 특징으로 하는 Cu(Al1-xGax)O2(0≤x≤1) 조성 박막의 제조 방법.In the case of DC sputtering, the distance between the target and the substrate is fixed at 2 cm, the substrate is rotated four times per minute, and the temperature of the substrate is 150 ° C. Cu (Al 1-x Ga x ) O 2 (0 ≤ x ≤ 1) A method for producing a composition thin film. 제 4항에 있어서, The method of claim 4, wherein RF 스퍼터링의 경우, 타겟과 기판의 거리는 8cm로 고정되며, 상기 기판은 분당 4회 회전되고, 기판의 온도는 150℃로 하는 것을 특징으로 하는 Cu(Al1 - xGax)O2(0≤x≤1) 조성 박막의 제조 방법.In the case of RF sputtering, the distance between the target and the substrate is fixed at 8 cm, the substrate is rotated four times per minute, and the temperature of the substrate is 150 ° C. Cu (Al 1 - x Ga x ) O 2 (0 ≦ x≤1) A method for producing a composition thin film.
KR1020070001670A 2007-01-05 2007-01-05 Manufacture method of p-type Transparent Oxide Semiconductor Composition thin film KR100849538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070001670A KR100849538B1 (en) 2007-01-05 2007-01-05 Manufacture method of p-type Transparent Oxide Semiconductor Composition thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070001670A KR100849538B1 (en) 2007-01-05 2007-01-05 Manufacture method of p-type Transparent Oxide Semiconductor Composition thin film

Publications (2)

Publication Number Publication Date
KR20080064592A true KR20080064592A (en) 2008-07-09
KR100849538B1 KR100849538B1 (en) 2008-07-31

Family

ID=39815855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070001670A KR100849538B1 (en) 2007-01-05 2007-01-05 Manufacture method of p-type Transparent Oxide Semiconductor Composition thin film

Country Status (1)

Country Link
KR (1) KR100849538B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125036A1 (en) 2010-04-06 2011-10-13 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa P-type oxide alloys based on copper oxides, tin oxides, tin-copper alloy oxides and metal alloy thereof, and nickel oxide, with embedded metals thereof, fabrication process and use thereof
US9053937B2 (en) 2010-04-15 2015-06-09 Electronics And Telecommunications Research Institute Semiconductor device and method of manufacturing the same
CN106711198A (en) * 2016-10-20 2017-05-24 浙江大学 P-type CuMInO amorphous oxide semiconductor thin film and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142522B1 (en) 2009-12-15 2012-05-07 한국전기연구원 manufacturing method of n- and p-type CuAlO2 using single impurities

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979435B1 (en) * 2001-04-03 2005-12-27 Northwestern University p-Type transparent conducting oxides and methods for preparation
US20030201164A1 (en) * 2002-04-29 2003-10-30 Johnson Linda F. Method of making electrically conductive, IR transparent metal oxide films

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125036A1 (en) 2010-04-06 2011-10-13 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa P-type oxide alloys based on copper oxides, tin oxides, tin-copper alloy oxides and metal alloy thereof, and nickel oxide, with embedded metals thereof, fabrication process and use thereof
US9053937B2 (en) 2010-04-15 2015-06-09 Electronics And Telecommunications Research Institute Semiconductor device and method of manufacturing the same
CN106711198A (en) * 2016-10-20 2017-05-24 浙江大学 P-type CuMInO amorphous oxide semiconductor thin film and preparation method thereof
CN106711198B (en) * 2016-10-20 2019-12-31 浙江大学 P-type CuMINO amorphous oxide semiconductor film and preparation method thereof

Also Published As

Publication number Publication date
KR100849538B1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
US9045821B2 (en) Laminate, method for producing same, and functional element using same
US9472718B2 (en) Semiconductor light-emitting element comprising an insulating reflection layer including plural opening portions
KR101481855B1 (en) Semiconductor light emitting element, method for manufacturing the semiconductor light emitting element and lamp using the semiconductor light emitting element
JP4148264B2 (en) Semiconductor device and manufacturing method thereof
JP4882792B2 (en) Semiconductor light emitting device
US7582905B2 (en) Semiconductor light emitting device
US6878962B1 (en) Semiconductor device
US20080038529A1 (en) Transparent Conductive Film and Method of Fabricating the Same, Transparent Conductive Base Material, and Light-Emitting Device
KR101151158B1 (en) Compound semiconductor light emitting element and manufacturing method for same, conductive translucent electrode for compound semiconductor light emitting element, lamp, electronic device, and mechanical apparatus
US20100090216A1 (en) ELECTRONIC SEMICONDUCTOR DEVICE BASED ON COPPER NICKEL AND GALLIUM-TIN-ZINC-COPPER-TITANIUM p AND n-TYPE OXIDES, THEIR APPLICATIONS AND CORRESPONDING MANUFACTURE PROCESS
KR100703091B1 (en) Nitride semiconductor light emitting device and method for manufacturing the same
KR20110042033A (en) Semiconductor device, method for manufacturing semiconductor device, transistor substrate, light emitting device and display device
WO2010150501A1 (en) Light emitting element, method of producing same, lamp, electronic equipment, and mechanical apparatus
KR20080104363A (en) Semiconductor light emitting element, method for fabricating semiconductor light emitting element and lamp
CN1881624A (en) Light-emitting diode and its preparation method
KR100849538B1 (en) Manufacture method of p-type Transparent Oxide Semiconductor Composition thin film
US10615361B2 (en) Field effect electrode with layered metal oxide
JP2000022205A (en) Semiconductor light emitting element
KR100660135B1 (en) Article having a transparent electrode of p-type conducting oxide and manufacturing thereof
WO2023032583A1 (en) Gallium nitride-based semiconductor device on amorphous substrate
KR20060067487A (en) Light emitting diode having zinc oxide transparent conducting oxide
EP4235821A2 (en) Light-emitting element and display device including the same
KR101729533B1 (en) Transparent p type SrCu2O2 semiconductor composition and a method for preparing the same
WO2023248753A1 (en) Gallium nitride-based semiconductor device on amorphous substrate and method for manufacturing same
JPH05275745A (en) Laminated semiconductor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130724

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140723

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150723

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160725

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170724

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee