KR20080037213A - Electrochemical device with high safety at high temperature - Google Patents

Electrochemical device with high safety at high temperature Download PDF

Info

Publication number
KR20080037213A
KR20080037213A KR1020060103963A KR20060103963A KR20080037213A KR 20080037213 A KR20080037213 A KR 20080037213A KR 1020060103963 A KR1020060103963 A KR 1020060103963A KR 20060103963 A KR20060103963 A KR 20060103963A KR 20080037213 A KR20080037213 A KR 20080037213A
Authority
KR
South Korea
Prior art keywords
core
shell
particle
shell structure
particles
Prior art date
Application number
KR1020060103963A
Other languages
Korean (ko)
Inventor
박영선
강은주
이명훈
이재원
박필규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060103963A priority Critical patent/KR20080037213A/en
Publication of KR20080037213A publication Critical patent/KR20080037213A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

A core-shell structured particle, an electrolyte solution containing the particle, an electrode containing the particle, a separator containing the particle, and an electrochemical device using the particle are provided to improve the safety of a device by the collapse of core-shell structure in case of the abnormal high temperature or overcharge. A core-shell structured particle comprises a core which contains a subliming material; and a shell which comprises a polymer and is coated on the surface of the core. Preferably the subliming material is sublimed at the temperature higher than the normal operation temperature of the device using the particle or at the voltage of 4.5 V or more so as to be discharged to the outside of the particle; and the polymer has a melting point higher than the normal operation temperature of the device using the particle.

Description

고온 안전성이 뛰어난 전기화학소자 {ELECTROCHEMICAL DEVICE WITH HIGH SAFETY AT HIGH TEMPERATURE}ELECTROCHEMICAL DEVICE WITH HIGH SAFETY AT HIGH TEMPERATURE

본 발명은 외부 또는 내부 요인에 의해 비정상적인 문제가 발생하여 소자 내부가 이상 고온이나 과충전의 상태가 되더라도 안전성을 부여할 수 있도록 승화성 물질을 코어에 함유하는 코어-쉘 구조의 입자 및 상기 코어-쉘 구조의 입자를 사용하는 전기화학소자에 관한 것이다.The present invention provides a core-shell structured particle and a core-shell structure containing a sublimable material in a core so that abnormality may be caused by external or internal factors to provide safety even when the inside of the device becomes abnormally high temperature or overcharged. It relates to an electrochemical device using the particles of the structure.

최근 전자 장비의 소형화 및 경량화가 실현되고 휴대용 전자 기기의 사용이 일반화됨에 따라, 고에너지 밀도를 갖는 리튬 이차 전지에 대한 연구가 활발히 이루어지고 있다. Recently, as miniaturization and light weight of electronic equipment have been realized and the use of portable electronic devices has become common, research on lithium secondary batteries having high energy density has been actively conducted.

리튬 이차전지는 리튬이온의 삽입 및 탈리가 가능한 물질을 음극 및 양극으로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 상기 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생성한다.A lithium secondary battery is prepared by using a material capable of inserting and detaching lithium ions as a negative electrode and a positive electrode, and filling an organic or polymer electrolyte between the positive electrode and the negative electrode, and lithium ions can be inserted and removed from the positive electrode and the negative electrode. Electrical energy is generated by oxidation and reduction reactions.

그러나, 이러한 리튬 이차전지는 비수 전해액을 사용함에 따르는 발화 및 폭발 등의 안전 문제가 존재하며, 이와 같은 문제는 전지의 용량 밀도를 증가시킬수 록 더 심각해진다. 구체적으로는, 전지가 과충전되어 통상적인 작동 전압을 초과하게 되면 양극은 리튬을 과량 방출하게 되고, 과량의 리튬은 음극에 덴드라이트(dendrite)를 생성하여 양극과 음극이 모두 열적으로 불안정해져 전해액이 분해되는 등 급격한 발열반응이 일어난다. 이와 같은 발열 반응에 의하여 전지에서는 열폭주에 의한 발화 및 파열 현상이 발생하여 전지의 안전성에 문제가 된다.However, such lithium secondary batteries have safety problems such as ignition and explosion due to the use of nonaqueous electrolyte, and these problems become more serious as the capacity density of the battery is increased. Specifically, when the battery is overcharged and the normal operating voltage is exceeded, the positive electrode emits excessive lithium, and the excess lithium generates dendrites on the negative electrode, so that both the positive electrode and the negative electrode are thermally unstable, and thus the electrolyte is released. Rapid exothermic reactions occur such as decomposition. Such exothermic reactions cause ignition and rupture of the battery due to thermal runaway, which is a problem for the safety of the battery.

본 발명은 외부 또는 내부 요인에 의해 비정상적인 문제가 발생하여 소자 내부의 온도가 이상 고온 또는 과충전의 상태가 될 경우, 코어에 함유된 물질이 쉘의 외부로 방출되어 안전성을 부여할 수 있는 코어-쉘 구조의 입자를 제공하고자 한다.According to the present invention, when an abnormal problem occurs due to external or internal factors and the temperature inside the device becomes abnormally high temperature or overcharged state, the material contained in the core is released to the outside of the shell to impart safety to the core-shell. It is intended to provide particles of the structure.

또한, 본 발명은 상기 코어-쉘 구조의 입자를 사용하여 안전성이 향상된 전기화학소자를 제공하고자 한다.In addition, the present invention is to provide an electrochemical device with improved safety by using the particles of the core-shell structure.

본 발명은 승화성 물질을 함유하는 코어(core); 및The present invention includes a core containing a sublimable material; And

상기 코어 표면에 피복된 고분자로 이루어진 쉘(shell)을 포함하는 코어-쉘 구조의 입자를 제공한다. It provides a core-shell structured particles comprising a shell made of a polymer coated on the core surface.

본 발명은 상기 코어-쉘 구조의 입자를 포함하는 전해액, 전극 및 세퍼레이터를 제공한다.The present invention provides an electrolyte, an electrode and a separator comprising particles of the core-shell structure.

또한, 본 발명은 상기 코어-쉘 구조의 입자를 전기화학소자를 구성하는 소자 요소의 구성 성분 또는 이의 코팅 성분으로 사용한 전기화학소자, 바람직하게는 이 차전지를 제공한다.The present invention also provides an electrochemical device, preferably the secondary battery, wherein the core-shell structured particles are used as a component of the device element constituting the electrochemical device or as a coating component thereof.

이하, 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 코어-쉘 구조의 입자에서 쉘은 고분자로 이루어진 것이므로, 이상 고온이나 4.5V 이상의 과충전 전압에 따른 고온 시 상기 쉘은 용융 또는 유동성을 갖게 되어 코어-쉘 구조는 붕괴되고, 코어에 함유된 물질이 외부로 방출될 수 있다. 바람직하게는, 상기 코어-쉘 구조의 입자를 사용하는 소자, 예컨대 전기화학소자의 정상 작동 온도보다 높은 온도 또는 4.5V 이상의 전압에서 코어-쉘 구조는 붕괴되어 상기 승화성 물질은 코어-쉘 구조의 입자 외부로 방출될 수 있다. 이때, 승화성 물질은 기체로 상변화될 수 있는데, 상변화 과정에서 주위의 열을 흡수하여 소자의 안전성에 기여할 수 있다.In the core-shell structured particle according to the present invention, since the shell is made of a polymer, the shell is melted or fluidized at an abnormally high temperature or at a high temperature due to an overcharge voltage of 4.5 V or more, so that the core-shell structure is collapsed and contained in the core. Material can be released to the outside. Preferably, the core-shell structure is collapsed at a temperature higher than the normal operating temperature of the device using the core-shell structure, for example, an electrochemical device, or at a voltage of 4.5 V or higher, so that the sublimable material is formed of the core-shell structure. It may be released outside the particle. At this time, the sublimable material may be phase-changed into a gas, and may contribute to the safety of the device by absorbing the surrounding heat in the phase change process.

따라서, 본 발명은 이상 고온시 구조가 붕괴되어 승화성 물질이 쉘의 외부로 방출될 수 있는 코어-쉘 구조의 입자를 전해액, 전극 및/또는 세퍼레이터에 포함시킴으로써, 이상 고온시 방출되는 승화성 물질에 의해 소자, 예컨대 전기화학소자의 안전성을 부여할 수 있다.Accordingly, the present invention includes core-shell structured particles in which electrolytes, electrodes, and / or separators can be disintegrated at an abnormally high temperature so that the sublimable material can be released to the outside of the shell. This can impart safety to the device, such as an electrochemical device.

또한, 본 발명의 코어-쉘 구조의 입자를 사용하는 소자 내부에, 압력 변화 감지를 통해 소자의 충전을 중지시키거나 또는 충전 상태를 방전 상태로 전환시키는 CID 등의 압력 감응 장치가 구비되어 있거나, 압력 변화 감지를 통해 소자 내부의 열 또는 가스를 발산시키는 벤트(vent) 등과 같은 압력 개방 밸브가 구비되어 있으면, 코어-쉘 구조의 입자 외부로 방출되는 승화성 물질이 상변화됨으로써 발생되는 기체에 의해 상기 압력 감응 장치나 압력 개방 밸브가 작동하고 이에 의해 소 자의 안전성 향상을 도모할 수 있다.In addition, inside the device using the core-shell structured particles of the present invention, a pressure sensitive device such as a CID for stopping charging of the device or switching the charging state to a discharge state through a pressure change detection is provided, If a pressure release valve is provided, such as a vent for dissipating heat or gas inside the device through pressure change detection, the gas generated by the phase change of the sublimable substance released to the outside of the core-shell structure particle The pressure sensitive device or pressure release valve is operated, whereby the safety of the element can be improved.

상기 승화성 물질의 비제한적인 예로는 요오드, 나프탈렌, 장뇌, 드라이아이스, 프레온 등이 있으며, 이들은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Non-limiting examples of the sublimable material include iodine, naphthalene, camphor, dry ice, freon, etc., these may be used alone or in combination of two or more.

또한, 본 발명에 따른 코어-쉘 구조의 입자에서, 상기 쉘을 구성하는 고분자는 상기 코어-쉘 구조의 입자를 사용하는 소자의 정상 작동 온도보다 높은 용융점(Tm)을 가질 수 있으며, 바람직하게는 고분자의 용융점(Tm)이 70~200℃인 것이 바람직하다.In addition, in the particles of the core-shell structure according to the present invention, the polymer constituting the shell may have a melting point (Tm) higher than the normal operating temperature of the device using the particles of the core-shell structure, preferably It is preferable that melting | fusing point (Tm) of a polymer is 70-200 degreeC.

상기 고분자는 당 업계에 알려진 통상적인 단량체(monomer) 성분을 사용하여 중합된 것으로서, 예를 들면 (메타)아크릴레이트계 화합물, (메타)아크릴로니트릴계 화합물, (메타)아크릴산계 화합물, (메타)아크릴아미드계 화합물, 스티렌계 화합물, 비닐리덴 클로라이드, 할로겐화 비닐계 화합물, 부타디엔계 화합물, 에틸렌계 화합물, 아세트알데히드 및 포름알데히드로 이루어진 군으로부터 선택된 1종 이상의 단량체를 사용하여 중합된 폴리머 또는 공중합체일 수 있다. 이때, 상기 단량체는 각 단량체의 특성과 필요로 하는 물성에 따라 그 종류 및 함량을 적절히 변경하여 사용할 수 있다.The polymer is polymerized using a common monomer component known in the art, for example, (meth) acrylate compound, (meth) acrylonitrile compound, (meth) acrylic acid compound, (meth) Polymers or copolymers polymerized using at least one monomer selected from the group consisting of acrylamide compounds, styrene compounds, vinylidene chloride, vinyl halide compounds, butadiene compounds, ethylene compounds, acetaldehyde and formaldehyde Can be. In this case, the monomer may be used by appropriately changing the type and content according to the properties and physical properties of each monomer.

상기 (메타)아크릴레이트계 화합물의 예로는 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, 부틸 (메타)아크릴레이트로, 이소부틸 (메타)아크릴레이트, n-헥실 (메타)아크릴레이트, 에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 데실 (메타)아크 릴레이트, 도데실 (메타)아크릴레이트, 스테아릴 (메타)아크릴레이트, 시클로헥실 (메타)아크릴레이트, 부틸시클로헥실 (메타)아크릴레이트, 벤질 (메타)아크릴레이트, 페닐에틸 (메타)아크릴레이트, 페닐프로필 (메타)아크릴레이트, 부탄디올 디(메타)아크릴레이트, 에틸렌글리콜 디(메타)아크릴레이트, 트리프로필렌글리콜 트리(메타)아크릴레이트, 펜타에리스리톨 트리(메타)아크릴레이트 등이 있고; Examples of the (meth) acrylate-based compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (Meth) acrylate, n-hexyl (meth) acrylate, ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (Meth) acrylate, cyclohexyl (meth) acrylate, butylcyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenylethyl (meth) acrylate, phenylpropyl (meth) acrylate, butanediol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tripropylene glycol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and the like;

(메타)아크릴로니트릴계 화합물의 예로는, (메타)아크릴로니트릴이 있고; Examples of the (meth) acrylonitrile-based compound include (meth) acrylonitrile;

(메타)아크릴산계 화합물의 예로는, (메타)아크릴산, 말레인산, 푸마르산 등이 있고; Examples of the (meth) acrylic acid compound include (meth) acrylic acid, maleic acid, fumaric acid, and the like;

(메타)아크릴아미드계 화합물의 예로는 (메타)아크릴아미드, 메타크릴아미드 등이 있고; Examples of the (meth) acrylamide compound include (meth) acrylamide, methacrylamide, and the like;

스티렌계 화합물의 예로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-니트로스티렌, 에틸비닐벤젠, 디비닐 벤젠 등이 있고; Examples of the styrene-based compound include styrene, α-methylstyrene, β-methylstyrene, p-nitrostyrene, ethylvinylbenzene, divinyl benzene, and the like;

부타디엔계 화합물의 예로는 1,3-부타디엔, 이소프렌, 2,3-디메틸-1,3-부타디엔 등이 있으며;Examples of butadiene compounds include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and the like;

에틸렌계 화합물의 예로는 에틸렌, 프로필렌, 1-부텐, 1,1-다이클로로에틸렌, 플루오로에틸렌, 1,1-다이플루오로에틸렌 등이 있으나, 이들에 한정하는 것은 아니다.Examples of the ethylene compound include, but are not limited to, ethylene, propylene, 1-butene, 1,1-dichloroethylene, fluoroethylene, 1,1-difluoroethylene, and the like.

본 발명에 따른 코어-쉘 구조의 입자에서, 상기 코어: 쉘= 5~90 중량%: 95~10 중량% 인 것이 바람직하다. 코어가 5 중량% 미만이면 코어에 함유된 승화성 물질의 양이 적어서 전기화학소자의 안전성을 향상시키는 효과가 미미하다. 반면, 쉘이 10 중량% 미만이면 코어-쉘 구조의 형성이 어렵다.In the core-shell structured particles according to the invention, the core: shell = 5 to 90% by weight: preferably 95 to 10% by weight. If the core is less than 5% by weight, the amount of the sublimable material contained in the core is small, and the effect of improving the safety of the electrochemical device is insignificant. On the other hand, if the shell is less than 10% by weight, formation of the core-shell structure is difficult.

또한, 코어-쉘 구조의 입자는 그 크기에 대해 특별한 제한은 없으나, 코어-쉘 구조의 형성을 위해서, 그리고 함께 사용될 수 있는 물질, 예를 들면 전극활물질, 바인더 등의 입자 크기를 고려하여, 평균 입경은 40~6000 nm, 바람직하게는 100~5000 nm 인 것이 바람직하다.In addition, the particles of the core-shell structure are not particularly limited in size, but in view of the particle size of the core-shell structure and in consideration of the particle size of the material that can be used together, for example, electrode active material, binder, etc. The particle diameter is 40 to 6000 nm, preferably 100 to 5000 nm.

본 발명에 따른 상기 코어-쉘 구조의 입자는 고분자 형성용 단량체, 승화성 물질 및 물을 혼합하여 에멀젼을 형성하는 제1단계; 및 상기 에멀젼 내 단량체를 중합하는 제2단계에 의해 제조할 수 있다. The core-shell structured particle according to the present invention comprises a first step of forming an emulsion by mixing a polymer forming monomer, a sublimable material, and water; And a second step of polymerizing the monomer in the emulsion.

이때, 상기 고분자 쉘을 이루는 단량체는 물에는 녹지 않은 것을 이용하여 제1단계의 에멀젼을 형성할 수 있다.At this time, the monomer constituting the polymer shell may form an emulsion of the first step by using the insoluble in water.

상기 에멀젼을 형성하는 제1단계에서, 유화제, 중합용 개시제 및/또는 pH 완충제를 추가로 혼합하여 에멀젼을 형성할 수 있다.In the first step of forming the emulsion, an emulsion may be formed by further mixing an emulsifier, a polymerization initiator and / or a pH buffer.

또한, 상기 제1단계에서, 별도의 유기 용매를 함께 사용할 수 있다. 상기 유기 용매는 에멀젼을 형성하기 위해 소수성를 갖는 것이 바람직하며, 중합이 완료된 후에 쉽게 제거될 수 있도록 끊는점이 60~150℃, 바람직하게는 60~120℃, 보다 바람직하게는 60~100℃인 물질을 사용할 수 있다. 유기 용매의 비제한적인 예로는 톨루엔, 헥산, 이소옥탄, 벤젠, 클로로포름, 메틸이소부티레이트 등이 있으나, 이에 한정하는 것은 아니다. 또한, 이들 유기 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In addition, in the first step, separate organic solvents may be used together. Preferably, the organic solvent has a hydrophobic property to form an emulsion, and a material having a breaking point of 60 to 150 ° C., preferably 60 to 120 ° C., more preferably 60 to 100 ° C. so as to be easily removed after the polymerization is completed. Can be used. Non-limiting examples of organic solvents include, but are not limited to, toluene, hexane, isooctane, benzene, chloroform, methylisobutyrate, and the like. In addition, these organic solvents can be used individually or in mixture of 2 or more types.

상기 유화제는 통상의 유화중합에 사용되는 음이온계 유화제, 양이온계 유화 제, 비이온계 유화제, 또는 고분자 형성용 단량체와 공중합이 가능한 반응형 유화제 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다. 유화제의 사용량은 목적하는 최종적으로 얻어지는 유화액의 입자 크기에 따라 결정되며, 유기 용매를 사용하지 않는 경우에는 고분자 형성용 단량체 100 중량부에 대하여 0.05~20 중량부를 사용할 수 있고, 유기 용매를 사용한 경우에는 고분자 형성용 단량체와 유기 용매의 합 100 중량부에 대하여 0.05~20 중량부를 사용할 수 있다.The emulsifier may be used singly or in combination of two or more kinds of anionic emulsifiers, cationic emulsifiers, nonionic emulsifiers, or reactive emulsifiers copolymerizable with monomers for forming polymers. The amount of emulsifier to be used is determined by the particle size of the final emulsion to be obtained. When not using an organic solvent, 0.05 to 20 parts by weight may be used per 100 parts by weight of the monomer for polymer formation, and when an organic solvent is used, 0.05-20 weight part can be used with respect to 100 weight part of the sum total of the monomer for forming a polymer, and an organic solvent.

상기 중합용 개시제로는 아조계 개시제, 과산화물 개시제, 산화 환원계 화합물의 조합으로 이루어지는 산화-환원계 개시제 등이 있으나, 이에 한정하지 않는다. 이외의 방법으로는 UV중합, 방사선 중합법 등을 활용할 수 있다. 상기 중합용 개시제의 사용량은 원하는 고분자의 분자량에 따라 변하지만, 고분자 형성용 단량체 100 중량부에 대해 0.01~1.0 중량부로 사용할 수 있다.Examples of the polymerization initiator include, but are not limited to, an azo initiator, a peroxide initiator, and a redox-based initiator composed of a combination of redox compounds. As another method, UV polymerization, a radiation polymerization method, etc. can be utilized. The amount of the polymerization initiator used varies depending on the molecular weight of the desired polymer, but may be used in an amount of 0.01 to 1.0 parts by weight based on 100 parts by weight of the monomer for polymer formation.

또한, 상기 pH 조절용 완충제는 인산염계, 탄산염계 등 당 업계에서 일반적으로 사용되는 통상의 완충제를 사용할 수 있으며, 그 사용량은 물 100 중량부에 대하여 0.01~1.0 중량부를 사용할 수 있다.In addition, the pH adjusting buffer may be used a conventional buffer commonly used in the art, such as phosphate-based, carbonate-based, the amount may be used 0.01 to 1.0 parts by weight based on 100 parts by weight of water.

상기 제2단계 이후에, 물을 제거하는 제3단계를 추가로 포함할 수 있다. 제1단계에서 유기 용매를 함께 사용할 경우에는, 유기 용매와 물을 제거하는 제3단계를 포함할 수 있다. 이때, 물과 유기 용매의 제거는 이들의 끓는점을 이용하여 제거할 수 있다. 상기 제거 방법의 예로는 증기 스트리핑, 감압 가열 증류 방법 등이 사용될 수 있으나 이에 한정하는 것은 아니며, 이 분야에 널리 알려진 공정 기술을 활용할 수 있다.After the second step, a third step of removing water may be further included. When using the organic solvent together in the first step, it may include a third step of removing the organic solvent and water. At this time, the water and the organic solvent can be removed using their boiling point. Examples of the removal method may include, but are not limited to, steam stripping, vacuum distillation, and the like, and may employ process techniques well known in the art.

본 발명에 따른 전해액은, i) 용매; ii) 전해질 염; 및Electrolytic solution according to the present invention, i) a solvent; ii) electrolyte salts; And

iii) 승화성 물질을 함유하는 코어; 및 상기 코어 표면에 피복된 고분자로 이루어진 쉘을 포함하는 상기 본 발명에 따른 코어-쉘 구조의 입자를 포함한다.iii) a core containing a sublimable material; And particles of the core-shell structure according to the present invention comprising a shell made of a polymer coated on the core surface.

전해액에 포함되는 용매는 통상 전해액용 용매, 바람직하게는 비수 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 환형 카보네이트, 선형 카보네이트, 락톤, 에테르, 에스테르, 케톤, 및/또는 물을 사용할 수 있다.The solvent contained in the electrolyte is not particularly limited as long as it is usually used as a solvent for electrolyte, preferably a nonaqueous solvent, and cyclic carbonate, linear carbonate, lactone, ether, ester, ketone, and / or water can be used.

상기 환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 있고, 상기 선형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 및 메틸 프로필 카보네이트(MPC) 등이 있다. 상기 락톤의 예로는 감마부티로락톤(GBL)이 있으며, 상기 에테르의 예로는 디부틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,4-디옥산, 1,2-디메톡시에탄 등이 있다. 또한 상기 에스테르의 예로는 메틸 아세테이트, 에틸 아세테이트, 메틸 프로피오네이트, 메틸 피발레이트 등이 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Examples of the linear carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC) and dipropyl carbonate. (DPC), ethylmethyl carbonate (EMC), methyl propyl carbonate (MPC), and the like. Examples of the lactone include gamma butyrolactone (GBL), and examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, and the like. There is this. In addition, examples of the ester include methyl acetate, ethyl acetate, methyl propionate, methyl pivalate, and the like, and the ketone includes polymethylvinyl ketone. These solvent can be used individually or in mixture of 2 or more types.

전해액에 포함되는 전해질 염은 리튬 염이 바람직하다. 리튬 염의 비제한적인 예로는 LiPF6, LiBF4, LiCl, LiBr, LiI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC(CF2SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiSO3CF3 등이 있다. 이들 리튬 염은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 또한, 상기 전해질 염은 용매에 대해 0.8~2.0 M 농도로 사용할 수 있다.As for the electrolyte salt contained in electrolyte solution, lithium salt is preferable. Non-limiting examples of lithium salts include LiPF 6 , LiBF 4 , LiCl, LiBr, LiI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC (CF 2 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, LiSO 3 CF 3 and the like. These lithium salts can be used individually or in mixture of 2 or more types. In addition, the electrolyte salt may be used in a concentration of 0.8 ~ 2.0 M with respect to the solvent.

본 발명의 전해액에서, 상기 iii)의 코어-쉘 구조의 입자는 전체 전해액 중에 1~30 중량%, 바람직하게는 10~20 중량% 로 포함되는 것이 바람직하다. 전해액 내에 코어-쉘 구조의 입자가 1 중량% 미만 포함되면 전기화학소자의 이상 고온 시 승화성 물질에 의한 소자의 안전성 향상 효과가 미미하고, 반면 30 중량% 초과하여 포함되면 전기화학소자의 특성이 저하되므로 바람직하지 않다.In the electrolyte solution of the present invention, the core-shell structured particle of iii) is preferably contained in 1 to 30% by weight, preferably 10 to 20% by weight in the total electrolyte. When less than 1% by weight of core-shell structured particles are included in the electrolyte, the effect of improving the safety of the device due to the sublimable material at an abnormal high temperature of the electrochemical device is insignificant. It is not preferable because it is lowered.

본 발명에 따른 전극은, i) 전극활물질; ii) 집전체; 및Electrode according to the present invention, i) an electrode active material; ii) a current collector; And

iii) 승화성 물질을 함유하는 코어; 및 상기 코어 표면에 피복된 고분자로 이루어진 쉘을 포함하는 상기 본 발명에 따른 코어-쉘 구조의 입자를 포함하며, 선택적으로 바인더를 포함할 수 있다. 상기 전극은 양극 및 음극을 포함한다.iii) a core containing a sublimable material; And particles of the core-shell structure according to the present invention including a shell made of a polymer coated on the core surface, and may optionally include a binder. The electrode includes an anode and a cathode.

전극활물질로는 양극활물질과 음극활물질이 있다.The electrode active material includes a cathode active material and a cathode active material.

양극활물질은 리튬이온과 같은 전하의 삽입 및 탈리가 가능한 활물질로서 통상 전기화학소자용, 바람직하게는 이차전지용 양극활물질로 사용되고 있는 것이면 특별히 제한하지 않으며, 리튬 전이금속산화물 또는 칼코겐 화합물을 사용할 수 있다. The positive electrode active material is an active material capable of inserting and detaching electric charges such as lithium ions, and is not particularly limited as long as it is used as a positive electrode active material for an electrochemical device, preferably a secondary battery, and a lithium transition metal oxide or a chalcogen compound can be used. .

상기 리튬 전이금속산화물의 예로는, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LiCoPO4, LiFePO4 또는 이들 산화물의 망간, 니켈, 코발트의 일부를 다른 전이금속 등으로 치환한 것 또는 리튬을 함유한 산화바나듐(LiV3O8) 등이 있다. 상기 칼코겐 화합물의 예로는, 이산화망간, 이황화티탄, 또는 이황화몰리브덴 등이 있다. 그리고, 이들 양극활물질은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Examples of the lithium transition metal oxide include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , LiMn 2- z Co z O 4 (here, 0 <Z <2), LiCoPO 4 , LiFePO 4 or a part of manganese, nickel, cobalt of these oxides substituted with another transition metal or the like or vanadium oxide containing lithium (LiV 3 O 8 ). Examples of the chalcogen compound include manganese dioxide, titanium disulfide, molybdenum disulfide, and the like. And these positive electrode active materials can be used individually or in mixture of 2 or more types.

음극활물질은 리튬이온과 같은 전하를 흡장 및 방출할 수 있는 활물질로서 통상 전기화학소자용, 바람직하게는 이차전지용 음극활물질로 사용되고 있는 것이면 특별히 제한하지 않는다. 상기 음극활물질의 예로는 탄소재, 리튬 금속 또는 이의 합금 등이 있으며, 기타 리튬을 흡장 및 방출할 수 있고, 리튬에 대한 전위가 2V 미만인 TiO2, SnO2 등과 같은 금속 산화물을 사용할 수 있다. 특히, 흑연 등의 탄소재가 바람직하다.The negative electrode active material is not particularly limited as long as it is an active material capable of absorbing and releasing charges such as lithium ions, and is generally used as a negative electrode active material for an electrochemical device, preferably a secondary battery. Examples of the negative electrode active material include a carbon material, a lithium metal, or an alloy thereof, and other metals such as TiO 2 and SnO 2 capable of occluding and releasing lithium and having a potential for lithium less than 2V. In particular, carbon materials, such as graphite, are preferable.

집전체는 전도성이 높은 금속으로, 전극활물질과 바인더 등이 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 대표적인 예로, 알루미늄, 구리, 금, 니켈 혹은 알루미늄 합금 혹은 이들의 조합에 의해서 제조되는 메쉬 (mesh), 호일 (foil)등이 있다.The current collector is a highly conductive metal, and is a metal to which an electrode active material and a binder can easily adhere, and any current collector can be used as long as it is not reactive in the voltage range of the battery. Representative examples include meshes, foils, and the like, which are manufactured by aluminum, copper, gold, nickel or an aluminum alloy or a combination thereof.

본 발명의 전극에서, 상기 iii)의 코어-쉘 구조의 입자는 전극활물질100 중량부 대비 0.1~10 중량부, 바람직하게는 2~5 중량부의 비율로 포함되는 것이 바람 직하다. 전극 내에 코어-쉘 구조의 입자가 전극활물질 100 중량부 대비 0.1 중량부 미만으로 포함되면 전기화학소자의 이상 고온 시 승화성 물질에 의한 소자의 안전성 향상 효과가 미미하고, 반면 10 중량부를 초과하여 포함되면 상대적으로 전극활물질의 양이 적어져 가역 용량이 작아지고 전극의 성능이 저하될 수 있다. In the electrode of the present invention, the particles of the core-shell structure of iii) is preferably included in a ratio of 0.1 to 10 parts by weight, preferably 2 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. When the particle of the core-shell structure is included in the electrode in less than 0.1 part by weight relative to 100 parts by weight of the electrode active material, the effect of improving the safety of the device by the sublimable material at the abnormal high temperature of the electrochemical device is insignificant, whereas it is included in excess of 10 parts by weight When the amount of the electrode active material is relatively small, the reversible capacity may be reduced and the performance of the electrode may be degraded.

본 발명의 전극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 전극활물질; 용매; 본 발명에 따른 코어-쉘 구조의 입자; 필요에 따라 바인더, 도전재, 분산제를 혼합하고 교반하여 전극용 슬러리를 제조한 후, 이를 금속 재료의 집전체에 도포하고 압축한 뒤 건조하여 전극을 제조할 수 있다. The electrode of the present invention can be prepared by conventional methods known in the art. For example, an electrode active material; menstruum; Particles of the core-shell structure according to the present invention; If necessary, a binder, a conductive material, and a dispersant may be mixed and stirred to prepare a slurry for an electrode, and then applied to a current collector of a metal material, compressed, and dried to prepare an electrode.

전극활물질에 대하여 바인더는 1~10 중량비로, 도전재는 1~30 중량비로 적절히 사용할 수 있다.With respect to the electrode active material, the binder may be suitably used in 1 to 10 weight ratio, and the conductive material in 1 to 30 weight ratio.

바인더는 전극활물질 입자들 사이 및/또는 전극활물질과 집전체 사이에 위치하여 이들을 연결 및 고정하는 접착 기능을 수행하는 것으로서, 통상 전기화학소자용, 바람직하게는 이차전지용 바인더로 사용되고 있는 것이면 특별히 제한하지 않는다. 바인더의 비제한적인 예로는 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF) 등이 있다.The binder performs the adhesive function of connecting and fixing the particles between the electrode active material particles and / or between the electrode active material and the current collector, and is not particularly limited as long as it is usually used as a binder for an electrochemical device, preferably a secondary battery. Do not. Non-limiting examples of binders include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and the like.

전극용 슬러리에 필요에 따라 포함되는 도전재는 구성된 전기화학소자 전극의 작동 전압에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙 (carbon black)을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 카본 수퍼-P (엠엠엠(MMM)사 제품)등이 있다.The conductive material included in the slurry for the electrode as needed is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the operating voltage of the configured electrochemical device electrode. In general, carbon black may be used, and products currently marketed as conductive materials include acetylene black (Chevron Chemical Company or Gulf Oil Company), Ketzen Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) and Carbon Super-P (MMM) There is this.

용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 전극활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.Examples of the solvent include organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, and dimethyl acetamide or water, and these solvents may be used alone or in combination of two or more thereof. . The amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.

전극용 슬러리를 집전체에 도포하는 방법도 특별히 제한하지 않는다. 예컨대, 닥터블레이드, 침지, 솔칠 등의 방법으로 도포할 수 있으며, 도포량도 특별히 제한하지 않지만, 용매나 분산매를 제거한 후에 형성되는 활물질 층의 두께가 보통 0.005~5㎜, 바람직하게는 0.05~2㎜ 범위가 되는 정도의 양이 바람직하다. The method of applying the slurry for the electrode to the current collector is also not particularly limited. For example, it can be applied by a method such as doctor blade, dipping, brushing, and the like, but the coating amount is not particularly limited, but the thickness of the active material layer formed after removing the solvent or the dispersion medium is usually 0.005-5 mm, preferably 0.05-2 mm. The amount of the range which becomes a range is preferable.

용매 또는 분산매를 제거하는 방법도 특별히 제한하지 않지만, 응력집중이 발생하여 활물질 층에 균열이 발생하거나, 활물질층이 집전체로부터 박리되지 않는 정도의 속도범위 내에서, 가능하면 신속하게 용매 또는 분산매가 휘발되도록 조정하여 제거하는 방법을 사용하는 것이 바람직하다. 비제한적인 예로 50~200℃의 진공오븐에서 0.5~3일 동안 건조할 수 있다.The method of removing the solvent or the dispersion medium is not particularly limited, but the solvent or the dispersion medium may be used as quickly as possible within the speed range in which stress concentration occurs and cracks occur in the active material layer or the active material layer does not peel off from the current collector. It is preferable to use a method of adjusting to remove to volatilize. As a non-limiting example it may be dried for 0.5 to 3 days in a vacuum oven at 50 ~ 200 ℃.

본 발명에 따른 세퍼레이터는, 승화성 물질을 함유하는 코어; 및 상기 코어 표면에 피복된 고분자로 이루어진 쉘을 포함하는 상기 본 발명에 따른 코어-쉘 구 조의 입자를 포함하는 것으로서, 바람직하게는 전기화학소자용 세퍼레이터, 보다 바람직하게는 이차전지용 세퍼레이터이다.The separator according to the present invention comprises: a core containing a sublimable material; And particles of the core-shell structure according to the present invention including a shell made of a polymer coated on the surface of the core, preferably a separator for an electrochemical device, and more preferably a separator for a secondary battery.

구체적으로, 본 발명에 따른 세퍼레이터는 상기 본 발명에 따른 코어-쉘 구조의 입자를 세퍼레이터의 일 구성 성분으로 하거나 또는 통상적인 세퍼레이터의 코팅 성분으로 사용하는 것이다. 이의 일례를 들면, 당 업계에 알려진 바와 같이 폴리올레핀 계열 세퍼레이터를 코어-쉘 구조의 입자 함유 코팅 용액에 함침시키거나 또는 통상적인 코팅 방법에 따라 코팅한 후, 열풍 또는 적외선 건조 등의 방법으로 건조시킴으로써 완료될 수 있다. Specifically, the separator according to the present invention is to use the core-shell structured particles according to the present invention as one component of the separator or as a coating component of a conventional separator. For example, a polyolefin-based separator may be impregnated into a particle-containing coating solution having a core-shell structure or coated according to a conventional coating method as known in the art, and then dried by a method such as hot air or infrared drying. Can be.

상기 코팅 용액은 용매, 비제한적인 예로 아세톤에 코아-쉘 구조의 입자를 투입하고 분산시켜 제조할 수 있다. The coating solution may be prepared by adding and dispersing a particle having a core-shell structure in acetone as a solvent, without limitation.

이때, 코어-쉘 구조의 입자가 도입될 수 있는 세퍼레이터는 양극과 음극의 내부 단락을 차단하고 전해액을 함침하는 역할을 하는 다공성 물질이라면 특별히 제한되지 않으며, 이의 비제한적인 예로는 폴리프로필렌계, 폴리에틸렌계, 폴리올레핀계 다공성 세퍼레이터 또는 상기 다공성 세퍼레이터에 무기물 재료가 첨가된 복합 다공성 세퍼레이터 등이 있다.In this case, the separator into which the particles of the core-shell structure can be introduced is not particularly limited as long as it is a porous material that blocks internal short circuits of the positive electrode and the negative electrode and impregnates the electrolyte, and non-limiting examples thereof include polypropylene and polyethylene. And polyolefin-based porous separators or composite porous separators in which inorganic materials are added to the porous separators.

본 발명에 따른 코어-쉘 구조의 입자는 통상적인 소자 케이스, 바람직하게는 전지용 케이스, 예컨대 캔(can) 또는 파우치(pouch) 등의 코팅 성분으로 사용할 수 있다. 일례를 들면 전지용 캔을 코어-쉘 구조의 입자 함유 코팅액에 함침시키거나 또는 통상적인 방법에 따라 코팅한 후 건조시킬 수 있다. The core-shell structured particles according to the present invention can be used as a coating component of a conventional device case, preferably a battery case such as a can or a pouch. For example, the battery can can be impregnated into a core-shell structured particle-containing coating liquid or coated and dried in a conventional manner.

이때, 코어-쉘 구조의 입자가 도입될 수 있는 소자 케이스의 형태 및 성분은 특별한 제한이 없으며, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. 또한, 코어-쉘 구조의 입자 함유 코팅액은 일례로 코어-쉘 구조의 입자를 용매에 투입하고 온도를 고정 또는 변화시키면서 분산시켜 제조될 수 있으며, 이후 분산액을 적절한 도구를 사용하여 캔의 내벽 또는 파우치의 안쪽면에 도포하고, 이후 용매 혹은 분산매를 증발시킴으로써 완료될 수 있다.At this time, the shape and components of the device case into which the particles of the core-shell structure can be introduced are not particularly limited and may be cylindrical, square, pouch or coin type using cans. In addition, the core-shell structured particle-containing coating solution may be prepared by, for example, dispersing the core-shell structured particles in a solvent and fixing or changing the temperature, and then dispersing the dispersion using an appropriate tool. It can be completed by applying to the inner side of the, and then evaporating the solvent or dispersion medium.

또한, 본 발명은 양극, 음극, 세퍼레이터 및 전해액을 포함하는 전기화학소자에 있어서, In addition, the present invention is an electrochemical device comprising an anode, a cathode, a separator and an electrolyte,

상기 양극, 음극, 세퍼레이터, 전해액, 소자 케이스 및 소자 내부의 빈 공간으로 이루어진 군으로부터 선택된 1종 이상의 소자 요소는 이의 구성 성분으로 또는 이의 코팅 성분으로 본 발명에 따른 코어-쉘 구조의 입자를 사용한 것이 특징인 전기화학소자를 제공한다.The at least one device element selected from the group consisting of the anode, the cathode, the separator, the electrolyte, the device case, and the interior space of the device uses the core-shell structured particles according to the present invention as its component or its coating component. It provides an electrochemical device characterized.

본 발명의 전기화학소자는 전기화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 일차전지, 이차전지, 연료전지, 태양전지 또는 캐퍼시터(capacitor) 등이 있다. 특히, 상기 이차전지 중 리튬금속 이차전지, 리튬이온 이차전지, 리튬폴리머 이차전지 또는 리튬이온폴리머 이차전지 등을 포함하는 리튬 이차전지가 바람직하다.The electrochemical device of the present invention includes all devices that undergo an electrochemical reaction, and specific examples thereof include all kinds of primary cells, secondary batteries, fuel cells, solar cells, or capacitors. In particular, a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery is preferable.

본 발명의 전기화학소자는 (a) 소자 내부의 압력 변화를 감지하여 소자의 충전을 중지시키거나 또는 충전 상태를 방전 상태로 전환시키는 제1 안전 수단, 또는 (b) 소자 내부의 압력 변화를 감지하여 소자 내부의 열 또는 기체를 발산시키는 제 2 안전 수단, 또는 상기 제1 안전 수단과 제2 수단 모두를 추가로 구비할 수 있다.The electrochemical device of the present invention (a) a first safety means to stop the charging of the device by sensing the pressure change inside the device or to switch the state of charge to the discharge state, or (b) to detect the pressure change inside the device Thus, a second safety means for dissipating heat or gas inside the device, or both the first safety means and the second means may be further provided.

사용 가능한 제1 안전 수단의 비제한적인 예로는 당업계에 알려진 통상적인 CID 등의 압력 감응 장치 등이 있다. 또는, 상기 (i) 압력 감응 장치; (ii) 상기 압력 감응 장치에서 전달된 전류를 전달하는 도선; 및 (iii) 상기 도선을 통해 전달되는 전류에 응답하여 소자의 충전을 중지시키거나 또는 충전 상태를 방전 상태로 전환시키는 부재를 포함할 수도 있다.Non-limiting examples of first safety means that can be used include conventional pressure sensitive devices such as CID and the like known in the art. Or (i) the pressure sensitive device; (ii) conducting wires carrying current delivered from the pressure sensitive device; And (iii) a member for stopping charging of the device or switching the charging state to a discharge state in response to a current transmitted through the conductive wire.

이때, 압력 감응 장치는 밀폐된 소자 내 압력 변화, 즉 압력 상승을 감지하고 그 자체가 전류를 차단하거나, 또는 외부나 제어 회로 쪽으로 전류를 발생시킴으로써 전기화학소자의 충전이 더 이상 진행되지 않도록 하는 장치를 지칭하는 것으로서, 안전 장치 기능과 압력 감응 장치의 기능을 모두 포함하는 일체형일 수 있으며, 또한 전술한 바와 같이 압력 감응 장치와 안전 장치가 별도로 존재할 수도 있다. 그러나 특정 압력 범위에서 전술한 작동을 수행하기만 한다면 이들의 종류나 방식 등은 특별히 제한되지 않는다. At this time, the pressure sensitive device detects the pressure change in the sealed device, that is, the pressure rise and itself blocks the current, or generates a current toward the outside or the control circuit so that the charging of the electrochemical device does not proceed any further. As referred to, it may be an integrated unit including both the safety device function and the function of the pressure sensitive device, and as described above, the pressure sensitive device and the safety device may exist separately. However, the type or manner thereof is not particularly limited as long as the above operation is performed in a specific pressure range.

상기 압력 감응 장치의 예로는 압력 변화를 감지하여 전류를 발생시키는 압전성(piezoelectricity)을 갖는 결정 등이 있다. 또한, 압력 감응 장치가 작동하는 압력 범위는 통상적인 소자 내부 압력을 벗어나고, 폭발이 발생하지 않는 범위이기만 하면 특별한 제한이 없다. Examples of the pressure sensitive device include a crystal having piezoelectricity that senses a pressure change and generates a current. In addition, the pressure range in which the pressure sensitive device operates is not particularly limited so long as it is outside the conventional device internal pressure and no explosion occurs.

또한, 제2 안전 수단은 소자 내부의 압력 변화 감지를 통해 소자 내부의 열 또는 가스를 발산시키는 기능만 한다면 특별한 제한이 없으며, 이의 비제한적인 예로는 벤트(vent) 등과 같은 압력 개방 밸브 등이 있다.Further, the second safety means is not particularly limited as long as it functions to dissipate heat or gas inside the device by detecting a pressure change inside the device, and a non-limiting example thereof includes a pressure release valve such as a vent. .

이와 같은 안전 수단을 구비하는 전기화학소자는 소자의 정상 작동 온도보다 높은 온도 또는 4.5V 이상의 전압에서 상기 코어-쉘 구조의 입자 외부로 방출되는 승화성 물질이 상변화됨으로써 발생되는 기체에 의해 증가된 소자 내부의 압력 변화를 감지하여 제1 안전 수단, 제2 안전 수단, 또는 상기 제1 안전 수단과 제2 안전 수단을 조기에 작동시켜 안전성 향상을 기할 수 있다.The electrochemical device having such safety means is increased by a gas generated by phase change of the sublimable substance released to the outside of the core-shell structure at a temperature higher than the normal operating temperature of the device or at a voltage of 4.5 V or higher. By detecting the pressure change inside the device, the first safety means, the second safety means, or the first safety means and the second safety means can be operated early to improve safety.

상기 전기화학소자는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 양극과 음극 사이에 세퍼레이터를 개재(介在)시켜 조립한 후 전해액을 주입함으로써 제조될 수 있다. 이때, 상기 전극, 세퍼레이터, 소자 케이스 중 적어도 하나는 전술한 코어-쉘 구조의 입자가 도입된 것일 수 있다.The electrochemical device may be manufactured according to a conventional method known in the art, for example, may be manufactured by injecting an electrolyte after assembling the separator between the positive electrode and the negative electrode. In this case, at least one of the electrode, the separator, and the device case may include particles of the core-shell structure described above.

이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.

(실시예 1) 코어-쉘 구조의 입자 제조 Example 1 Preparation of Particles with a Core-Shell Structure

스티렌 (Styrene) 90 중량부와 나프탈렌 10 중량부를 톨루엔 100 중량부에 혼합한 용액을 준비하였다.A solution obtained by mixing 90 parts by weight of styrene and 10 parts by weight of naphthalene in 100 parts by weight of toluene was prepared.

상기 용액에 나트륨라우릴설페이트 0.5 중량부 및 물 300 중량부를 첨가하여 혼합하였다. 이 혼합 용액을 Ika Lab.사의 Ultra Turrax T50을 이용하여 13000 rpm에서 2분간 혼합하여 조(粗)유화액을 만들었다.0.5 parts by weight of sodium lauryl sulfate and 300 parts by weight of water were added to the solution and mixed. This mixed solution was mixed for 2 minutes at 13000 rpm using Ika Lab. Ultra Turrax T50 to make a crude emulsion.

다음 단계로 Microfluidics사의 마이클로플루다이져를 이용하여 5,000 psi 에서 3회 반복하여 균질화시켜서 미니에멀젼을 제조하였다.Next, a miniemulsion was prepared by repeating and homogenizing three times at 5,000 psi using a microfluidizer from Microfluidics.

이렇게 제조된 미니에멀젼을 반응기에 넣고 밀폐시킨 다음에, 교반하면서 감압하여 반응계에 포함된 산소를 포함하는 공기를 제거하였고, 다시 질소를 넣어 상압으로 맞추었다. 이 과정을 3회 반복하여 반응계의 공기를 질소로 치환한 다음에, 과황산암모늄이 0.5 중량부 용해된 수용액 5 중량부를 상온에서 일시에 넣고 반응계의 온도를 섭씨 40도로 맞춰 5시간 동안 중합 반응을 진행하여 코어-쉘 구조의 입자를 제조하였다.The miniemulsion thus prepared was placed in a reactor and sealed, and then depressurized while stirring to remove the air containing oxygen contained in the reaction system, and nitrogen was again adjusted to normal pressure. This process was repeated three times to replace the air of the reaction system with nitrogen, and then, 5 parts by weight of an aqueous solution containing 0.5 parts by weight of ammonium persulfate dissolved at room temperature at a time, and the polymerization reaction was performed for 5 hours by adjusting the temperature of the reaction system to 40 degrees Celsius. Proceeding to prepare a core-shell structured particles.

제조된 코어-쉘 구조의 입자를 분리한 후, 감압 가열하여 제조된 입자 내부의 물과 톨루엔을 제거하여, 최종적으로 평균 입경이 약 400nm인 코어-쉘 구조의 입자를 제조하였다.After the prepared core-shell structured particles were separated, water and toluene inside the prepared particles were removed by heating under reduced pressure, thereby finally preparing a core-shell structured particle having an average particle diameter of about 400 nm.

(실시예 2) 전해액의 제조 Example 2 Preparation of Electrolytic Solution

에틸렌 카보네이트(EC): 에틸메틸카보네이트(EMC)=1: 2(v: v)의 조성을 갖는 비수 용매에 LiPF6를 1M 농도가 되도록 용해하여 혼합 용액을 준비하였고, 상기 혼합 용액 95 중량% 및 실시예 1에서 제조된 코어-쉘 구조의 입자 5 중량%를 혼합하여 전해액을 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: LiPF 6 was dissolved in a non-aqueous solvent having a composition of 2 (v: v) to a concentration of 1M to prepare a mixed solution, 95% by weight and the mixed solution 5 wt% of the particles of the core-shell structure prepared in Example 1 were mixed to prepare an electrolyte solution.

(실시예 3) 양극의 제조 Example 3 Preparation of Positive Electrode

양극활물질로 LiCoO2 92 중량%, 도전재로 아세틸렌블랙 4 중량%, 및 실시예 1에서 제조된 코어-쉘 구조의 입자 4 중량%를 혼합하고, 용매로 NMP를 넣어 혼합하 여 양극용 슬러리를 제조하였다. 그리고, 상기 양극용 슬러리를 두께가 20㎛인 Al 박막에 콤마 갭을 200㎛로 하여 균일하게 도포시켜 코팅, 건조하여 양극을 제조하였다. 이때, 도포 속도(coating speed)는 3m/min이었다.92% by weight of LiCoO 2 as a positive electrode active material, 4% by weight of acetylene black as a conductive material, and 4% by weight of particles of the core-shell structure prepared in Example 1 were mixed, and NMP was added as a solvent to mix the slurry for the positive electrode. Prepared. The positive electrode slurry was uniformly coated with a comma gap of 200 μm on an Al thin film having a thickness of 20 μm, coated, and dried to prepare a positive electrode. At this time, the coating speed (coating speed) was 3m / min.

(실시예 4) 음극의 제조 Example 4 Preparation of Anode

음극활물질로 흑연 92 중량%, 도전재로 아세틸렌블랙 4 중량%, 실시예 1에서 제조된 코어-쉘 구조의 입자 4 중량%를 혼합하고, 용매로 NMP를 넣어 혼합하여 음극용 슬러리를 제조하였다. 그리고, 상기 음극용 슬러리를 두께가 10㎛인 Cu 박막에 콤마 갭을 200㎛로 하여 균일하게 도포시켜 코팅, 건조하여 음극을 제조하였다. 이때, 도포 속도(coating speed)는 3m/min이었다.92% by weight of graphite as a negative electrode active material, 4% by weight of acetylene black as a conductive material, and 4% by weight of particles of the core-shell structure prepared in Example 1 were mixed, and NMP was added as a solvent to prepare a slurry for the negative electrode. In addition, the negative electrode slurry was uniformly coated with a comma gap of 200 μm on a Cu thin film having a thickness of 10 μm, and then coated and dried to prepare a negative electrode. At this time, the coating speed (coating speed) was 3m / min.

(실시예 5) 세퍼레이터의 제조 Example 5 Preparation of Separator

실시예 1에서 제조된 코어-쉘 구조의 입자를 용매 아세톤에 넣고 분산시켜 슬러리 코팅액을 제조하고, 이를 다공성 폴리에틸렌 필름에 균일하게 도포시켜 코팅한 후, 건조하여 세퍼레이터를 제조하였다.The slurry of the core-shell structure prepared in Example 1 was added to a solvent acetone and dispersed to prepare a slurry coating solution, which was uniformly coated on a porous polyethylene film, coated, and dried to prepare a separator.

(실시예 6) 전지의 제조 Example 6 Preparation of Battery

양극활물질로서 LiCoO2 94 중량%, 도전재로서 아세틸렌블랙 3 중량%와 바인더로서 PVDF 3 중량%를 혼합하고 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 슬러리를 제조한 후, 이를 알루미늄(Al) 집전체 상에 도포, 건조하여 양극을 제조하였다. 94% by weight of LiCoO 2 as a positive electrode active material, 3% by weight of acetylene black as a conductive material and 3% by weight of PVDF as a binder were mixed and added to NMP (N-methyl-2-pyrrolidone) to prepare a positive electrode slurry. Al) was applied and dried on the current collector to prepare a positive electrode.

음극활물질로는 인조흑연 95 중량%, 도전재로 아세틸렌블랙 2 중량%를 사용하였으며, 바인더로 PVDF 3 중량%를 NMP에 첨가하여 음극 슬러리를 제조한 후, 이 를 구리(Cu) 집전체 상에 도포, 건조하여 음극을 제조하였다.95% by weight of artificial graphite and 2% by weight of acetylene black were used as the negative electrode active material, and 3% by weight of PVDF as a binder was added to NMP to prepare a negative electrode slurry, which was then deposited on a copper (Cu) current collector. It was applied and dried to prepare a negative electrode.

세퍼레이터로는 다공성 폴리에틸렌 필름을 사용하였으며, 여기에 상기 띠 모양의 음극과 띠 모양의 양극을 적층하고 여러 번 감아 돌려서 젤리 롤(Jelly roll)을 제작하였다. 이를 외경 18mm, 높이 65mm인 전지 캔 속에 적절하게 내장되도록 길이와 폭을 조절하였다. 제작된 젤리 롤(Jelly Roll)을 전지 캔에 수납하고 전극 소자의 상하 양면에 절연판을 배치하였다. 그리고, 집전체로부터 니켈로 된 음극 리드를 도출하고 전지 캔에 용접하였으며, 양극 집전체로부터 알루미늄으로 된 양극 리드를 도출하여 전지 덮개에 장착된 알루미늄 압력 개방밸브에 용접하였고, 전해액으로 상기 실시예 2에서 제조된 전해액을 주입하여 전지를 제조하였다.As a separator, a porous polyethylene film was used, and a jelly roll was manufactured by laminating the strip-shaped cathode and the strip-shaped anode and winding it several times. The length and width were adjusted so that it was properly embedded in a battery can having an outer diameter of 18 mm and a height of 65 mm. The manufactured jelly roll was accommodated in the battery can, and the insulating plates were disposed on both upper and lower surfaces of the electrode element. Then, the negative electrode lead made of nickel was drawn from the current collector and welded to the battery can. The positive electrode lead made of aluminum was drawn from the positive electrode current collector, and welded to the aluminum pressure release valve mounted on the battery cover. The battery was prepared by injecting an electrolyte solution prepared in.

(실시예 7) 전지의 제조 Example 7 Fabrication of Battery

전해액은 에틸렌 카보네이트(EC): 에틸메틸카보네이트(EMC)=1: 2(v: v)의 조성을 갖는 비수 용매에 LiPF6를 1M 농도가 되도록 용해하여 제조한 것을 사용하였고, 양극은 실시예 3에서 제조된 양극을 사용한 것을 제외하고는, 실시예 6과 동일한 방법으로 전지를 제조하였다.The electrolyte was prepared by dissolving LiPF 6 to a concentration of 1 M in a nonaqueous solvent having an composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 (v: v), and the positive electrode was used in Example 3 A battery was manufactured in the same manner as in Example 6, except that the prepared positive electrode was used.

(실시예 8) 전지의 제조 Example 8 Fabrication of Battery

전해액은 에틸렌 카보네이트(EC): 에틸메틸카보네이트(EMC)=1: 2(v: v)의 조성을 갖는 비수 용매에 LiPF6를 1M 농도가 되도록 용해하여 제조한 것을 사용하였고, 음극은 실시예 4에서 제조된 음극을 사용한 것을 제외하고는, 실시예 6과 동일한 방법으로 전지를 제조하였다.The electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 (v: v) to a concentration of 1 M, and the negative electrode was used in Example 4 A battery was manufactured in the same manner as in Example 6, except that the prepared negative electrode was used.

(실시예 9) 전지의 제조 Example 9 Fabrication of Battery

전해액은 에틸렌 카보네이트(EC): 에틸메틸카보네이트(EMC)=1: 2(v: v)의 조성을 갖는 비수 용매에 LiPF6를 1M 농도가 되도록 용해하여 제조한 것을 사용하였고, 세퍼레이터는 실시예 5에서 제조된 세퍼레이터를 사용한 것을 제외하고는, 실시예 6과 동일한 방법으로 전지를 제조하였다.The electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 (v: v) to a concentration of 1 M, and the separator was used in Example 5 A battery was manufactured in the same manner as in Example 6, except that the prepared separator was used.

(실시예 10) 전지의 제조 Example 10 Fabrication of Battery

양극은 실시예 3에서 제조된 양극을 사용하였고, 음극은 실시예 4에서 제조된 음극을 사용하였고, 세퍼레이터는 실시예 5에서 제조된 세퍼레이터를 사용한 것을 제외하고는, 실시예 6과 동일한 방법으로 전지를 제조하였다.The positive electrode was used in the positive electrode prepared in Example 3, the negative electrode was used in the negative electrode prepared in Example 4, the separator was the battery in the same manner as in Example 6, except that the separator prepared in Example 5 Was prepared.

(비교예 1)(Comparative Example 1)

전해액은 에틸렌 카보네이트(EC): 에틸메틸카보네이트(EMC)=1: 2(v: v)의 조성을 갖는 비수 용매에 LiPF6를 1M 농도가 되도록 용해하여 제조한 것을 사용한 것을 제외하고는, 실시예 6과 동일한 방법으로 전지를 제조하였다.Example 6, except that the electrolyte solution prepared by dissolving LiPF 6 to 1M concentration in a nonaqueous solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 (v: v). In the same manner as the battery was prepared.

(실험 1: 전지의 안전성 평가)Experiment 1: Battery Safety Evaluation

실시예 6 내지 실시예 10 및 비교예 1에서 제조된 전지를 사용하여, 각각 10 V 및 1C의 조건으로 충전 테스트를 수행하였다. 실험 조건은, 4.2 V로 충전된 전지를 1C (2400mA )의 정전류로 10 V가 될 때까지 과충전한 후, 10 V의 정전압을 6 시간 동안 유지하였다. 과충전 테스트 동안에 발화 및 폭발이 없는 것을 과충전에 대한 안전성 테스트를 통과한 것으로 설정하였다. 각 실험 결과는 하기 표 1에 나타 내었다. Using the batteries prepared in Examples 6-10 and Comparative Example 1, charging tests were performed under conditions of 10 V and 1 C, respectively. Experimental conditions, the battery charged with 4.2V overcharged to 10V at a constant current of 1C (2400mA), and then maintained a constant voltage of 10V for 6 hours. The absence of ignition and explosion during the overcharge test was set as passing the safety test for overcharge. Each experimental result is shown in Table 1 below.

코어-쉘 적용Core-shell applied 과충전 결과 (Fail 전지 개수/ test 전지 개수)Overcharge Result (Fail Battery Count / Test Battery Count) 실시예 6Example 6 전해액Electrolyte Pass (0/5)Pass (0/5) 실시예 7Example 7 양극anode Pass (0/3)Pass (0/3) 실시예 8Example 8 음극cathode Pass (0/3)Pass (0/3) 실시예 9Example 9 세퍼레이터Separator Pass (0/4)Pass (0/4) 실시예 10Example 10 양극, 음극, 전해액, 및 세퍼레이터Anode, Cathode, Electrolyte, and Separator Pass (0/10)Pass (0/10) 비교예 1Comparative Example 1 적용 안 함Do not apply Fail (2/10)Fail (2/10)

상기 표 1에 의하면, 실시예 6 내지 실시예 10에서 제조된 전지는 비교예 1에서 제조된 전지에 비해 발화 및 폭발되는 빈도수가 감소하였다. 따라서, 본 발명에 따른 전지는 안전성이 향상됨을 알 수 있었다.According to Table 1, the battery prepared in Examples 6 to 10 has a reduced frequency of ignition and explosion than the battery prepared in Comparative Example 1. Therefore, the battery according to the present invention was found to improve safety.

(실험2: 전지의 초기용량, C-rate 및 사이클 특성 평가)(Experiment 2: Evaluation of initial capacity, C-rate and cycle characteristics of battery)

실시 예 6 내지 실시 예 10 및 비교예 1에서 제조된 전지의 성능을 확인하기 위하여 전지의 초기 용량 평가, C-Rate 특성 및 사이클 특성을 확인하였다.In order to confirm the performance of the batteries prepared in Examples 6 to 10 and Comparative Example 1, the initial capacity evaluation, C-Rate characteristics and cycle characteristics of the batteries were confirmed.

전지의 기준 용량을 2400 mA로 정하여 초기 용량은 0.5C (1200 mA)로 측정하였고, 충방전 영역 4.2V(vs. Li/Li+)로 정전류를 가한 후 정전압을 유지하면서 전류가 5O mA가 될 때까지 충전하고, 방전은 0.2C (480 mA)로 3V까지 정전류를 가하여 용량을 측정하였고, 그 결과를 하기 표 2에 나타내었다.Appointed the reference capacity of the battery to 2400 mA was measured as the initial capacity 0.5C (1200 mA), the electric current while maintaining a constant voltage after adding the constant current to charge and discharge zone 4.2V (vs. Li / Li + ) is a 5O mA Charge until, and the discharge was measured by applying a constant current up to 3V at 0.2C (480 mA), the results are shown in Table 2 below.

C-rate 특성은 충전은 0.5C (1200 mA)로 측정하고 방전은 1C (2400 mA), 2C (4800 mA)로 측정하여 초기용량에 대한 효율을 측정하였고, 이를 하기 표 2에 나타내었다.C-rate characteristics were measured by 0.5C (1200 mA) charge and 1C (2400 mA), 2C (4800 mA) discharge was measured the efficiency for the initial capacity, which is shown in Table 2 below.

사이클특성은 1C로 충방전을 반복한 후 300 사이클 이후 앞에서 측정한 초기 용량에 대한 효율을 측정하였고, 이를 하기 표 2에 나타내었다.Cycle characteristics were measured for efficiency of the initial capacity measured after 300 cycles after repeated charge and discharge at 1C, it is shown in Table 2 below.

스펙은 1C 효율은 95%, 2C 효율은 90%, 사이클 효율은 300회 80%이었다.Specifications were 95% for 1C, 90% for 2C, and 80% for 300 cycles.

초기 용량(mA)Initial capacity (mA) 1C (%)1C (%) 2C (%)2C (%) Cycle (%)Cycle (%) 실시예 6Example 6 24132413 9797 9292 8383 실시예 7Example 7 24192419 9696 9393 8282 실시예 8Example 8 24182418 9696 9393 8282 실시예 9Example 9 24152415 9797 9393 8484 실시예 10Example 10 24062406 9595 9191 8181 비교예 1Comparative Example 1 24232423 9797 9494 8686

상기 표 2에 의하면, 실시예 6 내지 실시예 10에서 제조된 전지는 비교예 1에서 제조된 전지와 비교하여 초기 용량, C-rate 특성 및 사이클 특성이 동일하거나 유사하였다. 따라서, 본 발명에 따른 코어-쉘 구조의 입자를 포함한 전지는 성능의 감소가 없으면서 안전성을 향상시킬 수 있음을 알 수 있었다.According to Table 2, the batteries prepared in Examples 6 to 10 had the same or similar initial capacity, C-rate characteristics and cycle characteristics as compared to the batteries prepared in Comparative Example 1. Therefore, it was found that the battery including the core-shell structured particle according to the present invention can improve safety without a decrease in performance.

본 발명에 따른 코어-쉘 구조의 입자에서 쉘은 고분자로 이루어진 것이므로, 이상 고온이나 4.5V 이상의 과충전 전압에 따른 고온 시 상기 쉘은 용융 또는 유동성을 갖게 되어 코어-쉘 구조는 붕괴되고, 코어에 함유된 승화성 물질은 외부로 방출될 수 있다. 또한, 본 발명에 따른 코어-쉘 구조의 입자를 포함하는 전해액, 전극, 세퍼레이터는 전기화학소자의 일 구성 요소로서, 이를 구비하는 전기화학소자가 이상 고온의 상태가 되면 상기 코어-쉘 구조의 입자 외부로 방출된 승화성 물질은 기체로 상변화하고, 이 과정에서 소자 내부의 열을 흡수하거나, 상변화로 발생하는 기체에 의해 안전수단이 조기 작동하여 소자의 안전성을 향상시킬 수 있다.In the core-shell structured particle according to the present invention, since the shell is made of a polymer, the shell is melted or fluidized at an abnormally high temperature or at a high temperature due to an overcharge voltage of 4.5 V or more, so that the core-shell structure is collapsed and contained in the core. The sublimable material may be released to the outside. In addition, an electrolyte, an electrode, and a separator including particles of the core-shell structure according to the present invention are one component of an electrochemical device, and when the electrochemical device including the same is in an abnormally high temperature state, the particles of the core-shell structure are present. The sublimable material released to the outside phase changes into a gas, and in this process, the safety means may be improved by absorbing heat inside the device or by operating a gas generated by the phase change.

Claims (20)

승화성 물질을 함유하는 코어(core); 및A core containing a sublimable material; And 상기 코어 표면에 피복된 고분자로 이루어진 쉘(shell)을 포함하는 코어-쉘 구조의 입자.Particles of the core-shell structure comprising a shell (shell) made of a polymer coated on the core surface. 제1항에 있어서, 상기 코어-쉘 구조의 입자를 사용하는 소자의 정상 작동 온도보다 높은 온도 또는 4.5V 이상의 전압에서 상기 승화성 물질은 코어-쉘 구조의 입자 외부로 방출되는 것이 특징인 코어-쉘 구조의 입자.The core-shell structure of claim 1, wherein the sublimable material is released outside the core-shell structure at a temperature higher than the normal operating temperature of the device using the core-shell structure or at a voltage of 4.5V or higher. Particles of shell structure. 제1항에 있어서, 상기 고분자는 상기 코어-쉘 구조의 입자를 사용하는 소자의 정상 작동 온도보다 높은 용융점(Tm)을 갖는 것이 특징인 코어-쉘 구조의 입자.The core-shell structured particle of claim 1, wherein the polymer has a melting point (Tm) higher than a normal operating temperature of a device using the core-shell structured particle. 제1항에 있어서, 상기 고분자는 용융점(Tm)이 70~200℃인 것이 특징인 코어-쉘 구조의 입자.The core-shell structured particle according to claim 1, wherein the polymer has a melting point (Tm) of 70 to 200 ° C. 제1항에 있어서, 상기 승화성 물질은 요오드, 나프탈렌, 장뇌, 드라이아이스 및 프레온으로 이루어진 군으로부터 선택된 1종 이상인 것이 특징인 코어-쉘 구조의 입자.The core-shell structured particle of claim 1, wherein the sublimable material is at least one selected from the group consisting of iodine, naphthalene, camphor, dry ice, and freon. 제1항에 있어서, 상기 고분자는 (메타)아크릴레이트계 화합물, (메타)아크릴로니트릴계 화합물, (메타)아크릴산계 화합물, (메타)아크릴아미드계 화합물, 스티렌계 화합물, 비닐리덴 클로라이드, 할로겐화 비닐계 화합물, 부타디엔계 화합물, 에틸렌계 화합물, 아세트알데히드 및 포름알데히드로 이루어진 군으로부터 선택된 1종 이상의 단량체를 사용하여 중합된 폴리머 또는 공중합체인 것이 특징인 코어-쉘 구조의 입자.The method of claim 1, wherein the polymer is a (meth) acrylate compound, (meth) acrylonitrile compound, (meth) acrylic acid compound, (meth) acrylamide compound, styrene compound, vinylidene chloride, halogenated A core-shell structured particle characterized in that it is a polymer or copolymer polymerized using at least one monomer selected from the group consisting of vinyl compounds, butadiene compounds, ethylene compounds, acetaldehyde and formaldehyde. 제1항에 있어서, 상기 코어: 쉘 = 5~90 중량%: 95~10 중량%인 것이 특징인 코어-쉘 구조의 입자.The core-shell structured particle according to claim 1, wherein the core: shell = 5 to 90% by weight: 95 to 10% by weight. 제1항에 있어서, 상기 코어-쉘 구조의 입자는 평균 입경이 40~6000 nm 인 것이 특징인 코어-쉘 구조의 입자.The core-shell structured particle of claim 1, wherein the core-shell structured particle has an average particle diameter of 40 to 6000 nm. 제1항에 있어서, 상기 코어-쉘 구조의 입자는 상기 고분자의 형성을 위한 단량체, 승화성 물질 및 물을 혼합하여 에멀젼을 형성하는 제1단계; 및 상기 에멀젼 내 단량체를 중합하는 제2단계에 의해 제조된 것이 특징인 코어-쉘 구조의 입자.The method of claim 1, wherein the core-shell structured particle comprises: a first step of forming an emulsion by mixing a monomer, a sublimable material, and water for forming the polymer; And particles produced by the second step of polymerizing the monomers in the emulsion. 제9항에 있어서, 상기 제1단계의 에멀젼은 톨루엔, 헥산, 이소옥탄, 벤젠, 클로로포름 및 메틸이소부티레이트로 이루어진 군으로부터 선택된 1종 이상의 유기 용매를 함께 사용하여 형성된 것이 특징인 코어-쉘 구조의 입자.10. The core-shell structured particle of claim 9, wherein the emulsion of the first step is formed using at least one organic solvent selected from the group consisting of toluene, hexane, isooctane, benzene, chloroform and methylisobutyrate. . 제9항에 있어서, 상기 제1단계의 에멀젼은 유화제 및 중합용 개시제를 추가로 혼합하여 형성된 것이 특징인 코어-쉘 구조의 입자.The core-shell structured particle of claim 9, wherein the emulsion of the first step is formed by further mixing an emulsifier and an initiator for polymerization. i) 용매;i) solvent; ii) 전해질 염; 및ii) electrolyte salts; And iii) 제1항 내지 제11항 중 어느 한 항의 코어-쉘 구조의 입자를 포함하는 전해액.iii) Electrolyte solution containing the particle | grains of the core-shell structure of any one of Claims 1-11. 제12항에 있어서, 상기 iii) 제1항 내지 제11항 중 어느 한 항의 코어-쉘 구조의 입자는 전체 전해액 중에 1~30 중량% 로 포함된 것이 특징인 전해액.The electrolyte according to claim 12, wherein the particles of the core-shell structure of any one of iii) 1 to 11 are included in an amount of 1 to 30 wt% in the total electrolyte. i) 전극활물질; i) an electrode active material; ii) 집전체; 및ii) a current collector; And iii) 제1항 내지 제11항 중 어느 한 항의 코어-쉘 구조의 입자를 포함하는 전극.iii) An electrode comprising particles of the core-shell structure of any one of claims 1-11. 제14항에 있어서, 상기 iii) 제1항 내지 제11항 중 어느 한 항의 코어-쉘 구조의 입자는 전극활물질 100 중량부 대비 0.1~10 중량부 비율로 포함된 것이 특징인 전극.The electrode of claim 14, wherein the particles of the core-shell structure of any one of claims 1 to 11 are included in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. 제1항 내지 제11항 중 어느 한 항의 코어-쉘 구조의 입자를 포함하는 세퍼레이터.A separator comprising the core-shell structured particle of claim 1. 양극, 음극, 세퍼레이터 및 전해액을 포함하는 전기화학소자에 있어서,In the electrochemical device comprising a positive electrode, a negative electrode, a separator and an electrolyte solution, 양극, 음극, 세퍼레이터, 전해액, 소자 케이스 및 소자 내부의 빈 공간으로 이루어진 군으로부터 선택된 1종 이상의 소자 요소는 이의 구성 성분 또는 이의 코팅 성분으로 제1항 내지 제11항 중 어느 한 항의 코어-쉘 구조의 입자를 사용한 것이 특징인 전기화학소자.The core-shell structure according to any one of claims 1 to 11, wherein the at least one device element selected from the group consisting of an anode, a cathode, a separator, an electrolyte, a device case, and an empty space inside the device is a component thereof or a coating component thereof. Electrochemical device characterized in that the use of particles. 제17항에 있어서, 상기 전기화학소자는 이차전지인 것이 특징인 전기화학소자.18. The electrochemical device of claim 17, wherein the electrochemical device is a secondary battery. 제17항에 있어서, 상기 전기화학소자는 (a) 소자 내부의 압력 변화를 감지하여 소자의 충전을 중지시키거나 또는 충전 상태를 방전 상태로 전환시키는 제1 안전 수단, 또는 (b) 소자 내부의 압력 변화를 감지하여 소자 내부의 열 또는 기체를 발산시키는 제2 안전 수단, 또는 상기 제1 안전 수단과 제2 수단 모두를 추가로 구비하는 것이 특징인 전기화학소자.18. The device of claim 17, wherein the electrochemical device comprises: (a) first safety means for sensing a change in pressure inside the device to stop charging the device or to switch the charging state to a discharged state, or (b) And a second safety means for detecting a pressure change and dissipating heat or gas inside the device, or both the first safety means and the second means. 제19항에 있어서, 상기 전기화학소자는 소자의 정상 작동 온도보다 높은 온 도 또는 4.5V 이상의 전압에서 상기 코어-쉘 구조의 입자 외부로 방출되는 승화성 물질이 상변화됨으로써 발생되는 기체에 의해 증가된 소자 내부의 압력 변화를 감지하여 제1 안전 수단, 제2 안전 수단, 또는 상기 제1 안전 수단과 제2 안전 수단이 모두 작동되는 것이 특징인 전기화학소자.20. The method of claim 19, wherein the electrochemical device is increased by a gas generated by a phase change of a sublimable material released to the outside of the core-shell structure at a temperature higher than the normal operating temperature of the device or at a voltage of 4.5V or higher. Electrochemical device characterized in that the first safety means, the second safety means, or both the first safety means and the second safety means is activated by detecting a change in the pressure inside the device.
KR1020060103963A 2006-10-25 2006-10-25 Electrochemical device with high safety at high temperature KR20080037213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060103963A KR20080037213A (en) 2006-10-25 2006-10-25 Electrochemical device with high safety at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060103963A KR20080037213A (en) 2006-10-25 2006-10-25 Electrochemical device with high safety at high temperature

Publications (1)

Publication Number Publication Date
KR20080037213A true KR20080037213A (en) 2008-04-30

Family

ID=39575246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060103963A KR20080037213A (en) 2006-10-25 2006-10-25 Electrochemical device with high safety at high temperature

Country Status (1)

Country Link
KR (1) KR20080037213A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535826B2 (en) 2010-10-28 2013-09-17 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2015012625A1 (en) * 2013-07-26 2015-01-29 주식회사 엘지화학 Cross-linked compound particles and secondary battery comprising same
KR20160128290A (en) * 2014-03-03 2016-11-07 제온 코포레이션 Secondary cell binder composition
KR20160129832A (en) * 2014-03-03 2016-11-09 제온 코포레이션 Binder composition for secondary cell
CN112366351A (en) * 2020-10-16 2021-02-12 山东海科创新研究院有限公司 Lithium-supplementing slow-release capsule, electrolyte thereof and lithium ion battery
WO2021256763A1 (en) * 2020-06-17 2021-12-23 주식회사 엘지에너지솔루션 Capsule for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same
WO2022055217A1 (en) * 2020-09-10 2022-03-17 주식회사 엘지에너지솔루션 Capsule for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535826B2 (en) 2010-10-28 2013-09-17 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2015012625A1 (en) * 2013-07-26 2015-01-29 주식회사 엘지화학 Cross-linked compound particles and secondary battery comprising same
KR20150013088A (en) * 2013-07-26 2015-02-04 주식회사 엘지화학 Cross linked Compound Particle and Secondary Battery Comprising the Same
US10217983B2 (en) 2013-07-26 2019-02-26 Lg Chem, Ltd. Cross-linked compound particle and secondary battery including the same
KR20160128290A (en) * 2014-03-03 2016-11-07 제온 코포레이션 Secondary cell binder composition
KR20160129832A (en) * 2014-03-03 2016-11-09 제온 코포레이션 Binder composition for secondary cell
WO2021256763A1 (en) * 2020-06-17 2021-12-23 주식회사 엘지에너지솔루션 Capsule for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same
WO2022055217A1 (en) * 2020-09-10 2022-03-17 주식회사 엘지에너지솔루션 Capsule for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same
CN112366351A (en) * 2020-10-16 2021-02-12 山东海科创新研究院有限公司 Lithium-supplementing slow-release capsule, electrolyte thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
US9362592B2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
JP4196373B2 (en) Nonaqueous electrolyte secondary battery
US8062789B2 (en) Lithium secondary battery
CN110785886B (en) Lithium secondary battery
CN101490877B (en) Lithium-ion secondary battery
CN101276895B (en) Composition for lithium ion secondary battery porous diaphragm layer and lithium ion secondary battery
KR20110000697A (en) Lithium-ion secondary battery
KR100854239B1 (en) Electrochemical device with high safety at high temperature
KR20150034825A (en) Separator for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2013219047A (en) Lithium secondary battery, and short circuit resistance control method thereof
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
KR102020844B1 (en) Binder material, method for preparing same, and secondary battery or capacitor comprising the same
KR20080037213A (en) Electrochemical device with high safety at high temperature
KR100838986B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR102415542B1 (en) Cathode active material slurry for solid electrolyte battery and cathode for solid electrolyte battery prepared therefrom
KR101960924B1 (en) Binder material, method for preparing same, and secondary battery or capacitor comprising the same
WO2015133424A1 (en) Secondary cell binder composition
KR101288642B1 (en) Electrochemical device with high safety at high temperature and impact
KR101811328B1 (en) A separator and an electrochemical battery comprising the separator
KR20080008138A (en) Electrochemical device with excellent safety at high temperature
KR20100121586A (en) Electrochemical device with excellent safety at high temperature
KR101154481B1 (en) Binder composition for battery electrode and lithium secondary comprising the same
JP2002033132A (en) Nonaqueous secondary battery
JP2018166054A (en) Positive electrode and lithium ion secondary battery using the same
KR101773364B1 (en) A separator and an electrochemical battery comprising the separator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20100715

Effective date: 20120423