KR20080058077A - Method for treating wastewater including fluorine - Google Patents

Method for treating wastewater including fluorine Download PDF

Info

Publication number
KR20080058077A
KR20080058077A KR1020060132182A KR20060132182A KR20080058077A KR 20080058077 A KR20080058077 A KR 20080058077A KR 1020060132182 A KR1020060132182 A KR 1020060132182A KR 20060132182 A KR20060132182 A KR 20060132182A KR 20080058077 A KR20080058077 A KR 20080058077A
Authority
KR
South Korea
Prior art keywords
wastewater
sulfuric acid
fluorine
injecting
solution
Prior art date
Application number
KR1020060132182A
Other languages
Korean (ko)
Inventor
강신경
최성철
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020060132182A priority Critical patent/KR20080058077A/en
Publication of KR20080058077A publication Critical patent/KR20080058077A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method for treating wastewater containing fluorine ions is provided to remove fluorine from fluorine ions contained in wastewater selectively to a low concentration range irrespective of the initial concentration, and minimize the concentration of residual chlorine ions of treated water. A method for treating wastewater containing fluorine ions comprises the steps of: flowing fluorine ion-containing wastewater collected in a catchment tank into a first reaction tank, and injecting a lanthanium carbonate-reacting aqueous sulfuric acid solution into the wastewater; flowing the wastewater having the lanthanium carbonate-reacting aqueous sulfuric acid solution injected thereinto into a second reaction tank, and injecting an alkaline solution into the wastewater to adjust a pH of the wastewater to at least 5; flowing the wastewater of which a pH has been adjusted to the at least 5 into a third reaction tank, and injecting an aqueous sodium polymetaphosphate solution or a rare earth compound into the wastewater until the wastewater has a pH of 8 to 9; and injecting a polymer flocculant into the wastewater when a pH of the wastewater is adjusted to a range of 4 to 9. Further, the alkaline solution is sodium hydroxide, and the rare earth compound is one of Ce, La or a mixture thereof.

Description

불소이온 함유 폐수 처리방법{Method for treating wastewater including fluorine}Method for treating wastewater including fluorine}

도1은 일반적인 불소이온 함유 폐수 처리방법을 설명하기 위한 공정도.1 is a process chart for explaining a general fluorine ion-containing wastewater treatment method.

본 발명은 폐수 중에 함유되어 있는 불소 이온들을 제거하기 위한 불소이온 함유 폐수의 처리방법에 관한 것으로, 보다 상세히는 탄산칼슘을 주원료로 하고 폴리인산나트륨 및 활성 알루미늄화합물을 첨가하여 불소 이온과 매우 안정한 침전물을 형성케 함으로써 미량의 불소까지도 효과적으로 제거할 수 있게 함은 물론, 처리수중의 염소이온의 잔류농도를 최소화할 수 있게 하는 불소이온 함유 폐수 처리방법에 관한 것이다.The present invention relates to a method for treating fluorine ion-containing wastewater for removing fluorine ions contained in the wastewater. More specifically, the precipitate is very stable with fluorine ions by adding calcium carbonate as a main raw material and adding sodium polyphosphate and an active aluminum compound. The present invention relates to a method for treating wastewater containing fluorine ions, which effectively removes even a small amount of fluorine and minimizes the residual concentration of chlorine ions in the treated water.

일반적으로 각종 반도체 제조공장, 알루미늄 전해 정련공장, 인산비료 제조공장, 금속표면처리공장, 프린트기판 제조공장, 세라믹 제조공장에서 유출되는 불소이온 함유 폐수를 처리하는 방법은, 불소 함유 폐수에 칼슘화합물, 알루미늄화합물, 및 인화합물 들을 1 종 이상 가하여 폐수 중의 불소 이온을 불용화한 후 고체-액체 분리에 의해 제거하는 방법이 사용되어 왔다.In general, fluorine ion-containing wastewater discharged from various semiconductor manufacturing plants, aluminum electrolytic refining plants, phosphate fertilizer manufacturing plants, metal surface treatment plants, printed board manufacturing plants, and ceramic manufacturing plants can be treated with calcium compounds, A method has been used in which at least one aluminum compound and phosphorus compounds are added to insolubilize fluorine ions in wastewater and then removed by solid-liquid separation.

이러한 방법 중 대표적인 것은 황산알루미늄 등의 알루미늄 화합물과 수산화칼슘 등의 칼슘 화합물의 조합에 의한 방법이 일본공개 특허공보 소60-117호에 기재되어 있으며, 일본공개 특허공보 소62-125894호에는 염화칼슘 등의 칼슘화합물과 인산 제2칼륨 등 인화합물의 조합에 의한 방법들이 기재되어 있다.Representative of these methods is a method of combining aluminum compounds such as aluminum sulfate and calcium compounds such as calcium hydroxide is described in Japanese Patent Application Laid-Open No. 60-117, and Japanese Patent Laid-Open No. 62-125894 is referred to as calcium chloride. Methods by a combination of phosphorus compounds such as calcium compounds and dipotassium phosphate are described.

이러한 방법들 중 하나의 예를 들면 반도체 공장에서 불소 함유 폐수의 처리에 사용하고 있는 방법은 300~600ppm 정도의 불소를 함유하고 있는 폐수를 집수조에서 집수하고, 1차 반응조에서 소석회를 첨가하여 PH가 10이 되도록 하고, 2차 반응조에서 보조응집제로서 염화제이철을 소량 첨가한 다음 3차 반응조에서 고분자 응집제를 첨가하여 불소농도를 30~60 ppm 정도까지 형석(CaF2)의 형태로 1차 침전조에서 침전 분리, 제거시킨 후 다시 여액을 1차 침전반응조로 옮겨 폴리염화알루미늄(PAC)을 약 600 ppm 정도 주입하고, 2차 침전반응조에서 가성소다로 PH를 6.7~7.0으로 조절한 다음, 3차 침전반응조에서 고분자 응집제를 첨가하여 불소농도를 10 ppm 이하까지 낮추고 2차 침전조에서 침전 분리, 제거하는 방법을 사용하고 있다.In one of these methods, for example, the method used in the treatment of fluorine-containing wastewater in a semiconductor factory is to collect wastewater containing about 300 to 600 ppm of fluorine in a collecting tank, and adding lime in the first reactor, To 10, and a small amount of ferric chloride is added as a secondary coagulant in the secondary reactor, and then a polymer flocculant is added to the secondary reactor to precipitate the fluorine concentration in the form of fluorite (CaF 2 ) up to about 30 to 60 ppm. After separation and removal, the filtrate was transferred to the first precipitation reactor and about 600 ppm of polyaluminum chloride (PAC) was injected. The pH was adjusted to 6.7 ~ 7.0 with caustic soda in the secondary precipitation reactor, and then the third precipitation reactor was used. In order to reduce the fluorine concentration to 10 ppm or less by adding a polymer flocculant, sedimentation and removal are performed in a secondary precipitation tank.

그러나 상기한 종래의 방법은 불소처리 공정이 2번의 여과분리과정을 거치는 2단계의 처리과정으로 되어 있어 그 처리과정이 매우 복잡하였을 뿐만 아니라 2번에 걸친 침전, 여과작업의 수행에 따른 설비 운전조작 및 유지관리에 많은 어려움이 있었으며, 폐수처리에 많은 시간이 소요됨은 물론 폐수처리과정에서 발생되는 다량의 슬러지 및 처리수중에 잔존하는 염소이온 농도의 증가 등 많은 문제점이 있었다.However, the conventional method described above is a two-step treatment process in which the fluorine treatment process undergoes two filtration separation processes, which is not only complicated, but also the operation of the facility according to the two precipitation and filtration operations. And there was a lot of difficulties in the maintenance, wastewater treatment takes a lot of time, as well as a lot of sludge generated in the wastewater treatment process and there are many problems such as an increase in the concentration of chlorine ions remaining in the treated water.

