KR20080000124A - Method for detecting defocus of exposure process - Google Patents

Method for detecting defocus of exposure process Download PDF

Info

Publication number
KR20080000124A
KR20080000124A KR1020060057457A KR20060057457A KR20080000124A KR 20080000124 A KR20080000124 A KR 20080000124A KR 1020060057457 A KR1020060057457 A KR 1020060057457A KR 20060057457 A KR20060057457 A KR 20060057457A KR 20080000124 A KR20080000124 A KR 20080000124A
Authority
KR
South Korea
Prior art keywords
pattern
collapse
exposure process
exposure
defocus
Prior art date
Application number
KR1020060057457A
Other languages
Korean (ko)
Inventor
김형수
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020060057457A priority Critical patent/KR20080000124A/en
Publication of KR20080000124A publication Critical patent/KR20080000124A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A method for detecting defocus of an exposure process is provided to rapidly determine a defocus state and improve the process time and final yield of a device by directly measuring a collapse pattern intentionally inserted into a scribe lane region. An exposure mask is prepared in which a chip formation position is opened to be a predetermined pattern shape and a scribe lane formation position is opened to be a collapse pattern shape. An exposure process using the exposure mask is performed on a wafer coated with photoresist. The resultant structure is developed to fabricate a wafer that includes a chip region having a predetermined pattern shape and a scribe lane region having a collapse pattern. The collapse pattern is inspected by using optical measurement equipment. A pattern in the chip region can be an L/S(line and space) pattern or a contact hole pattern.

Description

노광 공정의 디포커스 검출 방법{Method for Detecting Defocus of Exposure Process}Method for Detecting Defocus of Exposure Process

도 1은 노광 공정의 디포커스에 따른 L/S 패턴과 격리된 패턴의 선폭 변동을 도시한 그래프.1 is a graph showing variation in line width between an L / S pattern and an isolated pattern according to defocus of an exposure process.

도 2은 노광 공정 시 디포커스에 의해 붕괴된 2차원 섬(island)형 패턴의 SEM 사진.2 is a SEM photograph of a two-dimensional island-like pattern collapsed by defocus during the exposure process.

본 발명은 노광 공정의 디포커스(defocus) 검출 방법에 관한 것이다.The present invention relates to a defocus detection method of an exposure process.

현재 반도체 소자의 고집적화 및 고성능화가 요구됨에 따라 제조 공정이 다양하고 복잡해지고 있다. 예컨대, DRAM과 같은 반도체 기억 소자를 제조함에 있어서, 웨이퍼 상에 라인 앤 스페이스(line & space; 이하 “L/S”라 칭함) 패턴이나, 콘택홀 등의 미세 패턴들을 형성하기 위하여 포토리소그라피 공정을 필수 공정으로 수행한다. At present, as high integration and high performance of semiconductor devices are required, various manufacturing processes are becoming complicated. For example, in manufacturing a semiconductor memory device such as DRAM, a photolithography process is performed to form fine patterns such as line & space (L / S) patterns or contact holes on a wafer. Perform the required process.

한편, 상기 포토리소그라피 공정 시에 감광제 패턴의 불량을 방지하고, 균일한 크기의 패턴 선폭(critical dimension)을 확보하기 위해서는 최상의 포커스 상 태에서 웨이퍼를 노광해야 한다. 만약, 디포커스 상태로 노광 공정을 수행하면 패턴 브리지(bridge)나, 패턴 네킹(necking) 현상이 발생한다.On the other hand, in order to prevent defects of the photoresist pattern during the photolithography process and to secure a pattern dimension of a uniform size, the wafer should be exposed at the best focus state. If the exposure process is performed in a defocused state, a pattern bridge or pattern necking phenomenon occurs.

종래 감광제 패턴이 최상의 포커스(best focus) 상태에서 노광 되었는지를 확인하려면 노광 및 현상 공정 후 얻어진 패턴 선폭에 대해 주사 전자 현미경 (Scanning Electron Microscope; 이하 “SEM”이라 칭함) 공정을 수행한다. To determine whether the conventional photoresist pattern is exposed at the best focus state, a scanning electron microscope (SEM) process is performed on the pattern line width obtained after the exposure and development processes.

상기 SEM 공정은 얻어진 웨이퍼마다 선폭을 측정하고, 그 결과에 따라 포커스를 보정하면서 목적하는 패턴 값을 맞춰가는 공정이므로 정확도가 매우 높다. 반면, 노광 공정이 최상의 포커스 상태로 수행되고 있는지를 패턴 상에서 직접 확인하는 것은 불가능하다. 상기 SEM 공정은 미리 설정한 최상의 포커스 값을 입력한 노광 장비로 노광 공정을 수행하고, 현상하여 패턴을 얻은 다음, 칩(chip) 영역의 중앙에 위치한 패턴의 선폭을 측정하여 디포커스 검출한다. 따라서, 디포커스 검출 시간이 매우 길다. The SEM process measures the line width for each wafer obtained, and adjusts the target pattern value while correcting the focus according to the result, so the accuracy is very high. On the other hand, it is impossible to directly check on the pattern whether the exposure process is being performed at the best focus state. The SEM process performs an exposure process using an exposure apparatus that inputs a predetermined best focus value, develops a pattern, and then detects defocus by measuring a line width of a pattern located in the center of a chip region. Therefore, the defocus detection time is very long.

더욱이, 최종 검출 단계에서 원하는 선폭 크기가 확보되지 않으면 다음 웨이퍼 노광 시에 노광 에너지값을 다시 수정해야 하기 때문에, 결점을 가진 웨이퍼가 다량 발생되어 반도체 소자의 최종 수율이 감소되고, 제조 비용이 증가한다.Moreover, since the exposure energy value must be corrected again at the next wafer exposure if the desired linewidth size is not secured in the final detection step, a large amount of defective wafers are generated, resulting in a decrease in the final yield of the semiconductor device and an increase in manufacturing cost. .

이를 개선하기 위하여, 패턴 전면에 대한 결점 및 디포커스 상태를 확인할 수 있는 고가의 패턴 웨이퍼 검사(pattern wafer inspection; 이하 “PWI”라 칭함) 장비가 개발되었다.To improve this, expensive pattern wafer inspection (“PWI”) equipment has been developed that can identify defects and defocus conditions on the entire surface of the pattern.

하지만, 상기 PWI 장비는 생산성(through-put)이 매우 낮기 때문에, 25장의 웨이퍼 중 1∼2장의 웨이퍼만을 선택하여 디포커스 상태를 확인할 수 있다. 또한, PWI 장비로 얻어진 결과는 통상의 파티클에서 발생된 패턴 결함인지, 디포커스 상태에서 수행된 노광 결함인지를 판단하기 어려워, 매번 엔지니어의 경험과 직관에 의존한다.However, since the PWI device has a very low through-put, it is possible to check the defocus state by selecting only one or two wafers out of 25 wafers. In addition, the results obtained with the PWI equipment are difficult to determine whether they are pattern defects generated in ordinary particles or exposure defects performed in a defocused state, and each time depends on the experience and intuition of the engineer.

따라서, 종래 디포커스 검출 시 문제가 되고 있는 측정 시간이나, 낮은 수율 문제점을 개선할 수 없다.Therefore, it is not possible to improve the measurement time and the low yield problem which are a problem in conventional defocus detection.

본 발명에서는 스크라이브 레인 영역에 초점 여유도(Depth of focus; 이하 “DOF”라 칭함)가 매우 좁은 붕괴 패턴을 추가로 형성한 다음, 웨이퍼 상에서 붕괴 패턴을 이용해 디포커스 상태를 직접 검출할 수 있는 방법을 제공하는 것을 목적으로 한다.In the present invention, a method of additionally forming a collapse pattern having a very narrow depth of focus (hereinafter referred to as “DOF”) in the scribe lane region and then directly detecting a defocus state using the collapse pattern on the wafer. The purpose is to provide.

상기 목적을 달성하기 위하여, In order to achieve the above object,

본 발명에서는 In the present invention

칩 형성 위치가 일정 모양의 패턴 형태로 개방되어 있고, 스크라이브 레인 형성 위치가 붕괴 패턴 형태로 개방되어 있는 노광 마스크를 준비하는 단계;Preparing an exposure mask in which the chip formation position is opened in a pattern shape and the scribe lane formation position is opened in the form of a collapse pattern;

감광제가 코팅된 웨이퍼에 대해 상기 노광 마스크를 이용한 노광 공정을 수행하는 단계;Performing an exposure process using the exposure mask on a photosensitive agent-coated wafer;

상기 결과물을 현상하여 일정 모양의 패턴이 형성되어 있는 칩 영역과 붕괴 패턴이 형성되어 있는 스크라이브 레인 영역을 포함하는 웨이퍼를 제조하는 단계; 및 Developing the resultant to manufacture a wafer including a chip region in which a pattern of a predetermined shape is formed and a scribe lane region in which a collapse pattern is formed; And

상기 붕괴 패턴을 광학적 측정 장비로 확인하는 단계를 포함하는 노광 공정의 디포커스 검출 방법을 제공한다.It provides a defocus detection method of the exposure process comprising the step of confirming the collapse pattern with an optical measuring equipment.

상기 칩 영역에 형성된 패턴은 L/S 패턴 및 콘택홀 패턴을 포함한다.The pattern formed in the chip region includes an L / S pattern and a contact hole pattern.

상기 스크라이브 레인 영역은 회로 동작에는 직접 관계하지 않으나, 얼라인먼트(alignment) 또는 오버레이(overlay)를 측정하기 위하여 칩(chip)과 칩 사이에 마련해 놓은 영역이다. 이때, 상기 스크라이브 영역 대신 회로가 그려지지 않는 더미(dummy) 영역에 붕괴 패턴을 형성할 수도 있다. The scribe lane area is not directly related to circuit operation, but is an area provided between the chip and the chip in order to measure alignment or overlay. In this case, a collapse pattern may be formed in a dummy region in which a circuit is not drawn instead of the scribe region.

상기 붕괴 패턴은 칩 영역에 형성된 L/S 패턴 및 콘택홀 패턴보다 DOF 마진이 매우 좁은 패턴, 예를 들면 격리된 패턴, 2차원(2-dimensional) 섬형 패턴 및 L/S 패턴이 3 가닥으로 형성된 3 핑거(fingered) L/S 패턴 형태를 포함한다.The collapse pattern is a pattern in which the DOF margin is much narrower than that of the L / S pattern and the contact hole pattern formed in the chip area, for example, an isolated pattern, a 2-dimensional island pattern, and an L / S pattern formed of three strands. It includes a three-fingered L / S pattern form.

일반적으로 감광제 패턴은 형태에 따라 서로 다른 DOF를 갖는 것으로 알려져 있다. 특히, 도 1에 도시한 바와 같이 디포커스 시에 100nm L/S 패턴과 격리된 패턴isolated pattern)의 선폭 변화를 비교해 보면, L/S 패턴은 DOF 범위가 넓어 디포커스 상태에서 노광 되어도 패턴이 잘 형성될 뿐만 아니라, 패턴 선폭의 오차 범위가 좁아 패턴이 크게 변화되지 않는다. 반면, 격리된 패턴은 DOF 범위가 L/S 패턴에 비해 매우 좁기 때문에, 최상의 포커스 상태로 노광되지 않으면 패턴이 붕괴하거나, 소실되면서 선폭이 크게 변한다(도 2 참조). In general, photoresist patterns are known to have different DOF depending on their shape. In particular, as shown in FIG. 1, when comparing the line width variation of the 100 nm L / S pattern and the isolated pattern at the time of defocusing, the L / S pattern has a wide DOF range and thus the pattern is well exposed even when exposed in the defocused state. In addition to being formed, the error range of the pattern line width is narrow so that the pattern does not change significantly. On the other hand, since the isolated pattern has a very narrow DOF range compared to the L / S pattern, the line width is greatly changed as the pattern collapses or disappears unless the exposure is performed in the best focus state (see FIG. 2).

이와 같은 특징을 이용하여 본 발명에서는 패턴 형성 후 칩 영역에 형성된 패턴 선폭을 SEM으로 측정하는 대신, 웨이퍼 상에서 스크라이브 레인 영역 또는 회로가 그려지지 않는 더미 영역에 의도적으로 삽입한 DOF 마진이 좁은 붕괴 패턴을 광학(optical) 현미경 또는 자동(automatic) 현미경을 이용해 직접 검사함으로써, 디포커스 여부를 신속하게 검출할 수 있다.Using the above characteristics, in the present invention, instead of measuring the pattern line width formed in the chip region after forming the pattern by SEM, a collapse pattern having a narrow DOF margin intentionally inserted into a scribe lane region or a dummy region where a circuit is not drawn on the wafer is used. By direct inspection using an optical microscope or an automatic microscope, it is possible to quickly detect defocus.

결론적으로, 본 발명의 방법으로 웨이퍼 상에서 디포커스 상태를 직접 확인할 수 있을 뿐만 아니라, 이와 같은 방법으로 얻어진 디포커스 오차 값을 다음 노광 공정 시에 바로 적용할 수 있어 공정 시간을 단축할 수 있다. 이에 따라, 웨이퍼 결점을 감소시켜 반도체 소자의 최종 수율을 향상시킬 수 있다.In conclusion, not only can the defocus state be directly confirmed on the wafer by the method of the present invention, but also the defocus error value obtained by the above method can be directly applied in the next exposure process, thereby shortening the process time. Accordingly, it is possible to reduce wafer defects and improve final yield of semiconductor devices.

더욱이, 상기 붕괴 패턴 검사 시에 반복적으로 디포커스가 발생하는 경우는 트랙(track) 장비나 노광 장비의 스테이지(stage)가 오염되었다는 것을 의미하므로, 장비 세척(cleaning) 등의 조치를 취해 후속 노광 공정 시 디포커스가 발생하는 문제를 미리 방지하여 공정 비용을 감소시킬 수 있다.Furthermore, if defocus occurs repeatedly during the collapse pattern inspection, it means that the stage of the track equipment or the exposure equipment is contaminated. The process cost can be reduced by preventing the problem of time defocus.

전술한 바와 같이 본 발명에서는 회로 영역에 있는 패턴의 선폭을 SEM으로 측정하는 대신, 스크라이브 레인 영역에 의도적으로 삽입된 붕괴 패턴을 직접 측정함으로써, 디포커스 상태를 신속하게 판단할 수 있어 공정 시간 및 소자의 최종 수율을 개선할 수 있다. As described above, in the present invention, instead of measuring the line width of the pattern in the circuit region by SEM, the defocused state can be quickly determined by directly measuring the collapse pattern intentionally inserted in the scribe lane region, so that the process time and the device Can improve the final yield.

Claims (5)

칩 형성 위치가 일정 모양의 패턴 형태로 개방되어 있고, 스크라이브 레인 형성 위치가 붕괴 패턴 형태로 개방되어 있는 노광 마스크를 준비하는 단계;Preparing an exposure mask in which the chip formation position is opened in a pattern shape and the scribe lane formation position is opened in the form of a collapse pattern; 감광제가 코팅된 웨이퍼에 대해 상기 노광 마스크를 이용한 노광 공정을 수행하는 단계;Performing an exposure process using the exposure mask on a photosensitive agent-coated wafer; 상기 결과물을 현상하여 일정 모양의 패턴이 형성되어 있는 칩 영역과 붕괴 패턴이 형성되어 있는 스크라이브 레인 영역을 포함하는 웨이퍼를 제조하는 단계; 및Developing the resultant to manufacture a wafer including a chip region in which a pattern of a predetermined shape is formed and a scribe lane region in which a collapse pattern is formed; And 상기 붕괴 패턴을 광학적 측정 장비로 확인하는 단계를 포함하는 것을 특징으로 하는 노광 공정의 디포커스 검출 방법.The defocus detection method of the exposure process, characterized in that it comprises the step of confirming the collapse pattern by optical measuring equipment. 제1항에 있어서,The method of claim 1, 상기 칩 영역의 패턴은 라인 앤 스페이스(L/S) 패턴 또는 콘택홀 패턴인 것을 특징으로 하는 노광 공정의 디포커스 검출 방법.The chip area pattern is a line and space (L / S) pattern or a contact hole pattern, characterized in that the defocus detection method of the exposure process. 제1항에 있어서,The method of claim 1, 상기 붕괴 패턴은 L/S 패턴 또는 콘택홀 패턴보다 초점 여유도(Depth of focus) 마진이 좁은 패턴인 것을 특징으로 하는 노광 공정의 디포커스 검출 방법.The decay detection method of the exposure process, characterized in that the collapse pattern is a narrower depth of focus margin than the L / S pattern or the contact hole pattern. 제3항에 있어서,The method of claim 3, 상기 붕괴 패턴은 격리된(isolated) 패턴, 2차원 섬(island)형 패턴 또는 L/S 패턴이 3 가닥으로 형성된 3 핑거(fingered) L/S 패턴인 것을 특징으로 하는 노광 공정의 디포커스 검출 방법.The decay pattern may be an isolated pattern, a two-dimensional island pattern, or a three-fingered L / S pattern having three L / S patterns formed of three strands. . 제1항에 있어서,The method of claim 1, 상기 광학적 측정 장비는 광학 현미경 또는 자동 현미경인 것을 특징으로 하는 노광 공정의 디포커스 검출 방법.The optical measuring equipment is an optical microscope or an automatic microscope, the defocus detection method of the exposure process.
KR1020060057457A 2006-06-26 2006-06-26 Method for detecting defocus of exposure process KR20080000124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060057457A KR20080000124A (en) 2006-06-26 2006-06-26 Method for detecting defocus of exposure process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060057457A KR20080000124A (en) 2006-06-26 2006-06-26 Method for detecting defocus of exposure process

Publications (1)

Publication Number Publication Date
KR20080000124A true KR20080000124A (en) 2008-01-02

Family

ID=39212483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060057457A KR20080000124A (en) 2006-06-26 2006-06-26 Method for detecting defocus of exposure process

Country Status (1)

Country Link
KR (1) KR20080000124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11977338B2 (en) 2020-10-28 2024-05-07 Samsung Electronics Co., Ltd. Defocus measurement method, correction method, and method of manufacturing semiconductor device by using the correction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11977338B2 (en) 2020-10-28 2024-05-07 Samsung Electronics Co., Ltd. Defocus measurement method, correction method, and method of manufacturing semiconductor device by using the correction method

Similar Documents

Publication Publication Date Title
US10133191B2 (en) Method for determining a process window for a lithographic process, associated apparatuses and a computer program
US6701004B1 (en) Detecting defects on photomasks
TWI552245B (en) Methodology of incorporating wafer physical measurement with digital simulation for improving semiconductor device fabrication
TWI532075B (en) A method and a system for determining overlap process windows in semiconductors by inspection techniques
US7865866B2 (en) Method of inspecting mask using aerial image inspection apparatus
US20110004855A1 (en) Method for verifying optical proximity correction
WO2021198211A1 (en) Removing an artefact from an image
JP2009116124A (en) Method of correcting mask pattern, photo mask, method of manufacturing semiconductor device, and semiconductor device
TWI649643B (en) Method and device for determining optimal operating parameter setting of metrology system and method for determining substrate grid
CN111771167B (en) Alignment mark positioning in lithographic processes
US20230035488A1 (en) Metrology method
KR20080000124A (en) Method for detecting defocus of exposure process
Martin et al. WLCD: a new system for wafer level CD metrology on photomasks
US20080044739A1 (en) Correction Of Resist Critical Dimension Variations In Lithography Processes
KR20080000976A (en) Method for processing a optical proximity correction of semiconductor device's pattern
JP2007081292A (en) Inspection method, inspection system and program
JP4607072B2 (en) How to verify consistent measurement results across multiple CD measurement tools
KR100523653B1 (en) Method for inspecting photo process margine in a semiconductor device
KR20110001140A (en) Method for correcting optical proximity effect
US20230152714A1 (en) Method for correcting critical dimension measurements of lithographic tool
JP2024085420A (en) Multi-step process inspection method
KR100698074B1 (en) Method for manufacturing of model using the optical proximity correction
Eidelman et al. Optimization method of edge shot yield for various wafer layouts
JP2011100788A (en) Method for manufacturing integrated circuit device
KR20100134441A (en) Method for correcting pattern cd

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application