KR20080001165A - Method for forming thin film in semiconductor device - Google Patents

Method for forming thin film in semiconductor device Download PDF

Info

Publication number
KR20080001165A
KR20080001165A KR1020060059322A KR20060059322A KR20080001165A KR 20080001165 A KR20080001165 A KR 20080001165A KR 1020060059322 A KR1020060059322 A KR 1020060059322A KR 20060059322 A KR20060059322 A KR 20060059322A KR 20080001165 A KR20080001165 A KR 20080001165A
Authority
KR
South Korea
Prior art keywords
semiconductor device
thin film
ruthenium
precursor
film forming
Prior art date
Application number
KR1020060059322A
Other languages
Korean (ko)
Other versions
KR100799110B1 (en
Inventor
김진혁
염승진
이기정
송한상
길덕신
노재성
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020060059322A priority Critical patent/KR100799110B1/en
Publication of KR20080001165A publication Critical patent/KR20080001165A/en
Application granted granted Critical
Publication of KR100799110B1 publication Critical patent/KR100799110B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method for forming a thin film of a semiconductor device is provided to improve leakage current and breakdown voltage characteristics by securing a deposition speed. A method for forming a thin film of a semiconductor device includes a process for implanting simultaneously a precursor and a reaction gas and a process for performing a purge operation. A structure material of a semiconductor device is deposited by performing repeatedly performing the implantation process and the purge process. The precursor is formed with a ruthenium layer or a ruthenium precursor for forming a ruthenium oxide layer. The ruthenium precursor is a halogen compound or an organic metal compound.

Description

반도체 소자의 박막 형성방법{METHOD FOR FORMING THIN FILM IN SEMICONDUCTOR DEVICE}Thin Film Formation Method of Semiconductor Device {METHOD FOR FORMING THIN FILM IN SEMICONDUCTOR DEVICE}

도 1은 본 발명의 바람직한 제1실시예에 따른 루테늄막의 형성방법을 나타내는 타이밍도,1 is a timing diagram showing a method of forming a ruthenium film according to a first embodiment of the present invention;

도 2는 본 발명의 바람직한 제2실시예에 따른 루테늄산화막의 형성방법을 나타내는 타이밍도.2 is a timing diagram illustrating a method of forming a ruthenium oxide film according to a second preferred embodiment of the present invention.

본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 소자의 전극 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing technology, and more particularly to a method for manufacturing an electrode of a semiconductor device.

반도체 소자의 고집적화, 미세화에 따라 단위 셀면적이 크게 감소하고 동작전압의 저전압화가 이루어지고 있다. 그러나, 기존의 SIS(poly Silicon-Insulator-poly Silicon)구조의 캐패시터의 경우 계면산화막의 존재로 인해 셀당 약 25fF 이상의 충분한 캐패시터 용량을 확보하기 어려워지고 있으며, 이를 해결하기 위해 금 속전극을 사용한 MIM(Metal-Insulator-Metal)구조의 캐패시터 개발이 이루어지고 있다. With the higher integration and miniaturization of semiconductor devices, the unit cell area is greatly reduced and the operating voltage is lowered. However, in the case of the conventional poly silicon-insulator-poly silicon (SIS) capacitor, due to the presence of the interfacial oxide film, it is difficult to secure sufficient capacitor capacity of about 25 fF or more per cell. Capacitors with metal-insulator-metal structures have been developed.

특히 45nm이하의 공정에서는 등가산화막의 두께가 6Å이하의 유전막을 사용할 필요성이 있다. 이를 위해, 유전막으로 TiO2, SrTiO3 또는 BaTiO3 중에서 선택된 어느 하나의 유전상수가 큰 물질을 도입하는 기술이 제안되고 있다. 그러나, MIM의 전극으로 TiN과 같은 질화막전극을 사용할 경우 상기 유전물질과의 일함수 차가 크지 않아서 누설전류 특성이 열악한 문제점이 있다. 또한, 높은 유전상수를 얻기 위해 필수적인 열처리 공정시 전극의 산화로 인해 유전특성의 열화가 발생하여 전극으로 사용하기 어려운 문제점이 있다.In particular, in the process of 45 nm or less, it is necessary to use a dielectric film whose thickness of the equivalent oxide film is 6 kPa or less. To this end, a technique for introducing a material having a large dielectric constant selected from TiO 2 , SrTiO 3, or BaTiO 3 into a dielectric film has been proposed. However, when a nitride electrode such as TiN is used as the MIM electrode, there is a problem in that leakage current characteristics are poor because a difference in work function from the dielectric material is not large. In addition, there is a problem that it is difficult to use the electrode due to the deterioration of the dielectric properties due to oxidation of the electrode during the heat treatment process necessary to obtain a high dielectric constant.

이러한 문제점을 해결하기 위해, 전극의 산화를 방지하고 충분한 캐패시터 용량을 확보하기 위하여 루테늄(Ru) 또는 루테늄의 전도성산화물인 루테늄산화막(RuO2)을 적용한 캐패시터가 제안되고 있다. 루테늄 또는 루테늄산화막이 전극으로 사용되기 위해서는 높은 열적안정성, 낮은 비저항과 우수한 단차피복성을 가져야 한다. 루테늄 또는 루테늄산화막은 통상 화학기상증착법 또는 단원자층증착법으로 형성하는데 화학기상증착법으로 형성된 전극은 낮은 밀도로 인해 후속 열처리시 응집(Agglomeration)되어 구조형성이 어려울 뿐만 아니라 단차피복성이 열악하고, 단원자층증착법으로 형성된 전극은 벌크에 가까운 밀도와 우수한 단차피복성을 보이지만 증착속도가 화학기상증착법에 비해 낮아서 양산성에 어려움이 있다.In order to solve this problem, in order to prevent oxidation of the electrode and to secure a sufficient capacitor capacity, a capacitor to which ruthenium (Ru) or a ruthenium oxide film (RuO 2 ), which is a conductive oxide of ruthenium, has been proposed. To be used as an electrode, ruthenium or ruthenium oxide film must have high thermal stability, low specific resistance and excellent step coverage. Ruthenium or ruthenium oxide film is usually formed by chemical vapor deposition or monolayer deposition.The electrode formed by chemical vapor deposition is agglomerated during subsequent heat treatment due to its low density, making it difficult to form a structure and having poor step coverage. Although the electrode formed by the deposition method shows a density close to the bulk and excellent step coverage, the deposition rate is lower than that of the chemical vapor deposition method, which causes difficulty in mass production.

본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 제안된 것으로, 캐패시터의 전극으로 루테늄 또는 루테늄산화막 형성시 높은 밀도, 우수한 단차피복성과 함께 증착속도를 확보할 수 있는 반도체 소자의 제조방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, to provide a method of manufacturing a semiconductor device that can ensure the deposition rate with high density, excellent step coverage when forming ruthenium or ruthenium oxide film as the electrode of the capacitor. The purpose is.

본 발명에 의한 반도체 소자의 박막 형성방법은 전구체와 반응가스를 동시에 주입시키는 단계와 퍼지단계로 이루어진 단위사이클을 반복적으로 진행하여 반도체 소자의 구성물질을 증착하는 반도체 소자의 박막 형성방법을 포함하는 것을 특징으로 한다.The method for forming a thin film of a semiconductor device according to the present invention includes a method of forming a thin film of a semiconductor device for depositing constituent materials of the semiconductor device by repeatedly injecting a precursor and a reaction gas and repeatedly carrying out a unit cycle consisting of a purge step. It features.

또한, 전구체를 주입시키는 단계와 퍼지단계로 이루어진 단위사이클을 반복적으로 진행하되 각 단계에 반응가스를 계속 주입하여 반도체 소자의 구성물질을 증착하는 반도체 소자의 박막 형성방법을 포함하는 것을 특징으로 한다.In addition, it is characterized in that it comprises a method of forming a thin film of the semiconductor device for repeatedly depositing the constituent material of the semiconductor device by continuously injecting the reaction gas in each step of the step of injecting the precursor and the purge step repeatedly.

특히, 전구체는 루테늄 또는 루테늄산화막을 형성하기 위한 루테늄전구체를 사용하되, 상기 루테늄전구체는 할로겐화물 또는 유기금속화합물을 사용하고, 할로겐화물은 RuCl4, 유기금속화합물은 Ru(TMHD)2, Ru(OD)3 또는 Ru(METHD)3 중에서 선택된 어느 하나로 사용하는 것을 특징으로 한다.In particular, the precursor uses a ruthenium precursor to form a ruthenium or ruthenium oxide film, the ruthenium precursor is a halide or an organometallic compound, the halide is RuCl 4 , the organometallic compound is Ru (TMHD) 2 , Ru ( OD) 3 or Ru (METHD) 3 is used.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the technical idea of the present invention. .

본 발명의 바람직한 실시예에서는 캐패시터의 하부 또는 상부전극으로 루테늄막, 루테늄막/루테늄산화막, 루테늄산화막/루테늄막, 루테늄산화막/루테늄막/루테늄산화막 또는 루테늄막/루테늄산화막/루테늄막 중에서 선택된 단일막 또는 이중막 이상의 적층막을 형성한다.In a preferred embodiment of the present invention, a single layer selected from ruthenium film, ruthenium film / ruthenium oxide film, ruthenium oxide film / ruthenium film, ruthenium oxide film / ruthenium film / ruthenium oxide film or ruthenium oxide film / ruthenium oxide film / ruthenium film as the lower or upper electrode of the capacitor Or a laminated film of a double film or more is formed.

이하, 도 1 및 도 2에서 루테늄막 또는 루테늄산화막을 형성하기 위한 방법을 자세히 설명하기로 한다. 설명의 편의를 위해 도 1은 루테늄막을, 도2는 루테늄산화막을 형성할 때를 가정하여 설명하기로 한다.Hereinafter, a method for forming a ruthenium film or ruthenium oxide film in FIGS. 1 and 2 will be described in detail. For convenience of description, FIG. 1 will be described assuming a ruthenium film and FIG. 2 is a ruthenium oxide film.

도 1은 본 발명의 바람직한 제1실시예에 따른 루테늄막의 형성방법을 나타내는 타이밍도이다. 1 is a timing diagram showing a method of forming a ruthenium film according to a first preferred embodiment of the present invention.

도 1에 도시된 바와 같이, 루테늄막은 루테늄(Ru)전구체를 주입하는 단계/퍼지가스를 주입하는 단계를 단위사이클로 하여 형성하되, 반응가스를 각 단계에 연속적으로 주입시켜 실시한다. As shown in Figure 1, the ruthenium film is formed by injecting a ruthenium (Ru) precursor / a step of injecting a purge gas as a unit cycle, it is carried out by continuously injecting the reaction gas to each step.

즉, 루테늄(Ru)전구체와 함께 반응가스를 챔버 내부로 주입시켜 웨이퍼 상부에 상기 전구체를 흡착시키고, 퍼지가스와 함께 상기 반응가스를 주입하여 상기 웨이퍼 상부에 흡착되지 않고 상기 챔버 내부에 잔류되는 상기 전구체를 외부로 퍼지시키는 단계가 단위사이클로 구성된다.That is, the reaction gas is injected into the chamber together with the ruthenium (Ru) precursor to adsorb the precursor onto the wafer, and the reaction gas is injected into the chamber together with the purge gas to remain inside the chamber without being adsorbed onto the wafer. Purging the precursor to the outside consists of unit cycles.

루테늄막을 형성하기 위한 루테늄전구체는 할로겐화물(Halide)로 사용하거나 유기금속화합물을 사용한다. 여기서, 할로겐화물은 RuCl4, 유기금속화합물은 Ru(TMHD)2, Ru(OD)3 또는 Ru(METHD)3 중에서 선택된 어느 하나로 사용한다. 또한, 루테늄막 형성을 위한 단위사이클은 200℃∼350℃의 온도에서 0.1Torr∼10Torr의 압력으로 반응가스를 20sccm∼400sccm의 유량으로 주입하여 형성한다.The ruthenium precursor for forming the ruthenium film is used as a halide or an organometallic compound. Herein, the halide is used as RuCl 4 , the organometallic compound is selected from Ru (TMHD) 2 , Ru (OD) 3, or Ru (METHD) 3 . In addition, a unit cycle for forming a ruthenium film is formed by injecting a reaction gas at a flow rate of 20 sccm to 400 sccm at a pressure of 0.1 Torr to 10 Torr at a temperature of 200 ° C to 350 ° C.

도 2는 본 발명의 바람직한 제2실시예에 따른 루테늄산화막의 형성방법을 나타내는 타이밍도이다.2 is a timing diagram illustrating a method of forming a ruthenium oxide film according to a second preferred embodiment of the present invention.

도 2에 도시된 바와 같이, 루테늄산화막은 루테늄(Ru)전구체를 주입하는 단계/퍼지가스를 주입하는 단계를 단위사이클로 하여 형성하되, 반응가스를 루테늄전구체를 주입하는 단계에만 선택적으로 주입하여 실시한다. 특히, 반응가스는 산소를 포함하는 반응가스를 사용한다. 예컨대 H2O, H2O2, O2 및 O3의 그룹 중에서 선택된 어느 하나의 산소를 포함하는 반응가스를 사용한다.As shown in Figure 2, the ruthenium oxide film is formed by injecting a ruthenium (Ru) precursor / a step of injecting a purge gas as a unit cycle, it is carried out by selectively injecting only the reaction gas into the ruthenium precursor. . In particular, the reaction gas uses a reaction gas containing oxygen. For example, a reaction gas containing any one oxygen selected from the group of H 2 O, H 2 O 2 , O 2, and O 3 is used.

즉, 루테늄전구체와 함께 산소를 포함한 반응가스를 챔버 내부로 주입시켜 웨이퍼 상부에 상기 전구체를 흡착시키는 단계, 퍼지가스를 주입하여 상기 웨이퍼 상부에 흡착되지 않고 상기 챔버 내부에 잔류되는 상기 전구체를 외부로 퍼지시키는 단계가 단위사이클로 구성된다.That is, injecting a reaction gas containing oxygen into the chamber together with a ruthenium precursor to adsorb the precursor on the wafer, and injecting purge gas to the outside of the precursor remaining inside the chamber without being adsorbed on the wafer. The purging step consists of unit cycles.

루테늄막을 형성하기 위한 루테늄전구체는 할로겐화물(Halide)로 사용하거나 유기금속화합물을 사용한다. 여기서, 할로겐화물은 RuCl4, 유기금속화합물은 Ru(TMHD)2, Ru(OD)3 또는 Ru(METHD)3 중에서 선택된 어느 하나로 사용한다. 또한, 루테늄막 형성을 위한 단위사이클은 200℃∼350℃의 온도에서 0.1Torr∼10Torr의 압력으로 반응가스를 20sccm∼400sccm의 유량으로 주입하여 형성한다.The ruthenium precursor for forming the ruthenium film is used as a halide or an organometallic compound. Herein, the halide is used as RuCl 4 , the organometallic compound is selected from Ru (TMHD) 2 , Ru (OD) 3, or Ru (METHD) 3 . In addition, a unit cycle for forming a ruthenium film is formed by injecting a reaction gas at a flow rate of 20 sccm to 400 sccm at a pressure of 0.1 Torr to 10 Torr at a temperature of 200 ° C to 350 ° C.

상기 도 1 및 도 2와 같이 루테늄전구체를 주입하는 단계/퍼지가스를 주입하는 단계를 단위사이클로 하는 본 발명은 종래의 단원자층증착법을 소스가스/퍼지/반응가스/퍼지의 4단계를 단위사이클로 하는 공정에 비해 공정의 단순화가 가능하기 때문에 증착속도를 확보할 수 있으면서, 단원자층증착법으로 형성시 얻을 수 있는 막의 높은 밀도와 우수한 단차피복성을 확보할 수 있다.1 and 2 as the unit cycle of injecting the ruthenium precursor / injecting the purge gas is a unit cycle of the source gas / purge / reaction gas / purge in the conventional monolayer deposition method Since the process can be simplified compared to the process, the deposition rate can be secured, and the high density and excellent step coating property of the film obtained by the monolayer deposition can be obtained.

또한, 제1실시예에서 산소를 포함한 반응가스를 주입하여 루테늄산화막을 형성할 수 있고, 제2실시예에서 통상의 반응가스를 주입하여 루테늄막을 형성하는 것이 가능하다.In addition, in the first embodiment, a ruthenium oxide film may be formed by injecting a reaction gas containing oxygen. In the second embodiment, a ruthenium film may be formed by injecting a normal reaction gas.

상기 루테늄막 또는 루테늄산화막을 하부전극으로 사용할 경우, 하부전극 상에 유전막을 형성하고, 유전막 상에 상부전극을 형성하는 캐패시터 구조를 적용할 수 있다.When the ruthenium film or the ruthenium oxide film is used as the lower electrode, a capacitor structure may be applied to form a dielectric film on the lower electrode and to form an upper electrode on the dielectric film.

여기서, 유전막은 HfO2, Al2O3, ZrO2, Ta2O5 및 TiO2로 구성된 그룹 중에서 선택된 어느 하나 또는 이중막 이상의 적층구조로 형성하거나, SrTiO3 또는 (Ba,Sr)TiO3의 페로브스카이트 구조의 물질로 형성할 수 있다. 특히, 루테늄 또는 루테늄산화막의 경우 높은 열적안정성을 갖기 때문에 유전막에 높은 유전상수를 위한 열처리 공정을 실시하여도 유전특성 열화가 발생하지 않는다.Here, the dielectric film may be formed in a stacked structure of any one or a double layer or more selected from the group consisting of HfO 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5, and TiO 2 , or SrTiO 3 or (Ba, Sr) TiO 3 . It may be formed of a material of perovskite structure. In particular, since ruthenium or ruthenium oxide film has high thermal stability, even if the dielectric film is subjected to a heat treatment process for high dielectric constant, the dielectric property does not deteriorate.

그리고, 상부전극으로 하부전극과 동일하게 루테늄막 또는 루테늄산화막을 형성할 수 있다. 이때, 상부전극은 도 1 및 도 2에 도시된 제1,2실시예와 동일한 방법으로 루테늄막 또는 루테늄산화막을 형성하거나, 단원자층증착법(Atomic Layer Deposition;ALD)을 이용하여 시드(seed)층을 형성한 후, 메인(main)층을 형성하는 두단계로 형성할 수 있다. 여기서, 메인층은 도 1 및 도 2에 도시된 제1,2실시예와 동일한 방법으로 실시한다. 특히, 시드층을 형성한 후, 메인층을 형성할 경우 균일도 및 생산성(Throughput)이 향상된다.A ruthenium film or ruthenium oxide film may be formed as the upper electrode in the same manner as the lower electrode. At this time, the upper electrode is a ruthenium film or ruthenium oxide film in the same manner as the first and second embodiments shown in Figs. 1 and 2, or the seed layer using the atomic layer deposition (ALD) method After forming, it may be formed in two steps to form the main (main) layer. Here, the main layer is implemented in the same manner as the first and second embodiments shown in FIGS. 1 and 2. In particular, after the seed layer is formed, uniformity and productivity are improved when the main layer is formed.

위와 같이, 캐패시터구조를 형성 할 경우 유전막을 형성한 후, 또는 상부전극을 형성한 후에 급속열처리 또는 퍼니스열처리를 이용하여 열처리 공정을 선택적으로 수행할 수 있다. 이때, 루테늄막 또는 루테늄산화막이 높은 열적안정성을 갖기 때문에 전극의 산화로 인한 유전특성 열화가 발생하지 않는다.As described above, when the capacitor structure is formed, the heat treatment process may be selectively performed by using rapid heat treatment or furnace heat treatment after forming the dielectric film or after forming the upper electrode. At this time, since the ruthenium film or the ruthenium oxide film has high thermal stability, dielectric property deterioration due to oxidation of the electrode does not occur.

상기한 본 발명은, 우수한 열적안정성을 갖는 루테늄막 또는 루테늄산화막을 2단계의 단위사이클로 형성함으로써 높은밀도, 우수한 단차피복성과 증착속도를 확보함과 동시에 캐패시터의 신뢰성과 생산성을 향상시켜 고집적 소자 동작에 요구되는 캐패시터 용량을 확보할 수 있는 장점이 있다.According to the present invention, by forming a ruthenium film or a ruthenium oxide film having excellent thermal stability in two unit cycles, high density, excellent step coverage and deposition rate can be ensured, and the reliability and productivity of the capacitor can be improved to provide high integration device operation. There is an advantage that can secure the required capacitor capacity.

또한, 루테늄막 및 루테늄산화막을 전극으로 적용하는 캐패시터는 평판, 콘케이브 또는 실린더형 중에서 선택된 어느 하나로 형성할 수 있다.In addition, the capacitor applying the ruthenium film and the ruthenium oxide film as an electrode may be formed of any one selected from a plate, a concave, and a cylinder.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 본 발명은 전극으로 우수한 열적안정성을 갖는 루테늄막 또는 루테늄산화막을 두단계의 단위사이클로 형성함으로써 증착속도를 확보하여 누설전류특성 및 항복전압특성을 향상시키고, 유전막의 신뢰성을 향상시킬 수 있을 뿐만 아니라, 고집적 소자동작에 요구되는 충분한 캐패시터 용량을 확보할 수 있는 효과가 있다.According to the present invention, a ruthenium film or a ruthenium oxide film having excellent thermal stability as an electrode is formed in two unit cycles to secure deposition rates, thereby improving leakage current characteristics and breakdown voltage characteristics, and improving dielectric film reliability. In addition, there is an effect that can ensure a sufficient capacitor capacity required for high integration device operation.

또한, 기존의 단원자층증착법에 대비하여 생산성(Throughput)을 향상시킬 수 있는 효과가 있다.In addition, there is an effect that can improve the productivity (Throughput) compared to the conventional monolayer deposition method.

Claims (16)

전구체와 반응가스를 동시에 주입시키는 단계와 퍼지단계로 이루어진 단위사이클을 반복적으로 진행하여 반도체 소자의 구성물질을 증착하는 Repeatedly injecting precursor and reactant gas and purging step to deposit the constituent material of the semiconductor device 반도체 소자의 박막 형성방법.Thin film formation method of a semiconductor device. 제1항에 있어서,The method of claim 1, 상기 전구체는 루테늄막 또는 루테늄산화막을 형성하기 위한 루테늄전구체를 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The precursor is a thin film forming method of a semiconductor device, characterized in that using a ruthenium precursor for forming a ruthenium film or ruthenium oxide film. 제2항에 있어서,The method of claim 2, 상기 루테늄전구체는 할로겐화물 또는 유기금속화합물을 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The ruthenium precursor is a thin film forming method of a semiconductor device, characterized in that using a halide or organometallic compound. 제3항에 있어서,The method of claim 3, 상기 할로겐화물은 RuCl4, 유기금속화합물은 Ru(TMHD)2, Ru(OD)3 또는 Ru(METHD)3 중에서 선택된 어느 하나로 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.Wherein the halide is RuCl 4 , the organometallic compound Ru (TMHD) 2 , Ru (OD) 3 or Ru (METHD) 3 The thin film forming method of a semiconductor device characterized in that it is used. 제1항에 있어서, The method of claim 1, 상기 반응가스는 산소를 포함하는 반응가스를 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The reaction gas is a thin film forming method of a semiconductor device, characterized in that using a reaction gas containing oxygen. 제5항에 있어서,The method of claim 5, 상기 산소를 포함하는 반응가스는 H2O, H2O2, O2 및 O3로 구성되 그룹 중에서 선택된 어느 하나로 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The reaction gas containing oxygen is H 2 O, H 2 O 2 , O 2 and O 3 It is used in any one selected from the group consisting of a thin film forming method of a semiconductor device. 제6항에 있어서,The method of claim 6, 상기 반응가스는 20sccm∼400sccm의 유량으로 주입하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The reaction gas is injected to a flow rate of 20sccm ~ 400sccm thin film forming method of a semiconductor device. 제1항 내지 제7항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7, 상기 단위사이클은 200℃∼350℃의 온도에서 0.1Torr∼10Torr의 압력을 실시하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The unit cycle is a thin film forming method of a semiconductor device, characterized in that for performing a pressure of 0.1 Torr ~ 10 Torr at a temperature of 200 ℃ to 350 ℃. 전구체를 주입시키는 단계와 퍼지단계로 이루어진 단위사이클을 반복적으로 진행하되 각 단계에 반응가스를 계속 주입하여 반도체 소자의 구성물질을 증착하는 Repeating the unit cycle consisting of the step of injecting the precursor and the purge step to continuously inject the reaction gas in each step to deposit the components of the semiconductor device 반도체 소자의 박막 형성방법.Thin film formation method of a semiconductor device. 제9항에 있어서,The method of claim 9, 상기 전구체는 루테늄막 또는 루테늄산화막을 형성하기 위한 루테늄전구체를 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The precursor is a thin film forming method of a semiconductor device, characterized in that using a ruthenium precursor for forming a ruthenium film or ruthenium oxide film. 제10항에 있어서,The method of claim 10, 상기 루테늄전구체는 할로겐화물 또는 유기금속화합물을 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The ruthenium precursor is a thin film forming method of a semiconductor device, characterized in that using a halide or organometallic compound. 제11항에 있어서,The method of claim 11, 상기 할로겐화물은 RuCl4, 유기금속화합물은 Ru(TMHD)2, Ru(OD)3 또는 Ru(METHD)3 중에서 선택된 어느 하나로 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.Wherein the halide is RuCl 4 , the organometallic compound Ru (TMHD) 2 , Ru (OD) 3 or Ru (METHD) 3 The thin film forming method of a semiconductor device characterized in that it is used. 제9항에 있어서,The method of claim 9, 상기 반응가스는 산소를 포함하는 반응가스를 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The reaction gas is a thin film forming method of a semiconductor device, characterized in that using a reaction gas containing oxygen. 제13항에 있어서,The method of claim 13, 상기 산소를 포함하는 반응가스는 H2O, H2O2, O2 및 O3로 구성되 그룹 중에서 선택된 어느 하나로 사용하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The reaction gas containing oxygen is H 2 O, H 2 O 2 , O 2 and O 3 It is used in any one selected from the group consisting of a thin film forming method of a semiconductor device. 제14항에 있어서,The method of claim 14, 상기 반응가스는 20sccm∼400sccm의 유량으로 주입하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The reaction gas is injected to a flow rate of 20sccm ~ 400sccm thin film forming method of a semiconductor device. 제9항 내지 제15항 중 어느 한 항에 있어서,The method according to any one of claims 9 to 15, 상기 단위사이클은 200℃∼350℃의 온도에서 0.1Torr∼10Torr의 압력을 실시하는 것을 특징으로 하는 반도체 소자의 박막 형성방법.The unit cycle is a thin film forming method of a semiconductor device, characterized in that for performing a pressure of 0.1 Torr ~ 10 Torr at a temperature of 200 ℃ to 350 ℃.
KR1020060059322A 2006-06-29 2006-06-29 Method for forming thin film in semiconductor device KR100799110B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060059322A KR100799110B1 (en) 2006-06-29 2006-06-29 Method for forming thin film in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060059322A KR100799110B1 (en) 2006-06-29 2006-06-29 Method for forming thin film in semiconductor device

Publications (2)

Publication Number Publication Date
KR20080001165A true KR20080001165A (en) 2008-01-03
KR100799110B1 KR100799110B1 (en) 2008-01-29

Family

ID=39213222

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060059322A KR100799110B1 (en) 2006-06-29 2006-06-29 Method for forming thin film in semiconductor device

Country Status (1)

Country Link
KR (1) KR100799110B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808758B1 (en) 2000-06-09 2004-10-26 Mattson Technology, Inc. Pulse precursor deposition process for forming layers in semiconductor devices
KR100474072B1 (en) * 2002-09-17 2005-03-10 주식회사 하이닉스반도체 Method for forming noble metal films
KR100551073B1 (en) * 2003-12-18 2006-02-10 주식회사 하이닉스반도체 Forming method of thin film using pulsed chemical vapor deposition
KR100597321B1 (en) * 2004-07-15 2006-07-06 주식회사 아이피에스 A method for depositing thin film on a wafer

Also Published As

Publication number Publication date
KR100799110B1 (en) 2008-01-29

Similar Documents

Publication Publication Date Title
KR100555543B1 (en) Method for forming high dielectric layer by atomic layer deposition and method for manufacturing capacitor having the layer
KR100705926B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100584996B1 (en) Capacitor with alloyed hafnium oxide and aluminium oxide and method for fabricating the same
KR100717813B1 (en) Capacitor with nano-mixed dielectric and method for manufacturing the same
KR101046729B1 (en) Capacitors and their manufacturing methods
KR100670747B1 (en) Method for manufacturing capacitor in semiconductor device
KR100716652B1 (en) Capacitor with nano-composite dielectric and method for manufacturing the same
US20020140005A1 (en) Semiconductor capacitors having tantalum oxide layers and methods for manufacturing the same
US7425761B2 (en) Method of manufacturing a dielectric film in a capacitor
US20120273921A1 (en) Semiconductor device and method for fabricating the same
KR100716642B1 (en) Capacitor in dielectric and method for fabricating of the same
KR100443350B1 (en) Method for atomic layer depostion strontium ruthenate
KR20110103534A (en) Methods of forming an dielectric layer structure, methods of manufacturing a capacitor using the same and capacitors
KR100799110B1 (en) Method for forming thin film in semiconductor device
KR101152390B1 (en) Dielectric layer in capacitor and fabricating using the same and capacitor in semiconductor device and fabricating using the same
KR20070106286A (en) Method of forming titanium oxide with rutile structure and method of manufacturing capacitor using the same
KR20010084675A (en) A method for formation of semiconductor capacitors with diffusion barriers
KR100511914B1 (en) Method for fabricating of semiconductor device using PECYCLE-CVD
KR101060771B1 (en) Electrode Manufacturing Method of Semiconductor Device
KR100753037B1 (en) Capacitor and method for forming using the same
KR100744656B1 (en) Method for forming capacitor
KR100794718B1 (en) Method of forming mim capacitor
KR100971430B1 (en) Capacitor in semiconductor device and fabricating using the same
KR100656282B1 (en) Method for forming capacitor
KR100744666B1 (en) A capacitor of semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee