KR20080060392A - Plant signal processor with esa technology - Google Patents

Plant signal processor with esa technology Download PDF

Info

Publication number
KR20080060392A
KR20080060392A KR1020060134376A KR20060134376A KR20080060392A KR 20080060392 A KR20080060392 A KR 20080060392A KR 1020060134376 A KR1020060134376 A KR 1020060134376A KR 20060134376 A KR20060134376 A KR 20060134376A KR 20080060392 A KR20080060392 A KR 20080060392A
Authority
KR
South Korea
Prior art keywords
speed
esa
motor
analysis
load
Prior art date
Application number
KR1020060134376A
Other languages
Korean (ko)
Inventor
이용해
조상하
이동현
조석순
Original Assignee
한국디지탈콘트롤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국디지탈콘트롤 주식회사 filed Critical 한국디지탈콘트롤 주식회사
Priority to KR1020060134376A priority Critical patent/KR20080060392A/en
Publication of KR20080060392A publication Critical patent/KR20080060392A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/4802Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage by using electronic circuits in general
    • G01P3/4805Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage by using electronic circuits in general by using circuits for the electrical integration of the generated pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A plant signal processor with ESA(Electricity Signature Analysis) technology is provided to perform measurement in a remote MCC(Motor Control Center) panel by determining a glitch part only through voltage and current without attaching any device to a motor or a load machine. A plant signal processor with ESA technology performs process control, system analysis, and equipment diagnosis through ESA signal analysis by receiving only AC voltage and current. The plant signal processor performs the steps of: obtaining and inducing three-phase voltage and current for the process control, system analysis, and equipment diagnosis through ESA; determining a glitch line by automatically calculating a revolution speed without a speed meter; automatically modeling a threshold; determining abnormality based on the modeled threshold and estimating an operation period according to an ROC(Rate Of Change) of deterioration; and diagnosing the abnormality and deterioration of a load machine by inducing torque.

Description

전력징후분석기술기반의 플랜트 신호처리{Plant Signal Processor with ESA Technology}Plant Signal Processing based on Power Sign Analysis Technology {Plant Signal Processor with ESA Technology}

도 1 ESA분석을 통한 플랜트 신호처리Figure 1 Plant signal processing through ESA analysis

도 2 ESA분석을 통한 플랜트 신호처리 >> 신호 프러그(signal conditioner)Figure 2 Plant Signaling with ESA Analysis >> Signal Conditioner

도 3 ESA분석을 통한 플랜트 신호처리 >> 공정제어/계통분석/모터진단 구성(signal sharable configuration)Figure 3 Plant signal processing through ESA analysis >> Process control / system analysis / motor diagnostic configuration (signal sharable configuration)

도 4 ESA분석을 통한 플랜트 신호처리 >> ESA신호분석 코드 부분 예Figure 4 Plant signal processing through ESA analysis >> ESA signal analysis code part example

도 5 회전속도 계산(sensorless revolution speed) >> 모터명판(NAME PLATE) Figure 5 Sensorless revolution speed >> NAME PLATE

도 6 회전속도 계산(sensorless revolution speed) >> 모터제원(IEC 60034-1)Fig. 6 Sensorless revolution speed >> Motor specification (IEC 60034-1)

도 7 회전속도 계산(sensorless revolution speed) >> 자속특성(PPF vs Speed)Figure 7 Sensorless revolution speed >> flux characteristics (PPF vs Speed)

도 8 회전속도 계산(sensorless revolution speed) >> 속도 인출(rpm Derivation)Fig. 8 Sensorless revolution speed >> rpm derivation

도 9 결함진단(glitch diagnosis) >> 설비편집(edit machine)Fig. 9 Glitch diagnosis >> edit machine

도 10 결함진단(glitch diagnosis) >> 판정기준 모델링(criterion modeling)Fig. 10 Glitch diagnosis >> criterion modeling

도 11 결함진단(glitch diagnosis) 범위계산 알고리즘(threshold algorithm)Figure 11 Threshold Algorithm for Glitch Diagnosis

도 12 결함진단(glitch diagnosis) >> 이상/열화 진단(diagnose abnormal/deterioration )Fig. 12 Glitch diagnosis >> diagnosis abnormal / deterioration

도 13 모터수 제한 없는 구성기술(formation technology)Figure 13 Formation technology without the number of motors (formation technology)

도 14 모터수 제한 없는 구성기술(formation technology) >> 선택 매트릭서(matrix switcher)Fig. 14 Formation technology with unlimited number of motors >> selection matrix switcher

도 15 모터수 제한 없는 구성기술(formation technology) >> 모터신호 프러그(signal conditioner)Fig. 15 Formation technology without limit on the number of motors >> Motor signal conditioner

제목-Motor Current Signature (Spectrum) Analysis (MCSA) 8.2.6 , 4.6.1.11 Title-Motor Current Signature (Spectrum) Analysis (MCSA) 8.2.6, 4.6.1.11

저자-NASAAuthor-NASA

출처-RCM(RELIABILITY CENTERED MAINTENANCE) GUIDE FOR FACILITIES AND COLLATERAL EQUIPMENTSource-RCM (RELIABILITY CENTERED MAINTENANCE) GUIDE FOR FACILITIES AND COLLATERAL EQUIPMENT

주소-http://www.hq.nasa.gov/office/codej/codejx/rcm-iig.pdf#search='motor%20current%20spectrum%20analysis'Address-http: //www.hq.nasa.gov/office/codej/codejx/rcm-iig.pdf#search='motor%20current%20spectrum%20analysis'

제목-A Novel Approach for Broken-Rotor-Bar Detection in Cage Induction Motors Title-A Novel Approach for Broken-Rotor-Bar Detection in Cage Induction Motors

저자-Jafar Milimonfared, Homayoun Meshgin Kelk, Subhasis Nandi, Member, IEEEAuthor-Jafar Milimonfared, Homayoun Meshgin Kelk, Subhasis Nandi, Member, IEEE

출처-IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 5, SEPTEMBER/OCTOBER 1999Source-IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 5, SEPTEMBER / OCTOBER 1999

주소-http://www.eecs.berkeley.edu/~artin/Papers/IEEE%20Tran%20IA%20Vol%2035%2 0No%205%20Sep-Oct%201999.pdf#search='rotorcurrentfftspectrum'Address-http: //www.eecs.berkeley.edu/~artin/Papers/IEEE%20Tran%20IA%20Vol%2035%2 0No% 205% 20Sep-Oct% 201999.pdf # search = 'rotorcurrentfftspectrum'

제목-Electrical Signature Analysis (ESA) Developments at the Oak Ridge Diagnostics Applied Research Center Title-Electrical Signature Analysis (ESA) Developments at the Oak Ridge Diagnostics Applied Research Center

저자-H. D. HaynesAuthor-H. D. Haynes

출처-Oak Ridge National Laboratory Diagnostics Applied Research Center Oak Ridge, Tennessee, 37831-8038 Source-Oak Ridge National Laboratory Diagnostics Applied Research Center Oak Ridge, Tennessee, 37831-8038

주소-http://members.aol.com/hayneshd/esapaper.htmAddress-http: //members.aol.com/hayneshd/esapaper.htm

제목-ELECTRICAL SIGNATURE ANALYSIS (ESA) AS A DIAGNOSTIC MAINTENANCE TECHNIQUE FOR DETECTING THE HIGH CONSEQUENCE FUEL PUMP FAILURE MODESTitle-ELECTRICAL SIGNATURE ANALYSIS (ESA) AS A DIAGNOSTIC MAINTENANCE TECHNIQUE FOR DETECTING THE HIGH CONSEQUENCE FUEL PUMP FAILURE MODES

저자-D. E. Welch, H. D. Haynes, D. F. Cox, and R. J. MosesAuthor-D. E. Welch, H. D. Haynes, D. F. Cox, and R. J. Moses

출처-Welch, Condition-Based MaintenanceSource-Welch, Condition-Based Maintenance

주소-http://www.galaxyscientific.com/agingaircraft2002/SESSIONS/9/9C4_WELCH_DOC.PDFAddress-http: //www.galaxyscientific.com/agingaircraft2002/SESSIONS/9/9C4_WELCH_DOC.PDF

제목-Motor Management at Boeing(A catalyst for change in plant maintenance)Title-Motor Management at Boeing (A catalyst for change in plant maintenance)

저자-E David Brown Author-E David Brown

출처-P/PM Technology April, 2001 Source-P / PM Technology April, 2001

주소-http://www.us.framatome-anp.com/ultracheck/pdf/ppm.pdfAddress-http: //www.us.framatome-anp.com/ultracheck/pdf/ppm.pdf

제목-Electric Signature AnalysisTitle-Electric Signature Analysis

저자-By Donald V. Ferree & Nissen Burstein Author-By Donald V. Ferree & Nissen Burstein

출처-Framatome ANP UltraCheck Diagnostics Source-Framatome ANP UltraCheck Diagnostics

주소-http://www.us.framatome-anp.com/ultracheck/pdf/empath-techpaper1.pdf Address-http: //www.us.framatome-anp.com/ultracheck/pdf/empath-techpaper1.pdf

감시제어기능은 AC(C/T, P/T)신호를 센서레벨에서 DC(A-T/D, V-T/D, VAR, W, WH…)화한 신호의 크기로 감시/제어하는 기술이며, 모터 진단으로는 가속도 센서를 기기에 부착하여 베어링의 상태 또는 고장을 진단하는 방법이 많이 사용되고 있음. 플랜트 전체에 적용하기에는 많은 투자가 필요할 뿐만 아니라 센서를 기기에 부착해야 하므로 사용자 측에서 안전에 대한 우려가 큼. Supervisory control function is a technology that monitors / controls AC (C / T, P / T) signals at the sensor level at the level of DC (AT / D, VT / D, VAR, W, WH…). In many cases, a method of diagnosing a bearing condition or failure by attaching an acceleration sensor to a device is widely used. Not only does it require a lot of investment for the plant as a whole, but the sensors must be attached to the device, which raises safety concerns on the part of the user.

감시제어기능은 DC 변환센서 없이 ESA기술로 전압, 전류의 AC신호를 직접 받아 System Software에서 전압, 전류와 이들의 위상각으로 전원특성(임피던스, 역율, 전력, 효율)을 계산하여 이용함.Supervisory control function directly receives AC signal of voltage and current by ESA technology without DC conversion sensor and calculates and uses power characteristics (impedance, power factor, power, efficiency) based on voltage, current and their phase angle in System Software.

모터의 예방진단 분야에서는 신뢰성과 경쟁성을 갖춘 제품을 구현하기 위해 정밀한 회전속도를 구하여, 결함 징후를 세분화하여 운전환경에 맞는 최적화된 판정값으로 정확히 진단하는 기술.In the preventive diagnosis field of motors, precise rotational speed is obtained to realize reliable and competitive products, and the defects are subdivided to accurately diagnose with optimized judgment values for the operating environment.

[] 신호처리      [] Signal processing

() 신호공유       () Signal sharing

교류 3상의 전류, 전압을 "도 1 ESA분석을 통한 플랜트 신호처리"와 같이 공정제어, 계통기록, 모터진단에서 동일 신호원을 공유하기 위해서 "도 2 ESA분석을 통한 플랜트 신호처리 >> 신호 프러그(signal conditioner)"와 같이 신호가 콘디션닝(증폭, 필터, 정전류)함. 그러나 적용에 있어 2가지 상반되는 즉, 시계열 해상도(Wave Form Resolution) 및 주파수계열 해상도(FFT Line Resolution)를 동시에 만족시켜야 함.In order to share the same signal source in process control, system recording, and motor diagnosis, such as "Plant signal processing through ESA analysis," the current and voltage of AC three-phase, "Plant signal processing through ESA analysis, Figure 2 >> Signal plug signal condition (amplification, filter, constant current). However, two contradictory applications must be met: Wave Form Resolution and FFT Line Resolution.

첫 번째로 계통기록의 응용에서는 전압, 전류를 50고조파 성분을 얻기 위해서 15,000(60Hz x 100TH x 2.5 Point/Cycle)샘플링 즉, 16kHz 샘플링에 의해 0.06ms마다 시계열 데이터를 취득, 6kHz까지를 초당 여러회 FFT변환을 통해 Power 및 Phase 스펙트럼을 얻고, 주파수 응답(Frequency Response)을 통해 전력계통을 분석함.First, in the system recording application, time series data is acquired every 0.06 ms by 15,000 (60 Hz x 100 TH x 2.5 Point / Cycle) sampling, that is, 16 kHz sampling, to obtain 50 harmonic components of voltage and current. Acquire power and phase spectrum through FFT conversion and analyze power system through frequency response.

두 번째 모터진단에서는 저주파(≤180Hz) 대역에서 결함라인이 0.025Hz이하에서 서로 다른 징후를 나타내므로 450(180 x 2.5Point/Cycle) 샘플링 즉, 3ms마다 시계열 데이터를 취득, 45초 동안의 Power Spectrum으로 결함을 구분함. In the second motor diagnosis, the defect lines show different signs at less than 0.025 Hz in the low frequency band (≤180 Hz), so that 450 (180 x 2.5 Point / Cycle) sampling, that is, time series data every 3 ms, is obtained. Defect classification

시계열 해상도와 주파수계열 해상도를 동시에 만족하기 위해, 고주파 시계열 데이터를 필터(Low Pass Filter)를 거쳐 저주파 대역 시계열 데이터로 천이(Shift) 시켜 해상도를 무한대(메모리용량만큼)로 분해하는 기법임.In order to satisfy both time series resolution and frequency series resolution at the same time, high frequency time series data is shifted to low frequency time series data through a low pass filter to decompose the resolution to infinity (memory capacity).

이런 과정과 기법에서 단일 신호원이 시계열(Wave Form), 전원특성(A·V·VAR·Phase·W·WH…) 주파수계열(Power Spectrum), 복조신호(Demodulated Wave/Spectrum), 토크신호(Instantaneous Toque Wave / Spectrum)…로 유도되어 "도 3 ESA분석을 통한 플랜트 신호처리 >> 공정제어/계통분석/모터진단 구성(signal sharable configuration)"과 같이 단일 시스템에서 통합됨. In this process and technique, a single signal source can be used as the time form (Wave Form), power characteristics (A, V, VAR, Phase, W, WH…), power spectrum, demodulated signal (Demodulated Wave / Spectrum), torque signal ( Instantaneous Toque Wave / Spectrum)… And integrated into a single system, such as "Plant signal processing via ESA analysis >> process control / system analysis / signal sharable configuration".

() 신호흐름        () Signal flow

스펙트럼 및 전기적 징후특성, 운전특성, 그리고 부하 전원 크기 등을 분석하기 위해 "<표>ESA 신호분석 단계"와 같이 데이터 취득(Acquisition), 필터(Filter), 윈도(Windowing) 단계를 거쳐 응용에서 요구되는 전원의 특성, 크기, 징후를 유도하며, 특히 모터 진단을 위해서는 각 결함을 구분해야 하므로 저주파 대역 180Hz는 45초, 고주파 대역 6kHz는 5초로 구분하여 주파수 분해능이 보장되도록 구현됨.In order to analyze spectral and electrical sign characteristics, operating characteristics, and load power supply size, it is required in the application through data acquisition, filter, and windowing steps as shown in the ESA signal analysis step. The characteristics, size, and signs of the power supply are derived.In particular, each fault must be distinguished for motor diagnosis, so the low frequency band 180Hz is divided into 45 seconds and the high frequency band 6kHz is divided into 5 seconds to ensure frequency resolution.

o 취득 // Acquisition Timing Triggering Samples Digital Change Samples Rate Analog Reference Internal Reference o 필터 // Filter IIR(Infinite Impulse Response) type Low/High/Band-Pass topology Butterworth, Chebyshev, Inverse Chebyshev, Elliptic, Bessel order cutoff FIR(Finite Impulse Response) type Low/High/Band Pass taps cutoff o 윈도 // Window Hanning, Hamming, Blackman-Harris, Exact Blackman, Blackman, Flat Top, 4 Term B-Harris, 7 Term B-Harris, and Low Sidelobe o 분석 // Spectrum Averaging Mode Vector averaging RMS averaging Peak hold o 특성 // Scalar Signature Ampere, Voltage,VAR, Phase, Watt, Watt Hour Frequency, DC Component, peak, THD(%), SINAD(dB)o Acquisition // Acquisition Timing Triggering Samples Digital Change Samples Rate Analog Reference Internal Reference o Filter // Filter IIR (Infinite Impulse Response) type Low / High / Band-Pass topology Butterworth, Chebyshev, Inverse Chebyshev, Elliptic, Bessel order cutoff Finite Impulse Response) type Low / High / Band Pass taps cutoff o Windows // Window Hanning, Hamming, Blackman-Harris, Exact Blackman, Blackman, Flat Top, 4 Term B-Harris, 7 Term B-Harris, and Low Sidelobe o Analysis // Spectrum Averaging Mode Vector averaging RMS averaging Peak hold o Characteristics // Scalar Signature Ampere, Voltage, VAR, Phase, Watt, Watt Hour Frequency, DC Component, peak, THD (%), SINAD (dB)

<표>ESA 신호분석 단계<Table> ESA Signal Analysis Stage

[] 정밀한 회전속도 계산      [] Precise rotation speed calculation

() 속도의 중요성       Importance of speed

전류 신호 내에 회전자가 극을 통과하는 회전속도 징후 주파수를 직접 계측하므로 회전축에 펄스 발생기를 부착한 경우와 동일한 정밀도를 가짐.Since the rotor directly measures the frequency of the sign of rotational speed through the pole in the current signal, it has the same precision as when a pulse generator is attached to the rotating shaft.

() 속도추정 단계       () Speed estimation step

회전속도는 회전자가 극을 통과하는 주파수(Side Lobe : 스펙트럼에서 전원 주파수 양측에 나타나는)를 직접 읽으면 오차가 없음. 이를 프로그램에서 읽기 위해 특정 범위 내에 있는 Side Lobe를 읽어야 함. 이를 위해 IEC 6001-34에서 규정하는 모터 규격 및 성능 규격의 정격과 무부하에 대한 전류 및 운전속도의 관계표 를 회기식으로 정의해 둠. 모터 명판값과 정의된 회기식 관계에서 Side Lobe가 존재하는 범위를 "도 7 회전속도 계산(sensorless revolution speed) >> 자속특성(PPF vs Speed)"의 ε이내 오차범위로 근접시킴.Rotational speed is no error if the rotor reads directly through the pole (Side Lobe). To read this from the program, you must read the side lobe within a certain range. For this purpose, the relationship between current and operating speed for nominal load and nominal load of motor and performance standard specified in IEC 6001-34 is defined by regression formula. The range of the side lobe in the defined motor relationship with the motor nameplate value is approximated to an error range within ε of "sensorless revolution speed >> flux characteristics (PPF vs Speed)".

FLOBE =FLINE ( 1 ± 2k ??slip) =FLINE { 1 ± 2k ( FSYNC - FRUN ) / FSYNC} FRUN =[{(FFULL-FZERO)/(IFULL-IZERO)}*(IRUN-IFULL)+FFULL] FSYNC=2FLINE / PPAIR F LOBE = F LINE (1 ± 2k ?? slip) = F LINE {1 ± 2k (F SYNC -F RUN ) / F SYNC } F RUN = [{(F FULL -F ZERO ) / (I FULL -I ZERO )} * (I RUN -I FULL ) + F FULL ] F SYNC = 2F LINE / P PAIR FLOBE 사이드로브 FZERO 무부하초속 FFULL 정격초속 IFULL 정격전류 FLINE 전원주파수 IRUN 운전전류 FRUN 운전초속 IZERO 무부하전류 FSYNC 동기초속 PPAIR 폴페어수F LOBE Side lobe F ZERO No- load super speed F FULL Rated initial speed I FULL Rated current F LINE Power frequency I RUN Operating current F RUN Operational speed I ZERO no-load current F SYNC Synchronous speed / speed P PAIR Pole pairs

() 로브검색 단계        () Lobe Search Phase

추정속도를 기준으로 정격속도와 무부하속도 중 가까운 거리만큼의 등간격 범위 내에서 라인들을 조사하여 좌우 로브의 상대 데시벨 차이가 0.03dB(실험값) 이하인 사이드 로브 주파수를 찾음.Based on the estimated speed, the lines are examined within the equal interval range between the rated speed and the no-load speed to find the side lobe frequency where the relative decibel difference between the left and right lobes is less than 0.03dB (experimental value).

IEC 6001-34에서 규정하는 모터 특성곡선과 대상 모터 간의 오차가 있을 경우와 정격이상으로 운전하는 경우(추정속도가 정격속도와 무부하속도 바깥범위)에도 가까운 거리만큼의 등간격 범위 내에서 라인들을 조사하기 때문에 로브 검색이 가능해짐.Investigate lines within the same distance range as close as possible even when there is an error between the motor characteristic curve specified in IEC 6001-34 and when the motor is operated above the rated speed (the estimated speed is outside the rated speed and no-load speed). So you can search for lobes.

() 속도환산        () Speed conversion

사이드 로브는 회전자의 극 통과 주파수와 반송파인 전원주파수와 변조(MODULATION)되어 나타난다. 실제 극 통과 주파수는 전원라인과 사이드 로브 라인의 거리이며, 이 거리는 극 수에 비례한다. 따라서 이 거리를 극 쌍수로 나누면 회전속도가 환산됨.The side lobes appear modulated with the rotor's pole pass frequency and the carrier frequency, the carrier frequency. The actual pole pass frequency is the distance between the power line and the side lobe line, which is proportional to the number of poles. Therefore, dividing this distance by the number of poles converts the rotation speed.

FRUN = FSYNC - FPP / PPAIR FPP = FLINE ± FLOBE FLOBE = FLINE ± FPP F RUN = F SYNC -F PP / P PAIR F PP = F LINE ± F LOBE F LOBE = F LINE ± F PP FLINE 전원주파수 FRUN 운전초속 FLOBE 사이드로브 FSYNC 동기초속 FPP 극통과 주파수 PPAIR 폴페어수 F LINE Power Frequency F RUN Operation speed F LOBE Side lobe F SYNC Synchronous speed F PP Pore pass frequency P PAIR pole pair number

[] 판정범위 자동설정      [] Automatic judgment range setting

() 판정분류구조        () Classification structure

모터의 이상과 열화를 오진 없이 놓치지 않고 진단하기 위해서는 해당 결함라인의 데시벨 설정의 정확도에 있음. It is in the accuracy of the decibel setting of the corresponding fault line to diagnose the fault and deterioration of the motor without misdiagnosis.

"도 9 결함진단(glitch diagnosis) >> 설비편집(edit machine)"과 "도 10 결함진단(glitch diagnosis) >> 판정기준 모델링(criterion modeling)"에서 보듯이, 이 데시벨 설정은 모터형식, 운전부하(고위/중위/저위)의 정도, 동력전달(직결/벨트/기어/...)방식, 공정분류, 설비용도, 부하기계의 운동방식, 그리고 부하물질에 따른 판정기준이 다르게 분류됨을 이론과 현장시험으로 도출하였음. As shown in Figure 9 "glitch diagnosis >> edit machine" and "Figure 10 defect diagnosis >> criterion modeling," this decibel setting is based on the motor type and operation. The theory that the criteria of load (high / medium / low), power transmission (direct / belt / gear / ...), process classification, equipment use, method of movement of load machine, and load materials are classified differently. Derived from and field test.

() 판정자동설정         () Automatic judgment setting

범위계산 알고리즘은 "도 11 결함진단(glitch diagnosis) 범위계산 알고리즘(threshold algorithm)"에서 보듯이, 단일 결함라인의 판정설정은 자신의 이력 데이터와 다른 사이트 및 시스템 내의 동일유형(모터형식, 운전부하, 동력전달, 공정분류, 설비용도, 기계운동방식, 부하물질)에서 최적화된 돗수와 변량을 융합하여 최적화함.As the range calculation algorithm is shown in Fig. 11 "glitch diagnosis threshold algorithm", the decision setting of a single defect line is the same type (motor type, driving load) in the site and system that is different from its historical data. , Optimizing the tap water and variance optimized in power transmission, process classification, equipment use, mechanical motion method, load material).

() 판정수동조정         () Judgment manual adjustment

고급 사용자를 위해 계측 데시벨의 패턴을 보고, 시스템이 진단에 사용한 수 식이 예측수식을 변경하면서 예상과 실제 데시벨과 일치하는 정도를 R2값과 시스템에서 제공하는 적중률을 동시에 보면서 최적의 수명 예측의 방안을 제시함. 이를 통해서 "도 10 결함진단(glitch diagnosis) >> 판정기준 모델링(criterion modeling)"화면을 통해 데시벨의 범위(Decibel Threshold)를 조정할 수 있음.For advanced users, see the pattern of the measurement of decibels, the system measures while changing the number of dietary prediction formula used in the diagnosis of estimates and watching the hit at the same time optimal life expectancy, which provides a degree of matching the actual decibels in R 2 values and systems Presented. This allows the Decibel Threshold to be adjusted via the "Fig. 10 Glitch diagnosis >> criterion modeling" screen.

[] 이상 열화에 따른 수명 예측      [] Life Prediction due to Abnormal Deterioration

() 판정방법        () Judgment method

이상에 대한 결함 판정은 데시벨의 범위(Decibel Threshold)만으로 판정하며, 열화는 이력 데시벨의 변화율(ROC)에 따른 판정으로 구분 진단함Defects are determined based on the Decibel Threshold only. Deterioration is classified based on the historical rate of change (ROC).

() 수명예측        () Life expectancy

결함판정을 위한 데시벨의 범위(Decibel Threshold)는 "도 10 결함진단(glitch diagnosis) >> 판정기준 모델링(criterion modeling)"에서 보이듯 자동으로 조정되고 있으며 정적인(Scalar) 값을 정하는 것으로, 이는 MCSA의 결함라인 수식의 이론적 의미와 동력전달 방식 부하단 기계 부의 특성에 따름. The Decibel Threshold for defect determination is automatically adjusted as shown in Figure 10 "glitch diagnosis >> criterion modeling", which sets the scale value, which is the MCSA. Depends on the theoretical meaning of the fault line equation and the characteristics of the power transmission mechanism of the load stage.

데시벨의 크기로 열화 정도가 정상이라 할지라도 해당결함의 데시벨이 증가하고 있거나 변화율(ROC : Rate OF Change)에 따른 추정(Estimation)을 행하여 계속 운전가능기간을 보고하며, 여기서 신뢰도는 현 시점의 실 계측 데시벨을 과거 모든 시점에서 다시 예측한 적중률로서 예측 알고리즘을 검정한 백분율임 Even if the degree of deterioration is normal due to the size of the decibel, the decibel of the defect is increasing or the estimation is performed according to the rate of change (ROC) to report the period of continuous operation. The percentage of hits that predicted the measurement decibels from all past points in time, as a percentage of the prediction algorithm test.

[] 모터수 제한 없는 구성기술       [] Motor technology without limit

() 주기점검 구성        () Periodic inspection composition

시스템은 ePlug, eSwitch 프로세서 모듈과 eScheduler 환경으로 구성됨. System consists of ePlug, eSwitch processor module and eScheduler environment.

소프트웨어는 모터수에 제한이 없이 모터의 중요도에 따라 점검주기를 정의하여 DSA(Dynamic Signal Analysis)에 의해 시계열 데이터 취득, 주파수계열 변환 및 결함라인 분류, 그리고 진단과정의 3단계 과정을 다중처리 구성으로 분산처리하는 환경임.The software defines the inspection cycle according to the importance of the motor without limiting the number of motors.The three-stage process of time series data acquisition, frequency series conversion and defect line classification, and diagnosis process by DSA (Dynamic Signal Analysis) It is a distributed processing environment.

ePlug는 MCC에 부착되며, eSwitch와 연계는 모터수에 제한이 없이 6 Pair Cable(Data Line)만으로 모든 ePlug 신호가 DSA에 전달됨. 따라서 하나의 DSA보드와 6Pair Cable로 시스템을 구축할 수 있어 경제적임.ePlug is attached to MCC, and all ePlug signals are delivered to DSA with 6 Pair Cable (Data Line) without limit on the number of motors. Therefore, it is economical to build a system with one DSA board and 6Pair cable.

() eScheduler        eScheduler

eScheduler는 점검의 중요도에 따라 모터별 점검주기를 설정하여 다중처리하며, 전압은 공유되기 때문에 전압/전류 조합은 전력공급 계통과 모터 관계의 계층구조 정의(피더, 설비코드, ePlug 국번, 신호채널)에 스케쥴링됨.eScheduler sets up the inspection cycle for each motor according to the importance of inspection and multi-processes. Since voltage is shared, voltage / current combination defines the hierarchical structure of power supply system and motor relationship (feeder, equipment code, ePlug address, signal channel). Scheduled for

신호처리는 시스템의 많은 부하를 필요로 하기에 3단계(계측-분석-진단)과정이 병렬처리 되도록 2개의 스텍큐(계측/분석 스텍과 분석/진단 스텍)가 존재하여 분산 수행함.Since signal processing requires a lot of load on the system, there are two stacks (measurement / analysis stack and analysis / diagnosis stack) for three steps (measurement-analysis-diagnosis) in parallel.

() eSwitch        () eSwitch

eSwitch는 DSA와 ePlug간의 Gate로서 매트릭스 브리지 기능임. 전압/전류 그룹을 한 순간에 "ePlug수 x 6채널"개 중 eScheduler가 선택한 6개 라인을 선택하는 역할임eSwitch is a matrix bridge function as a gate between DSA and ePlug. It is a role to select 6 lines selected by eScheduler among "ePlug number x 6 channels" at a time for voltage / current group

() ePlug        ePlug

ePlug는 3상의 전류, 전압를 콘디션닝(증폭, 필터, 정전류)하여 3Km이상의 원거리에 있는 DSA에 신호를 전송하는 역할로, 결선과는 무관하게 동일모터의 신호조합은 eScheduler에서 결정한 폴링 스케쥴에 따름. 따라서 eScheduler의 스위칭 명령에 의해 해당 채널만 Data Line에 접합되어 모터 수에 제한이 없는 시스템 구성이 됨. ePlug transmits signals to DSA over 3Km by conditioning (amplification, filter, and constant current) of three phase currents. Regardless of wiring, the signal combination of the same motor follows the polling schedule determined by eScheduler. Therefore, only the corresponding channel is joined to the data line by the switching command of eScheduler, so the system configuration is unlimited.

또한 포터블 장비에 의해 분석하기 위한 별도의 포트가 제공됨. 이는 MCC도어를 열지 않고 모터징후분석용 포트로 이용됨. MCC도어에 콘넥트를 부착하고 MCC내부에서 ePlug모듈은 콘넥트에 전압전류 신호를 보냄. 그 콘넥트는 직접 DSA로 연결되어 신호가 분석됨.In addition, a separate port is provided for analysis by portable equipment. It is used as a port for motor signs analysis without opening the MCC door. The connector is attached to the MCC door and the ePlug module sends voltage and current signals to the connector inside the MCC. The connector is connected directly to the DSA and the signal is analyzed.

() 계측편의        () Of measurement

ESA기술은 모터 및 부하단 기계에 어떤 장치도 부착하지 않고 전압, 전류만으로 전원에 포함된 징후를 분석하여 결함유형과 결함부분을 판단하므로 계측이 원격 MCC 케비넷에서 이루어짐ESA technology analyzes the signs contained in the power supply using only voltage and current, without attaching any devices to the motor and load-side machine, to determine the type of defect and the part of the defect, so measurement is made in the remote MCC cabinet.

() 센서설치        () Sensor installation

전류인 경우 기존 CT(Current Transformer)에서 모터마다 3상을 직렬로 인출함. 직접인출이 여의치 못할 경우는 CT 2차측 혹은 전력선에 Clamp CT를 통해 인출함. 전압인출은 해당 피더(Feeder)의 기존 PT(Potential Transformer) 출력단에서 병렬로 인출함. 즉, 기존 CT, PT를 공유하기 때문에 신호 인출에 따른 비용이 거의 없음.In case of current, three phases are drawn in series for each motor in the existing CT (Current Transformer). If direct draw is not possible, draw it out through Clamp CT on the CT secondary side or power line. Voltage withdrawal is drawn in parallel from the existing PT (Potential Transformer) output stage of the feeder. In other words, since they share existing CT and PT, there is almost no cost for signal withdrawal.

() 시장성        () Marketability

모터의 많은 구성품에서 하나가 불량하면 공정운영에 영향이 크고 생산에 많은 손실을 가져와 막대한 지장을 초래하기 때문에 현장에서는 필수 기기임.In many components of the motor, a faulty one is essential in the field because it has a big impact on the process operation and causes a lot of losses in production.

() 우월성        Superiority

전력원(전압, 전류)을 통한 전원분석, 스펙트럼분석 그리고 토크분석을 통해 전원상태, 모터의 구성품, VFD 그리고 부하단 기계의 이상과 열화를 진단할 수 있음. 이는 고주파 대역에서 베어링과 편심만 분석하는 진동기법과는 차별화됨.Power supply analysis, spectrum analysis and torque analysis through power sources (voltage, current) can diagnose power supply status, motor components, VFDs and load stage machines. This is different from the vibration technique which analyzes only bearing and eccentricity in high frequency band.

() 편의성        () convenience

기존의 CT, PT만을 이용하기 때문에 저비용으로 모든 모터에 부담 없이 적용할 수 있으며, 모터 동작 장치상의 어떤 특별한 장치를 부과할 필요가 없으며 단지 MCC패널에서 이루어짐. Because it uses only existing CT and PT, it can be applied to all motors at low cost without any burden, and there is no need to impose any special device on the motor operating device, but it is done only in MCC panel.

Claims (5)

시계열 해상도와 주파수계열 해상도를 동시에 만족시키는 기법으로, 고주파 시계열 데이터를 필터(Low Pass Filter)를 거쳐 저주파 대역 시계열 데이터로 천이(Shift)시켜 해상도를 무한대(기억용량만큼)로 분해하는 메카니즘.A technique that satisfies both time-series and frequency-series resolution simultaneously, and shifts high-frequency time-series data to low-frequency time-series data through a low pass filter to decompose the resolution into infinity (memory capacity). 정밀한 회전속도 계산 기법인 운전속도를 추정을 모터 명판값과 IEC 6001-34규격을 이용하는 SIDELOBE 존재범위를 근접시키는 속도추정 알고리즘과 정격속도와 무부하속도 중 가까운 거리만큼의 등간격 범위 내에서 라인들을 조사하여 좌우 로브의 상대 데시벨 차이가 임의 허용 범위 이하인 사이드 로브 주파수를 프로그램적으로 찾는 로브검색 알고리즘.The speed estimation algorithm approximates the motor speed plate value and the range of SIDELOBE existence using the IEC 6001-34 standard and estimates the operating speed, which is a precise rotation speed calculation technique, and examines the lines within the equal interval range as close as the rated speed and no load speed. A lobe search algorithm that programmatically finds a side lobe frequency where the relative decibel difference between the left and right lobes is less than an arbitrary tolerance range. 판정치를 최적화하는 분류방법과 범위설정이 자동으로 천이되는 기법으로, 데시벨 설정은 모터형식, 운전부하(고위/중위/저위)의 정도, 동력전달(직결/벨트/기어/...)방식, 공정분류, 설비용도, 부하기계의 운동방식, 그리고 부하물질에 따른 판정기준이 다르게 분류법과 자동천이를 다른 사이트 및 시스템 내의 동일유형 모터의 이력을 융합하여 구하는 기법.The method of classifying and optimizing the range automatically determines the decibel setting.The decibel setting is the motor type, the degree of operating load (high / medium / low), and the power transmission (direct / belt / gear / ...) method. The method of calculating classification and automatic transition by combining the history of motors of the same type in different sites and systems with different classifications, process classification, equipment usage, method of movement of load machine, and different criteria for load materials. 이상진단과 열화에 따른 수명 예측 기법인 결함의 데시벨이 증가 변화율(ROC : Rate OF Change)에 따른 운전가능기간을 예측과 예측 신뢰도 적중률 제시 알고리즘.Algorithm for predicting the operation period according to the rate of change (ROC) and the decibel of the defect, which is a life prediction technique due to abnormal diagnosis and deterioration. 모터수 제한 없는 구성기술로 모터 수에 제한이 없이 6 Pair Cable(Data Line)과 단일 ADC나 DSA 보드로 많은 모터신호를 공유하는 기법.It is a technique that shares a large number of motor signals with 6 Pair Cable (Data Line) and a single ADC or DSA board without any number of motors.
KR1020060134376A 2006-12-27 2006-12-27 Plant signal processor with esa technology KR20080060392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060134376A KR20080060392A (en) 2006-12-27 2006-12-27 Plant signal processor with esa technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060134376A KR20080060392A (en) 2006-12-27 2006-12-27 Plant signal processor with esa technology

Publications (1)

Publication Number Publication Date
KR20080060392A true KR20080060392A (en) 2008-07-02

Family

ID=39812923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060134376A KR20080060392A (en) 2006-12-27 2006-12-27 Plant signal processor with esa technology

Country Status (1)

Country Link
KR (1) KR20080060392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315492B1 (en) * 2021-08-30 2021-10-21 (주)텔레스퀘어 Motor lifetime prediction system and method performing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315492B1 (en) * 2021-08-30 2021-10-21 (주)텔레스퀘어 Motor lifetime prediction system and method performing thereof

Similar Documents

Publication Publication Date Title
Riera-Guasp et al. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art
Mehala et al. Motor current signature analysis and its applications in induction motor fault diagnosis
CN111758036B (en) System and method for monitoring an operating state of an operating electrical device
CN102520352B (en) Brushless alternating current (AC) generator failure diagnosis instrument
US11953555B2 (en) Abnormality diagnosis device, abnormality diagnosis method, and abnormality diagnosis system
KR100608235B1 (en) A method and a device for estimating durability and monitoring defects of induction motors in real time
EP3480610B1 (en) Diagnosing a winding set of a stator
US9431949B2 (en) Induction motor speed estimation
JP2015215275A (en) Deterioration diagnosis system
US20200341063A1 (en) Systems and methods for analyzing operation of motors
JP2019020278A (en) Diagnostic system for rotary machine system, electric power converter, rotary machine system, and method for diagnosing rotary machine system
WO2020144965A1 (en) Power conversion device, rotating machine system, and diagnosis method
RU2339049C1 (en) Diagnostic method of alternating current motor and associated mechanical appliances
KR100728762B1 (en) System for monitoring partial discharge and inter layer short of high voltage circulator by on line
KR100810979B1 (en) A method for detecting defects of induction motors
Pereira et al. Motor current signature analysis and fuzzy logic applied to the diagnosis of short-circuit faults in induction motors
Sawyer et al. Creating low-cost energy-management systems for homes using non-intrusive energy monitoring devices
Antonino-Daviu et al. Multi-harmonic tracking for diagnosis of rotor asymmetries in wound rotor induction motors
CN106646223B (en) A kind of three-phase cage asynchronous motor rotor broken splits the diagnostic method of conducting bar number
KR20080060392A (en) Plant signal processor with esa technology
Perez-Cruz et al. Cost-effective on-line fault diagnosis of induction motors using the reduced modulus of the current park's vector
US11165379B2 (en) Monitoring a multi-winding set stator
RU2641318C1 (en) Method of diagnosing generalized technical condition of electric motor
KR100445238B1 (en) system of diagnosis degradation in power transfer apparatus
KR100530467B1 (en) On-line check system for induction motors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application