본 발명은 상기 종래기술의 문제점을 고려하여, 폐수 중에 함유되어 있는 불소 이온을 초기농도에 관계없이 선택적으로 저 농도 범위까지 불소를 제거하고 잔류 염소이온 농도를 최소화 할 수 있는 불소이온 함유 폐수의 처리방법을 제공함에 그 목적이 있다.In view of the problems of the prior art, the present invention is to treat fluorine ion-containing wastewater that can selectively remove fluorine ions contained in wastewater to a low concentration range regardless of initial concentration and minimize residual chlorine ion concentration. The purpose is to provide a method.

본 발명은 상기 목적을 달성하기 위한 본 발명의 특징적인 기술적 구성은, 집수조에 수집된 불소이온 함유 폐수를 1차 반응조에 유입시키고 이에 탄산란탄 반응 황산수용액을 투입하는 단계;The present invention is characterized in that the technical configuration of the present invention, the fluorine ion-containing wastewater collected in the sump tank to the first reaction tank and the step of introducing a lanthanum carbonate reaction sulfuric acid solution;

상기 탄산란탄 반응 황산수용액이 투입된 폐수를 2차 반응조에 유입시키고 이에 알칼리용액을 투입하여 폐수의 PH를 5 이상으로 조절하는 단계;Adjusting the pH of the wastewater to 5 or more by introducing the wastewater into which the lanthanum carbonate-reacted sulfuric acid solution is added to a secondary reaction tank and adding an alkaline solution thereto;

상기 PH 5 이상으로 조절된 폐수를 3차 반응조에 유입시키고 이에 폴리메타인산나트륨 수용액 또는 희토류 화합물을 폐수의 PH 8~9가 될 때까지 투입하는 단계;Introducing the wastewater adjusted to above PH 5 into a tertiary reactor and injecting the aqueous polymethyl phosphate solution or rare earth compound until it reaches PH 8-9 of the wastewater;

상기 폐수의 PH가 4~9로 조절되면 이에 고분자 응집제를 투입하는 단계로 이루어진다.When the pH of the wastewater is adjusted to 4 ~ 9 consists of the step of introducing a polymer flocculant.

그리고 상기 상기 탄산란탄 반응 황산수용액은 황산의 농도가 5중량% 이상인 황산수용액에 탄산칼슘 10-95중량%를 혼합 반응시켜 된 것이고, 상기 탄산칼슘 반응 황산 수용액은 불소 이온 100ppm에 대하여 탄산칼슘 반응 황산 수용액으로 100 내지 10,000ppm인 것을 사용한다.The lanthanum carbonate aqueous solution was reacted by mixing 10-95% by weight of calcium carbonate with an aqueous sulfuric acid solution having a concentration of 5% by weight or more, and the aqueous solution of the calcium carbonate-reacted sulfuric acid reacted with calcium carbonate with 100 ppm of fluoride ions. 100 to 10,000 ppm of the aqueous solution is used.

또 상기 알칼리용액은 수산화나트륨이고, 상기 희토류 화합물은 세륨(Ce), 란탄(La), 또는 이들의 혼합물 중 어느 하나이며, 상기 고분자 응집제는 폴리아크릴아마이드이다.In addition, the alkaline solution is sodium hydroxide, the rare earth compound is any one of cerium (Ce), lanthanum (La), or a mixture thereof, the polymer coagulant is polyacrylamide.

상기와 같은 특징을 갖는 본 발명의 불소이온 함유 폐수 처리방법을 각 공정별로 나누어 상세하게 설명하면 다음과 같다.The fluorine ion-containing wastewater treatment method of the present invention having the above characteristics will be described in detail by dividing each process as follows.

[제1공정][Step 1]

먼저 집수조에 집수된 고농도 불소 함유 폐수를 1차 반응조에 유입시키고 그 유입작업이 완료되면 탄산란탄 반응 황산수용액을 투입한다.First, the high concentration of fluorine-containing wastewater collected in the sump is introduced into the first reactor, and when the inflow is completed, a lanthanum carbonate-reacted sulfuric acid solution is added.

이때 탄산란탄 반응 황산 수용액의 투입은 황산 농도가 5중량% 이상인 황산 수용액에 탄산칼슘 10 내지 95 중량%를 혼합 반응시켜서 제조하는 탄산칼슘 반응 황산 수용액을 상기 폐수의 불소 이온 100ppm에 대하여 탄산칼슘 반응 황산용액으로 100 내지 10,000ppm인 것을 투입하는 것이 바람직하다.At this time, the addition of the lanthanum carbonate reaction sulfuric acid aqueous solution is a calcium carbonate reaction sulfuric acid aqueous solution prepared by mixing 10 to 95% by weight of calcium carbonate in an aqueous sulfuric acid solution having a sulfuric acid concentration of 5% by weight or more with respect to 100 ppm of fluoride ions in the wastewater. It is preferable to add 100-10000 ppm as a solution.

그러나 상기 과정만으로는 불용성 물질(LaF3 )의 용해도 때문에 불소 이온 잔류 량이 10ppm 이하가 되도록 불소를 제거하는 것은 불가능하다.However, it is not possible to remove fluorine such that the residual amount of fluorine ions is 10 ppm or less due to the solubility of the insoluble substance (LaF 3 ) alone.

상기 5중량% 이상인 황산 수용액을 사용해야 하는 이유는, 황산은 통상적으로 98% 농황산이 사용되나, 위험성이 높아 희석하여 사용하는 것을 의미하며, 원수의 불소농도에 따라 제조되는 농도가 달라지기 때문에 넓은 범위의 농도를 정한 것임. 또 상기 탄산칼슘 10 내지 95 중량%의 것을 사용하는 이유는, 이 또한 탄산칼슘의 순도를 말하는 것으로 상기 황산과의 조합을 생각하여 범위를 정한 것임.The reason to use the sulfuric acid aqueous solution of 5% by weight or more is, sulfuric acid is usually used 98% concentrated sulfuric acid, but because of the high risk means that the diluted use, because the concentration produced according to the fluorine concentration of the raw water is a wide range The concentration of is determined. The reason for using 10 to 95% by weight of the calcium carbonate is to refer to the purity of the calcium carbonate and to define the range in consideration of the combination with the sulfuric acid.

[제2공정][Step 2]

반응식1Scheme 1

La 2 (CO 3 ) 3 + 6F + = 2LaF 3 + 3CO3 2- La 2 (CO 3 ) 3 + 6F + = 2 LaF 3 + 3CO 3 2-

상기 제1공정 후 상기 탄산란탄 반응 황산수용액이 투입된 폐수를 2차 반응조에 유입시키고 이에 알칼리용액 즉 수산화나트륨을 투입하여 폐수의 PH를 5 이상으로 조절하는데, 그 PH의 조절은 8~9범위로 함이 바람직하다. 상기와 같이하면 상기 반응식1에 의거하여 불소 이온들을 불용성물질(LaF 3 )로 침전시켜 잔류 불소가 30~60ppm이 된다.After the first step, the wastewater into which the lanthanum carbonate-reacted sulfuric acid solution was introduced is introduced into a secondary reaction tank, and an alkaline solution, that is, sodium hydroxide, is added thereto to adjust the pH of the wastewater to 5 or more. It is preferable to. As described above, the fluorine ions are precipitated as an insoluble substance (LaF 3 ) based on Reaction Scheme 1 to obtain a residual fluorine of 30 to 60 ppm.

상기 PH를 5 이상으로 조절하는 이유는, PH를 5 이하에서는 탄산은 이산화탄소 가스로 모두 날아가 버리고 벌고기 5이상이 되어야 탄산을 물속에 탄산염의 형태로 보존 가능하기 때문이다.The reason why the pH is adjusted to 5 or more is that when the pH is 5 or less, the carbonic acid is blown away by the carbon dioxide gas. This is because at least 5 carbonic acid can be stored in the form of carbonate in water.

[제3공정][Step 3]

상기 제2공정 후 상기 PH를 5 이상으로 조절된 폐수를 3차 반응조에 유입시키고 그에 폴리메타인산나트륨 수용액 또는 희토류 화합물을 폐수의 PH가 8~9의 범위로 조절함이 바람직하다. 상기와 같이하면 하기 반응식2와 같이 1차 반응조에서 제거되지 않고 잔류되어 넘어온 미량의 불소 이온까지 매우 안정한 침전물을 형성케 하여 10ppm이하까지도 쉽게 제거할 수 있다.After the second step, it is preferable that the pH of the wastewater adjusted to 5 or more is introduced into a tertiary reactor, and the aqueous polymethyl phosphate solution or rare earth compound is adjusted to a pH of the wastewater in the range of 8-9. As described above, it is possible to easily remove up to 10 ppm by forming a very stable precipitate up to the trace amount of fluorine ions remaining in the first reaction tank without being removed in the first reaction tank as shown in Scheme 2 below.

이때 상기 폴리메타인산나트륨 수용액은 폴리메타인산나트륨 1중량% 미만, 희토류 화합물 수용액은 희토류 화합물 5 내지 60 중량%를 포함하는 수용액이 바람직하다. 단 상기 희토류 화합물은 세륨(Ce), 란탄(La), 또는 이들의 혼합물 중 어 느 하나이다.At this time, the aqueous solution of sodium polymethaphosphate is preferably less than 1% by weight of sodium polymethaphosphate, and the aqueous solution of rare earth compound contains 5 to 60% by weight of the rare earth compound. Provided that the rare earth compound is any one of cerium (Ce), lanthanum (La), or mixtures thereof.

반응식2Scheme 2

2La+3F-+ OH- +2e-+3CO3 2- = 2LaF 3 + H++H2O+3HCO3 - 2La + 3F - + OH - + 2e - + 3CO 3 2- = 2LaF 3 + H + + H 2 O + 3HCO 3 -

상기 폴리메타인산나트륨 수용액 또는 희토류 화합물을 폐수의 PH 8~9가 될 때까지 투입해야하는 이유는, 알칼리성 영역에서 효율이 극대화됨, 탄산염시스템에서 탄산(CO3 2-)의 존재영역이 7~11정도이나 9~11범위에서는 최대량이 되므로 반응식1에서의 반응이 오른쪽에서 왼쪽으로 진행하게 되어 오히려 잔류유리 불소가 많아지기 때문이다.The reason why the aqueous solution of sodium polymethaphosphate or the rare earth compound should be added until the pH is 8 to 9 in the wastewater is maximized in the alkaline region, and the region of carbonic acid (CO 3 2- ) in the carbonate system is 7 to 11 This is because the maximum amount is in the range of 9 to 11, so that the reaction proceeds from the right side to the left side and the residual free fluorine increases.

또한 상기 세륨(Ce)과 란탄(La)의 혼합 량은 통상적으로 50:50 의 범위가 적절하나 세륨(Ce)또는 란탄(La)기준 30~70% 정도의 범위도 무난하며, 이는 제거효율과 관련되어 결정되어진다.In addition, the mixing amount of the cerium (Ce) and lanthanum (La) is usually suitable in the range of 50:50, but the range of about 30 to 70% based on the cerium (Ce) or lanthanum (La) is also acceptable. Determined in relation to

[제4공정][Step 4]

상기 제3공정 후 그에 고분자 응집제를 투입하여 침전입자들을 조대화시켜 줌으로서, 침전조에서의 고액 분리를 용이하게 한다. 이때, 상기 고분자 응집제는 폴리아크릴아마이드를 사용한다.After the third step, the polymer coagulant is added thereto to coarse the precipitated particles, thereby facilitating the separation of solid and liquid from the precipitation tank. At this time, the polymer flocculant uses polyacrylamide.

상기 폴리아크릴아마이드의 사용량은 원수에 따라 상이하나 통상적으로 30~60ppm이다 The amount of the polyacrylamide used varies depending on the raw water, but is usually 30 to 60 ppm.

상기 침전조에서의 고액분리과정에서 대량으로 발생되는 슬러지의 주성분은 미 반응 탄산칼슘이며, 불소와의 반응에 의해 생성된 미량의 형석 및 반도체 폐수 중에 함유되어 있던 규소화합물들로 구성되어 있어 전량 시멘트 원료로 재활용이 가능하다.The main component of the sludge which is generated in a large amount during the solid-liquid separation in the sedimentation tank is unreacted calcium carbonate, and is composed of a small amount of fluorspar generated by the reaction with fluorine and silicon compounds contained in semiconductor wastewater. Recycling is possible.

상술한 바와 같은 본 발명은 저렴한 비용으로 간단하게 불소를 제거하는 것이 가능하며, 이러한 처리 후 처리수 중에 잔류하는 염소이온의 농도가 최소화 되어 재활용수 또는 공업용수 등 필요용도에 따른 수질문제 중 염소로 인한 문제가 줄어드는 효과가 있으며 생성된 슬러지까지도 전량 시멘트 원료로 재활용할 수 있는 가능성과 종래의 다양한 불소 제거제의 문제점을 해소할 수 있는 효과가 있다.As described above, the present invention can easily remove fluorine at low cost, and minimize the concentration of chlorine ions remaining in the treated water after such treatment, thereby minimizing the concentration of chlorine ions in the water quality problems according to the necessary uses such as recycled water or industrial water. There is an effect of reducing the problem caused by the sludge produced as a whole can be recycled to the raw material cement and there is an effect to solve the problems of various conventional fluorine remover.

Claims (6)

집수조에 수집된 불소이온 함유 폐수를 1차 반응조에 유입시키고 이에 탄산란탄 반응 황산수용액을 투입하는 단계;Injecting the fluorine-containing wastewater collected in the sump into a primary reactor and injecting a lanthanum carbonate-reacted sulfuric acid solution thereto; 상기 탄산란탄 반응 황산수용액이 투입된 폐수를 2차 반응조에 유입시키고 이에 알칼리용액을 투입하여 폐수의 PH를 5 이상으로 조절하는 단계;Adjusting the pH of the wastewater to 5 or more by introducing the wastewater into which the lanthanum carbonate-reacted sulfuric acid solution is added to a secondary reaction tank and adding an alkaline solution thereto; 상기 PH 5 이상으로 조절되 폐수를 3차 반응조에 유입시키고 이에 폴리메타인산나트륨 수용액 또는 희토류 화합물을 폐수의 PH 8~9가 될 때까지 투입하는 단계;Adjusting the pH to 5 or more and introducing wastewater into a tertiary reaction tank, and injecting the aqueous polymethyl phosphate solution or rare earth compound to PH 8-9 of the wastewater; 상기 폐수의 PH가 4~9로 조절되면 이에 고분자 응집제를 투입하는 단계를 포함하는 불소이온 함유 폐수 처리방법.When the pH of the waste water is adjusted to 4 ~ 9 fluorine ion-containing wastewater treatment method comprising the step of introducing a polymer flocculant. 제1항에 있어서, 상기 탄산란탄 반응 황산수용액은 황산의 농도가 5중량% 이상인 황산수용액에 탄산칼슘 10-95중량%를 혼합 반응시켜 된 것임을 특징으로 하는 불소이온 함유 폐수 처리방법.The method for treating fluorine ion-containing wastewater according to claim 1, wherein the aqueous solution of lanthanum carbonate-reacted sulfuric acid is made by mixing 10-95% by weight of calcium carbonate with a sulfuric acid solution having a concentration of 5% by weight or more. 제2항에 있어서, 상기 탄산칼슘 반응 황산 수용액은 불소 이온 100ppm에 대하여 탄산칼슘 반응 황산용액 100 내지 10,000ppm인 것을 사용함을 특징으로 하는 불소이온 함유 폐수 처리방법.The method for treating fluorine ion-containing wastewater according to claim 2, wherein the calcium carbonate-reacted sulfuric acid aqueous solution is 100 to 10,000 ppm of calcium carbonate-reacted sulfuric acid solution based on 100 ppm of fluorine ions. 제1항에 있어서, 상기 알칼리용액은 수산화나트륨임을 특징으로 하는 불소이온 함유 폐수 처리방법.The method of claim 1, wherein the alkaline solution is sodium hydroxide. 제1항에 있어서, 상기 희토류 화합물은 세륨(Ce), 란탄(La), 또는 이들의 혼합물 중 어느 하나임을 특징으로 하는 불소이온 함유 폐수 처리방법.The method of claim 1, wherein the rare earth compound is any one of cerium (Ce), lanthanum (La), or a mixture thereof. 제1항에 있어서, 상기 고분자 응집제는 폴리아크릴아마이드 임을 특징으로 하는 불소이온 함유 폐수 처리방법.The method of claim 1, wherein the polymer flocculant is polyacrylamide.
KR1020060132182A 2006-12-21 2006-12-21 Method for treating wastewater including fluorine KR20080058077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060132182A KR20080058077A (en) 2006-12-21 2006-12-21 Method for treating wastewater including fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060132182A KR20080058077A (en) 2006-12-21 2006-12-21 Method for treating wastewater including fluorine

Publications (1)

Publication Number Publication Date
KR20080058077A true KR20080058077A (en) 2008-06-25

Family

ID=39803773

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060132182A KR20080058077A (en) 2006-12-21 2006-12-21 Method for treating wastewater including fluorine

Country Status (1)

Country Link
KR (1) KR20080058077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739048A (en) * 2013-11-13 2014-04-23 南京格洛特环境工程股份有限公司 Defluorination medicine and preparation method thereof
CN108642503A (en) * 2018-05-14 2018-10-12 北京科技大学 A method of removing fluorine, chlorion from high-concentration industrial spent acid
CN117534169A (en) * 2024-01-09 2024-02-09 中国科学院合肥物质科学研究院 Deep defluorination material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739048A (en) * 2013-11-13 2014-04-23 南京格洛特环境工程股份有限公司 Defluorination medicine and preparation method thereof
CN103739048B (en) * 2013-11-13 2014-11-12 南京格洛特环境工程股份有限公司 Defluorination medicine and preparation method thereof
CN108642503A (en) * 2018-05-14 2018-10-12 北京科技大学 A method of removing fluorine, chlorion from high-concentration industrial spent acid
CN117534169A (en) * 2024-01-09 2024-02-09 中国科学院合肥物质科学研究院 Deep defluorination material and preparation method and application thereof
CN117534169B (en) * 2024-01-09 2024-04-09 中国科学院合肥物质科学研究院 Deep defluorination material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4698163A (en) Treatment of phosphate-containing wastewater
EP0986518B1 (en) A process for the treatment of effluent streams
KR100356618B1 (en) Remover of fluoride ion and treatment method for waste water comprising fluoride ion using the same
US20110127223A1 (en) Process for treating pond water
JP6288217B1 (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
CN111498940A (en) Separation treatment method of phosphorus-containing and fluorine-containing phosphogypsum washing waste liquid
JP5692278B2 (en) Method and apparatus for treating fluoride-containing water
KR20080058077A (en) Method for treating wastewater including fluorine
CN104803522B (en) A kind of processing method of high sodium fluoride waste
KR20150120971A (en) Method and apparatus for treating borofluoride-containing water
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP2002177963A (en) Water cleaning treatment system and water cleaning method
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
KR20150061877A (en) Apparatus for Removing Fluoride in Water Using Activated Reaction Nucleus and Method for Removing Fluoride in Water
CN114409141A (en) Method for hardness removal of coal gasification ash water
KR100349154B1 (en) Composition for eliminating fluorine from wastewater and method for eliminating fluorine from wastewater using the same
KR100365465B1 (en) Remover of fluoride ion and treatment method for waste water comprising fluoride ion using the same
KR20040095610A (en) Method of wastewater treatment
JP2008149222A (en) Removal method of fluorine ions in hot spring water
JPH0910548A (en) Treatment of drain containing fluorine
KR0142932B1 (en) Treatment of fluorine-containing wastewater
KR20030074424A (en) Method and apparatus for treating fluorine-containing waste water
KR20110075382A (en) Removal method of fluoride ion from the fluoride containing acidic wastewater
KR100756838B1 (en) Waste-water treatment method

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application