KR20080021901A - Battery reset operating method travelled hybrid vehicle - Google Patents

Battery reset operating method travelled hybrid vehicle Download PDF

Info

Publication number
KR20080021901A
KR20080021901A KR1020060085070A KR20060085070A KR20080021901A KR 20080021901 A KR20080021901 A KR 20080021901A KR 1020060085070 A KR1020060085070 A KR 1020060085070A KR 20060085070 A KR20060085070 A KR 20060085070A KR 20080021901 A KR20080021901 A KR 20080021901A
Authority
KR
South Korea
Prior art keywords
battery
soc
voltage
current
hybrid vehicle
Prior art date
Application number
KR1020060085070A
Other languages
Korean (ko)
Other versions
KR100836361B1 (en
Inventor
강승원
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060085070A priority Critical patent/KR100836361B1/en
Publication of KR20080021901A publication Critical patent/KR20080021901A/en
Application granted granted Critical
Publication of KR100836361B1 publication Critical patent/KR100836361B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

A battery reset operating method during traveling of a hybrid vehicle is provided to always manage an exact SOC(State Of Charge) by removing an error of the SOC due to a cumulative current estimation error of a battery. A battery reset operating method during traveling of a hybrid vehicle includes the steps of: determining whether battery voltage is larger than limit voltage when the vehicle travels through a BMS(Battery Management System)(3) in a generation mode; performing constant-voltage charge for a battery(2) with predetermined voltage for a predetermined time when the battery voltage is larger than the limit voltage and an erroneous operation of a generation unit system(1) does not occur; determining a size of input current when performing the constant-voltage charge for the battery; resetting an SOC according to a size of the set input current when a predetermined current value for charging the battery is larger than the input current of the battery; and converting into a generation amount control mode after resetting the SOC of the battery.

Description

하이브리드 차량의 주행 중 배터리 초기화 방법{Battery reset operating method travelled hybrid vehicle}Battery reset method while driving hybrid vehicle {Battery reset operating method traveled hybrid vehicle}

도 1은 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법을 적용한 블록 구성도1 is a block diagram illustrating a method of initializing a battery while driving a hybrid vehicle according to the present invention.

도 2는 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법 흐름도2 is a flowchart illustrating a method for initializing a battery while driving a hybrid vehicle according to the present invention.

도 3은 본 발명에 따른 배터리의 정전압 충전 시 시간에 따른 배터리 수입전류 선도3 is a battery import current diagram according to time during constant voltage charging of a battery according to the present invention

<도면의 주요부분에 대한 부호의 설명>    <Description of the symbols for the main parts of the drawings>

1 : 발전부시스템 2 : 배터리1: Generation unit system 2: Battery

3 : BMS 4 : SOC 오차검출부3: BMS 4: SOC error detection unit

5 : 정전압충전부 6 : SOC 리세트부5: constant voltage charging part 6: SOC reset part

본 발명은 하이브리드 차량의 배터리에 관한 것으로, 보다 상세하게는 차량 의 주행 중 배터리를 초기화(Reset)하는 방법에 관한 것이다.The present invention relates to a battery of a hybrid vehicle, and more particularly, to a method for resetting the battery while driving the vehicle.

일반적으로 내연기관 자동차에 의한 대기 오염을 줄이기 위한 환경 친화적인 하이브리드(Hybrid) 자동차는 내연기관인 엔진과 전기 모터를 사용하는 방식으로, 각각의 주행상황에 대응하여 내연기관의 연비가 가장 높게 운전되도록 제어되고 제동 시와 감속 시에 모터가 발전기로 작동하여 회생 제동 에너지를 전기 에너지로 회수하여 배터리를 충전시켜, 가솔린 엔진에 비해 연비 향상을 이룰 수 있으며 시내 구간에서 엔진을 작동하지 않은 상태에서 배터리의 전압만으로 주행할 수 있게 된다.In general, an environmentally friendly hybrid vehicle for reducing air pollution by an internal combustion engine vehicle uses an engine and an electric motor, which are internal combustion engines, so that the fuel economy of the internal combustion engine is driven to the highest in response to each driving situation. When braking and decelerating, the motor operates as a generator to recover the regenerative braking energy as electrical energy to charge the battery, resulting in improved fuel economy compared to gasoline engines. You can drive alone.

이와 같이, 하이브리드 차량에 있어 배터리는 차량을 구동시키는 구동모터가 소모하는 파워와 더불어 배터리의 충전 상태에 따라 발전량을 결정하는 주요한 요소로소, 이때 발전량은 통상적으로 발전량을 결정하는 GCU(Generator Control Unit)가 BMS(Battery Management System)와 MCU(Motor Control Unit)에서 정보를 받아 결정하게 됨은 물론이다.As described above, in a hybrid vehicle, a battery is a major factor that determines the amount of power generated according to the state of charge of the battery together with the power consumed by the driving motor for driving the vehicle. ) Is determined by receiving information from the battery management system (BMS) and the motor control unit (MCU).

이때, BMS의 주요기능은 배터리의 SOC(State Of Charge) 예측과 만(Full) 충전 감지, 각 셀 모듈간 전압의 균형 유지, 배터리의 SOC에 따른 최대 충전 및 방전 전압의 제어, 안전 관리 및 냉각 제어 등을 수행하게 되며, 이는 차량의 품질을 결정하는 주요한 부품인 배터리 수명의 조기 단축을 방지하면서 차량 제어수단이 총합제어를 수행할 때 배터리의 SOC 정보를 참조할 수 있도록 하게 된다.At this time, the main functions of the BMS are to predict the state of charge (SOC) of the battery and to detect the full charge, to balance the voltage between each cell module, to control the maximum charge and discharge voltage according to the SOC of the battery, safety management and cooling The control is performed, which prevents early shortening of the battery life, which is a major component for determining the quality of the vehicle, and allows the vehicle control means to refer to the SOC information of the battery when performing the total control.

여기서, 배터리의 SOC(State Of Charge)에 대한 정확한 산출이 매우 중요한데 이는, 일반적으로 배터리는 일정한 주기마다 만 충전이 수행되지 않고, 일정한 SOC 영역에서 지속적인 사용이 요구되는 특성에 따르는데, 이로 인해 여러 요인으로 인하여 배터리의 SOC의 동작 범위를 초과하는 경우에는, 배터리의 수명 단축과 차량 에너지 효율 감소뿐만 아니라 시스템 동작 전압을 초과하는 경우가 발생하는 현상이 있게 된다.In this case, accurate calculation of the state of charge (SOC) of the battery is very important. In general, the battery is not charged only at regular cycles, but is required to be continuously used in a constant SOC region. If the SOC exceeds the operating range of the SOC due to the factor, there is a phenomenon that the system operating voltage is exceeded as well as shortening the battery life and reducing the vehicle energy efficiency.

이에 따라, 배터리의 SOC의 정확한 추정을 위한 산출이 매우 중요하지만, 통상적으로 전류 적산을 통한 배터리 SOC를 추정하는 방식을 통하는 경우 여러 요인 예를 들어, 전류 센서에서 검출되는 아날로그 신호를 디지털 신호로 변환하는 과정을 통한 전류량의 누적 오차와, 배터리의 내부 저항에 의한 자가 방전과 배터리 온도 효율에 의한 영향에 따른 오차가 발생될 수밖에 없으며, 이에 따라 배터리의 SOC 산출 시 발생되는 오차로 인해 배터리 상태를 반영한 정확한 산출 값을 결정하기가 용이하지 않은 한계가 있게 된다.Accordingly, the calculation for accurate estimation of the SOC of the battery is very important, but in general through the method of estimating the battery SOC through the integration of current, a number of factors, for example, convert the analog signal detected by the current sensor into a digital signal Accumulation error of the amount of current through the process, and due to the effect of the self-discharge due to the internal resistance of the battery and the effect of the temperature efficiency of the battery will be generated, thereby reflecting the battery state due to the error generated when calculating the SOC of the battery There is a limit that is not easy to determine the correct calculation value.

이에 본 발명은 상기와 같은 점을 감안하여 발명된 것으로, 배터리의 실제적인 SOC와 전류 적산에 따른 SOC 간 오차를 없애도록 주행 중에도 배터리를 초기화(Reset)시켜, 주행중 일 때 수행하는 배터리의 초기화에 따라 SOC의 정확한 산출값을 통하여 안정적인 발전량 제어는 물론 배터리의 과 전압 등에 따른 제반 문제를 해소함에 그 목적이 있다.Accordingly, the present invention has been invented in view of the above, and resets the battery even while driving so as to eliminate an error between the SOC of the battery and the SOC due to current integration. Therefore, the purpose is to solve the problems caused by overvoltage of the battery as well as stable power generation control through the accurate calculation value of SOC.

상기와 같은 목적을 달성하기 위한 본 발명은, 하이브리드 차량의 주행 중 배터리 초기화 방법이 The present invention for achieving the above object, the battery initialization method of the hybrid vehicle driving

BMS(3)를 통해 차량이 발전모드로 주행 중일 때 배터리 전압이 제한 전압보다 큰 값인지 여부를 판단하는 단계;Determining whether the battery voltage is greater than the limit voltage when the vehicle is driving in the power generation mode through the BMS 3;

배터리 전압이 제한 전압보다 큰 값일 때 발전부시스템(1)의 오동작이 발생하지 않는 경우, 일정 전압과 일정 시간동안 배터리(2)에 대한 정전압 충전을 수행하는 단계;If the malfunction of the power generation unit system 1 does not occur when the battery voltage is greater than the limit voltage, performing constant voltage charging of the battery 2 for a predetermined voltage and for a predetermined time;

배터리(2)의 정전압 충전 시 배터리 수입전류의 크기를 판단하는 단계;Determining the magnitude of the battery import current during constant voltage charging of the battery 2;

배터리를 충전시키는 일정 전류 값이 배터리의 수입전류 보다 큰 경우는 설정된 수입 전류의 크기에 따른 SOC를 초기화(Reset)를 수행하는 단계;If the predetermined current value for charging the battery is greater than the imported current of the battery, performing a reset of the SOC according to the set amount of the imported current;

배터리의 SOC를 초기화(Reset)후 발전량 제어 모드로 전환되는 단계;Resetting the SOC of the battery to a power generation amount control mode;

로 수행되는 것을 특징으로 한다.Characterized in that performed.

이하 본 발명의 실시예를 첨부된 예시도면을 참조로 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법을 적용한 블록 구성도이고, 도 2는 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법 흐름도를 도시한 것으로, 본 발명의 배터리 충전은 발전부시스템(1)에서 배터리(2)로 이어지는 회로 상에 BMS(3)가, 배터리(2)의 설정된 SOC(State of Charge)에 대한 오차 정도를 검출하는 SOC 오차검출부(4)와, 상기 SOC 오차검출부(4)를 통한 신호에 따라 배터리(2)를 충전하는 절차를 수행하는 정전압충전부(5) 및 상기 SOC 오차검출부(4)를 통한 신호에 따라 주행중인 차량의 배터리(2)의 SOC 상태를 초기화하는 SOC 리세트부(6)로 구성되어진다.1 is a block diagram illustrating a method of initializing a battery while driving a hybrid vehicle according to the present invention, and FIG. 2 is a flowchart illustrating a method of initializing a battery while driving a hybrid vehicle according to the present invention. On the circuit leading from the sub-system 1 to the battery 2, the BMS 3 detects the degree of error with respect to the set state of charge (SOC) of the battery 2, and the SOC error detection unit 4, and the SOC SOC state of the battery 2 of the driving vehicle according to the signal through the constant voltage charging section 5 and the SOC error detection section 4 performing the procedure of charging the battery 2 in accordance with the signal through the error detector (4) It consists of the SOC reset part 6 which initializes.

이때, 상기 SOC 오차검출부(4)는 전류 적산에 의한 연산과정에서 누적되는 SOC 오차와, 배터리의 실제적인 잔존 SOC 간에 발생되는 차이를 검출하게 된다. At this time, the SOC error detection unit 4 detects a difference generated between the SOC error accumulated in the calculation process by the current integration and the actual remaining SOC of the battery.

여기서, 상기 배터리의 실제적인 잔존 SOC는 차량에서 직접 검출하기 어려우므로, 배터리 충전 시 발생하는 과 전압을 통해 SOC를 검출하게 됨은 물론이다.Here, since the actual remaining SOC of the battery is difficult to detect directly in the vehicle, the SOC is detected through the overvoltage generated when the battery is charged.

이와 같은 BMS(3)의 회로 구성에 따라 배터리의 SOC를 항상 오차 범위내로 유지하게 되는데, 즉 도 2에 도시된 바와 같이 차량이 발전모드로 주행 중일 때 BMS(3)는 배터리 전압이 제한 전압보다 큰 값인지 여부를 판단하게 된다.According to the circuit configuration of the BMS 3, the SOC of the battery is always maintained within an error range, that is, as shown in FIG. 2, when the vehicle is driving in the power generation mode, the BMS 3 has a battery voltage higher than the limit voltage. It is determined whether or not it is a large value.

이어, 배터리 전압이 제한 전압보다 큰 값으로 판단된 경우 통상적으로, 배터리 과 전압은 차량 발전부시스템(1)의 오 동작과 SOC의 연산 오차에 따른 적산을 통해 발생되므로, 발전부시스템(1)에 대한 고장 진단을 수행해 고장여부를 판별하게 된다.Subsequently, when the battery voltage is determined to be greater than the limit voltage, the battery and voltage are typically generated through the integration of the malfunction of the vehicle power generation unit system 1 and the calculation error of the SOC. Fault diagnosis is performed to determine whether there is a fault.

이후, 발전부시스템(1)의 오동작에 따른 고장인 경우, 차량의 제어기간 통신을 통해 실시간 오동작 유무를 진단하면서 정상화 조치를 수행해 다시 발전 모드로 전환하게 되는 반면, 상기 발전부시스템(1)이 정상적인 경우는 배터리 전압이 제한 전압보다 큰 값인 SOC 오차 상황에 따라, BMS(3)는 정전압충전부(5)를 통해 일정 전압과 일정 시간동안 배터리(2)에 대한 정전압 충전을 수행하게 된다.Subsequently, in the case of a failure due to a malfunction of the power generation unit system 1, the control unit communicates with the vehicle during the control period, and performs normalization while switching to the power generation mode while performing the normalization action. Normally, according to the SOC error situation in which the battery voltage is greater than the limit voltage, the BMS 3 performs the constant voltage charging of the battery 2 for a predetermined voltage and for a predetermined time through the constant voltage charger 5.

이때, 일정 전압이란 배터리 제조사에서 권고하는 과 전압이 발생되지 않는 충전 전압이며, 일정 시간이란 정 전압 충전 시 배터리 수입 전류의 과도한 변화가 발생하지 않는 충전시간을 의미한다.In this case, the constant voltage is a charging voltage that does not generate an overvoltage recommended by the battery manufacturer, and the constant time refers to a charging time in which an excessive change of the battery import current does not occur during constant voltage charging.

이어, 배터리(2)의 정전압 충전 시 일정 전류가 배터리 수입전류보다 큰지 여부를 판단하게 되는데, 이때 일정 전류는 연산 SOC의 초기화를 설정하는 배터리의 수입전류를 의미하며, 이와 같은 수입전류는 도 3에 도시된 바와 같이 배터리의 초기 SOC 값이 서로 다른 상태에서 정전압 충전을 수행할 경우, 정 전압 충전이 일정 시간 경과됨에 따라 배터리의 충전 수입 전류가 점진적으로 줄어들면서 0(영)A로 수렴하게 되는 특징을 갖게 된다.Subsequently, it is determined whether the constant current is greater than the battery import current when the battery 2 is charged at a constant voltage. In this case, the constant current refers to the import current of the battery that sets the initialization of the calculation SOC. As shown in FIG. 2, when constant voltage charging is performed in a state where the initial SOC value of the battery is different, the charging import current of the battery gradually decreases as the constant voltage charging elapses and converges to 0 (zero) A. It has characteristics.

이후, 정전압 충전에 따른 일정 전류가 배터리의 수입전류 보다 큰 경우는 수입 전류의 크기에 따라 SOC를 초기화(Reset)하게 되는데 즉, 수입전류가 20A일 때 초기 SOC는 90%이며, 수입전류가 10A일 때 초기 SOC는 95%이고, 수입전류가 0(영)A일 때 초기 SOC는 100%로 산정되어진다. After that, when the constant current according to the constant voltage charging is larger than the import current of the battery, the SOC is reset according to the magnitude of the import current. That is, when the import current is 20A, the initial SOC is 90%, and the import current is 10A. The initial SOC is 95% when, and the initial SOC is calculated as 100% when the import current is 0 (zero) A.

이와 같이, 수입전류에 따라 산출되는 SOC 값을 결정하여 즉, 수입전류가 20A나 10A 또는 0(영)A중 하나를 선택해 배터리의 SOC를 초기화(Reset)시킨 후, 이어 발전량 제어 모드로 전환되면서 반복적인 SOC 초기화 과정을 수행하게 된다.In this way, the SOC value calculated according to the imported current is determined, that is, the imported current selects one of 20A, 10A, or 0 (zero) A to reset the SOC of the battery, and then enters the power generation control mode. Iterative SOC initialization process is performed.

이상 설명한 바와 같이 본 발명에 의하면, 배터리 충전을 위한 수입 전류의 수렴 전류 특성을 이용하여, 정전압 충전 시 수입전류의 특정 값을 SOC 초기화 기준 값으로 정하게 됨에 따라 배터리의 전류 적산 오차의 누적에 따른 SOC의 오차를 제거해, 항상 정확한 SOC 상태를 관리할 수 있는 효과가 있게 된다.As described above, according to the present invention, a specific value of the import current is determined as the SOC initialization reference value during constant voltage charging by using the convergence current characteristic of the import current for charging the battery. By eliminating the error, it is possible to always manage the accurate SOC state.

Claims (2)

BMS(3)를 통해 차량이 발전모드로 주행 중일 때 배터리 전압이 제한 전압보다 큰 값인지 여부를 판단하는 단계;Determining whether the battery voltage is greater than the limit voltage when the vehicle is driving in the power generation mode through the BMS 3; 배터리 전압이 제한 전압보다 큰 값일 때 발전부시스템(1)의 오동작이 발생하지 않는 경우, 일정 전압과 일정 시간동안 배터리(2)에 대한 정전압 충전을 수행하는 단계;If the malfunction of the power generation unit system 1 does not occur when the battery voltage is greater than the limit voltage, performing constant voltage charging of the battery 2 for a predetermined voltage and for a predetermined time; 배터리(2)의 정전압 충전 시 배터리 수입전류의 크기를 판단하는 단계;Determining the magnitude of the battery import current during constant voltage charging of the battery 2; 배터리를 충전시키는 일정 전류 값이 배터리의 수입전류 보다 큰 경우는 설정된 수입 전류의 크기에 따른 SOC를 초기화(Reset)를 수행하는 단계;If the predetermined current value for charging the battery is greater than the imported current of the battery, performing a reset of the SOC according to the set amount of the imported current; 배터리의 SOC를 초기화(Reset)후 발전량 제어 모드로 전환되는 단계;Resetting the SOC of the battery to a power generation amount control mode; 로 수행되는 하이브리드 차량의 주행 중 배터리 초기화 방법.How to initialize the battery during driving of the hybrid vehicle performed by. 청구항 1에 있어서, 상기 SOC를 초기화 기준인 수입전류는 20A(90% SOC)나, 10A(95% SOC)나, 0(영)A(100% SOC)중 선택되어지는 것을 특징으로하는 하이브리드 차량의 주행 중 배터리 초기화 방법.The hybrid vehicle according to claim 1, wherein the imported current for initializing the SOC is selected from 20A (90% SOC), 10A (95% SOC), and 0 (zero) A (100% SOC). How to reset the battery while driving.
KR1020060085070A 2006-09-05 2006-09-05 Battery reset operating method travelled hybrid vehicle KR100836361B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060085070A KR100836361B1 (en) 2006-09-05 2006-09-05 Battery reset operating method travelled hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060085070A KR100836361B1 (en) 2006-09-05 2006-09-05 Battery reset operating method travelled hybrid vehicle

Publications (2)

Publication Number Publication Date
KR20080021901A true KR20080021901A (en) 2008-03-10
KR100836361B1 KR100836361B1 (en) 2008-06-09

Family

ID=39396080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060085070A KR100836361B1 (en) 2006-09-05 2006-09-05 Battery reset operating method travelled hybrid vehicle

Country Status (1)

Country Link
KR (1) KR100836361B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115122931A (en) * 2022-06-21 2022-09-30 中国第一汽车股份有限公司 Battery power supplementing method and device and computer readable storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412688B1 (en) * 2001-12-18 2003-12-31 현대자동차주식회사 Method for battery state of charge reset in hybrid electric vehicle
JP2004222433A (en) 2003-01-16 2004-08-05 Hitachi Unisia Automotive Ltd Control device of hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115122931A (en) * 2022-06-21 2022-09-30 中国第一汽车股份有限公司 Battery power supplementing method and device and computer readable storage medium

Also Published As

Publication number Publication date
KR100836361B1 (en) 2008-06-09

Similar Documents

Publication Publication Date Title
JP4116609B2 (en) Power supply control device, electric vehicle and battery control unit
US7800345B2 (en) Battery management system and method of operating same
KR101223735B1 (en) Battery management system and control method thereof
JP5294448B2 (en) Estimating remaining battery capacity
RU2564102C1 (en) Control device and control method for anhydrous accumulator battery
KR101498760B1 (en) Apparatus and method of estimating state of charging for battery, and battery management system using the same
US20110198920A1 (en) Vehicle power supply apparatus
US8674659B2 (en) Charge control device and vehicle equipped with the same
CN107852002B (en) Method and system for balancing battery pack
CN108016303B (en) Apparatus and method for controlling charging of battery of hybrid vehicle
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP5105031B2 (en) Power storage system
JP2008099538A (en) Vehicle battery managing system
JP6250164B2 (en) Method and apparatus for balancing an energy storage system
WO2008053969A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
CN101141016A (en) Battery management system and method
US20150346283A1 (en) Apparatus and method for calculating precharge resistance of battery pack
KR20160080380A (en) Apparatus and method of measuring for a state of charge of a battery
KR101610927B1 (en) Apparatus and method for battery cell balancing
JP6186248B2 (en) Inverter abnormality determination device
US8030894B2 (en) System and method for rebalancing a vehicle battery
KR101474401B1 (en) Apparatus and method for estimating battery state and battery pack using it
JP5556902B2 (en) Power supply system, vehicle equipped with the same, and method for controlling power storage device
KR100906872B1 (en) Method for battery performance improvement and SOC reset of HEV
KR101630409B1 (en) Apparatus and method for estimating battery state and battery pack using it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140529

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee