KR20070067676A - Method for producing fuel from captured carbon dioxide - Google Patents

Method for producing fuel from captured carbon dioxide Download PDF

Info

Publication number
KR20070067676A
KR20070067676A KR1020077003333A KR20077003333A KR20070067676A KR 20070067676 A KR20070067676 A KR 20070067676A KR 1020077003333 A KR1020077003333 A KR 1020077003333A KR 20077003333 A KR20077003333 A KR 20077003333A KR 20070067676 A KR20070067676 A KR 20070067676A
Authority
KR
South Korea
Prior art keywords
fuel
reaction
khco
hydrogen
carbon dioxide
Prior art date
Application number
KR1020077003333A
Other languages
Korean (ko)
Inventor
암논 요게브
엘리야후 갬존
Original Assignee
에이텍 아브님 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이텍 아브님 리미티드 filed Critical 에이텍 아브님 리미티드
Publication of KR20070067676A publication Critical patent/KR20070067676A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention provides a method for producing combustible fuels from a gaseous mixture containing carbon dioxide, which comprises: (i) capturing CO2 from said gaseous mixture by means of K2CO3, thus forming KHCO3; (ii) releasing the CO2 from said KHCO3; and (iii) subsequently producing fuel from the released CO2 by reaction with hydrogen.

Description

포집된 이산화탄소로부터 연료의 생성 방법 {METHOD FOR PRODUCING FUEL FROM CAPTURED CARBON DIOXIDE}Production of fuel from captured carbon dioxide {METHOD FOR PRODUCING FUEL FROM CAPTURED CARBON DIOXIDE}

본 발명은 이산화탄소를 함유한 기체 혼합물, 예컨대 대기로부터 이산화탄소를 포집한 후에 상기 이산화탄소를 이용하여 연료를 생성하는 방법에 관계된다.The present invention relates to a method of producing fuel using carbon dioxide after capturing carbon dioxide from a gas mixture containing carbon dioxide, such as the atmosphere.

온실 가스에는 이산화탄소, 메탄, 아산화질소 및 수증기가 포함된다. 온실 가스는 대기 중에서 자연적으로 발생하기도 하지만, 인간의 활동 또한 온실 가스를 방출시켜서 새로운 온실 가스를 생성시킨다. 이산화탄소 (CO2) 는 인간의 활동에 의해 배출되는 가장 흔한 온실 가스로서, 과도한 화석 연료 (석탄, 석유, 천연 가스) 의 사용이 그 원인이다. 현대 문명이 직면하고 있는 주요한 문제 가운데 하나가 대기 중 이산화탄소의 증가로 인한 온실 효과에의 악영향 및 지구 온난화이다. 과도한 화석 연료의 사용은 지구의 연료 매장량을 감소시키는 또 다른 문제를 낳는다.Greenhouse gases include carbon dioxide, methane, nitrous oxide and water vapor. While greenhouse gases occur naturally in the atmosphere, human activities also release greenhouse gases, creating new greenhouse gases. Carbon dioxide (CO 2 ) is the most common greenhouse gas emitted by human activity, due to the use of excessive fossil fuels (coal, petroleum, natural gas). One of the major problems facing modern civilization is the adverse effects on the greenhouse effect and the global warming caused by the increase in carbon dioxide in the atmosphere. Excessive fossil fuel use presents another problem that reduces the global fuel reserves.

기존의 에너지 흐름, 즉 빛, 바람, 흐르는 물, 생물학적 프로세스 및 지열류량과 같은 진행 중인 자연 현상으로부터 그 에너지를 포획하는 재생 에너지원을 전기를 발생시키는 데 사용할 수 있으며, 전기를 이용한 연료의 생성 방법에 대한 수 요가 증가하는 추세다.Renewable energy sources that capture energy from existing energy flows, such as light, wind, running water, biological processes, and geothermal flows, can be used to generate electricity. The demand for yoga is increasing.

자동차 배기 가스 또는 발전소로부터 직접 CO2 를 추출하려는 시도가 여러 차례 있었으며, 그 대부분은 배기 가스를 유기 아민 화합물 또는 수산화칼슘 또는 수산화나트륨과 같은 강염기와 반응시키는 것과 관계된다. 유기 아민을 사용하는 과정에서, 아민과 물의 용액을 기체와 접촉시킴으로써 아민과 CO2 가 화학적 반응을 거쳐 물에 용해되는 진한 아민을 생성한다. 상기 진한 아민 용액을 탈착기(desorber)에 펌핑하여 가열하고 반응을 역으로 진행시켜서 순수한 CO2 기체를 방출한다. 이 방법의 단점은 유기 아민 염기가 고가이고 불안정하다는 점이다.There have been several attempts to extract CO 2 directly from automotive exhaust or power plants, most of which relate to reacting the exhaust gas with organic amine compounds or strong bases such as calcium or sodium hydroxide. In the process of using organic amines, a solution of amine and water is brought into contact with a gas to produce a concentrated amine in which the amine and CO 2 undergo chemical reactions and dissolve in water. The concentrated amine solution is pumped to a desorber, heated and the reaction is reversed to release pure CO 2 gas. The disadvantage of this method is that the organic amine base is expensive and unstable.

이산화탄소 및 이를 함유한 혼합물은 가연성 연료의 생산을 위해 제안되었다. 예를 들어, 미국 특허 No. 4,140,602 는 대기 중의 이산화탄소를 알칼리 탄산염과 같은 탄산염으로 전환시킨 다음, 회수된 탄산염을 수소 기체와 합쳐서 메탄 및 메탄올과 같은 가연성 연료를 생산하는 가연성 연료의 화학적 생산 방법을 개시하고 있다. 상기 방법은 알칼리 탄산염을 수산화칼슘과 반응시켜서 탄산칼슘을 생성하는 추가 단계를 포함한다. 이 방법의 단점은 강염기 화합물인 Ca(OH)2 을 사용하여 CaCO3 을 생성함으로써 CO2 의 열적 방출에 상당량의 에너지가 필요하다는 데 있다.Carbon dioxide and mixtures containing it have been proposed for the production of flammable fuels. For example, U.S. Patent No. 4,140,602 discloses a chemical production process for combustible fuels that converts carbon dioxide in the atmosphere to carbonates such as alkali carbonates and then combines the recovered carbonates with hydrogen gas to produce combustible fuels such as methane and methanol. The method includes a further step of reacting alkali carbonate with calcium hydroxide to produce calcium carbonate. The disadvantage of this method is that a significant amount of energy is required for the thermal release of CO 2 by producing CaCO 3 using Ca (OH) 2 , a strong base compound.

발명의 개요Summary of the Invention

본 발명은 하기 단계를 포함하는, 이산화탄소를 함유한 기체 혼합물로부터 가연성 연료의 생성 방법에 관한 것이다:The present invention relates to a method of producing combustible fuel from a gas mixture containing carbon dioxide, comprising the following steps:

(i) 상기 기체 혼합물로부터 K2CO3 에 의해 CO2 를 포집하여 KHCO3 을 생성함; (i) CO 2 is trapped by K 2 CO 3 from the gas mixture to form KHCO 3 To generate;

(ii) 상기 KHCO3 으로부터 CO2 를 방출시킴; 및(ii) releasing CO 2 from the KHCO 3 ; And

(iii) 이어서, 방출된 CO2 로부터 수소와의 반응에 의해 연료를 생산함.(iii) Then, fuel is produced by reaction with hydrogen from the released CO 2 .

발명의 상세한 설명Detailed description of the invention

본 발명의 방법은, 바람직한 출발 물질로서 매우 흔한 대기 중 이산화탄소를 사용하고 연료의 연소에 의해 생성된 CO2 를 대기 중으로 돌려보냄으로써 대기 중 CO2 의 평형을 유지하는 가연성 연료의 생산을 가능케 한다. 본 방법은 열 촉매적 (thermal catalytic) 및 전기화학적 반응 등 당업계에 공지된 반응을 토대로, 이들 반응의 가역성을 이용하고 작동 압력 및/또는 공정에 공급되는 전기 전압을 변화시킴으로써 역반응을 수행한다.The process of the invention uses CO 2 in the atmosphere, which is very common as a preferred starting material, and produces CO 2 produced by combustion of fuel. Returning to the atmosphere enables the production of flammable fuels that balance the atmospheric CO 2 . The process is based on reactions known in the art, such as thermal catalytic and electrochemical reactions, to perform reverse reactions by using the reversibility of these reactions and by varying the operating pressure and / or the electrical voltage supplied to the process.

단계 (i) 에서 CO2 와 K2CO3 간의 반응은 K2CO3 수용액을 통해 수 중에 공기를 발포시키거나 또는 K2CO3 수용액의 액적을 공기 스트림에 분무시킴으로써 수행가능하다. 양 방법에서 하기 반응식에 따라 대기 중 CO2 가 K2CO3 과 반응하여 KHCO3 을 생성한다: The reaction between CO 2 and K 2 CO 3 in step (i) can be carried out by foaming air in water via aqueous K 2 CO 3 solution or spraying droplets of aqueous K 2 CO 3 solution into the air stream. In the method to both the CO 2 in the atmosphere according to reaction scheme produces a KHCO 3 by reaction with K 2 CO 3:

K2CO3 + H2O + CO2 → 2KHCO3 K 2 CO 3 + H 2 O + CO 22 KHCO 3

다음 단계에서, CO2 를 KHCO3 로부터 방출시킨다.In the next step, CO 2 is released from KHCO 3 .

본 발명의 일 구현예에서, 하기 반응식에 따라 CO2 를 유리시키기에 충분한 온도로 KHCO3 을 가열함으로써 CO2 를 방출시키고 따라서 K2CO3 을 재사용한다:In one embodiment of the present invention, CO 2 is released by heating KHCO 3 to a temperature sufficient to liberate CO 2 according to the following scheme and thus K 2 CO 3 is reused:

2KHCO3 + 열 → K2CO3 + H2O + CO2 2KHCO 3 + Heat → K 2 CO 3 + H 2 O + CO 2

다른 구현예에서, 하기 반응식에 따라 전기화학적 방법에 의해 수득된 KHCO3 으로부터 CO2 를 방출시킨다:In another embodiment, CO 2 is released from KHCO 3 obtained by electrochemical method according to the following scheme:

HCO3 - - e → .OH + CO2 HCO 3 -- e → . OH + CO 2

4(.OH) → 2H2O + O2 4 (. OH) → 2H 2 O + O 2

단계 (ii) 에서 수득된 CO2 를 이후 수소와 반응시켜서 메탄 및 메탄올과 같은 가연성 연료를 생산한다.The CO 2 obtained in step (ii) is then reacted with hydrogen to produce flammable fuels such as methane and methanol.

매우 높은 온도를 만들어내는 열원을 사용할 수 있는 일 구현예에서, CO2 와 수소의 반응은 열 촉매적 반응으로 수행된다. 한 가지 가능한 열 촉매적 반응은 메탄 개질의 역작동 (reverse operation) 이다. 메탄의 스팀 개질에서, 메탄을 촉매 상에서 고온 및 고압, 전형적으로는 800-1000℃ 및 30-40 바의 (과량의) 스팀과 접촉시켜 H2, CO 및 CO2 의 혼합물을 생성한다. 산업계에서 상기 공정은 보통, 그 낮은 가격으로 인하여 바람직한 촉매로서 Ni, 또는 Ru, Rh, Pd, Ir 또는 Pt 등의 귀금속 촉매를 사용하여 고정층 또는 유동층 막 반응기에서 수행된다. 본 발명에 따른 역 메탄 개질 (reverse methane reforming) 은 스팀 메탄 개질에서와 동일한 유형의 반응기에서 동일한 촉매를 사용하여 수행되나, 구체적 공정의 특성에 맞게 다양한 압력을 이용하여 진행되며, 상기 압력은 메탄 개질에 이용되는 압력보다는 항상 높다.In one embodiment where a heat source that produces very high temperatures can be used, the reaction of CO 2 with hydrogen is carried out as a thermal catalytic reaction. One possible thermal catalytic reaction is the reverse operation of methane reforming. In steam reforming of methane, methane is contacted with hot and high pressure, typically 800-1000 ° C. and 30-40 bar (excess) steam on the catalyst to produce a mixture of H 2 , CO and CO 2 . In the industry, the process is usually carried out in fixed bed or fluidized bed membrane reactors using noble metal catalysts such as Ni, or Ru, Rh, Pd, Ir or Pt as preferred catalysts due to their low cost. Reverse methane reforming according to the present invention is carried out using the same catalyst in the same type of reactor as in steam methane reforming, but using a variety of pressures to suit the specific process characteristics, the pressure being methane reforming. Always higher than the pressure used for

다른 구현예에서, 본 발명에 따른 CO2 와 수소의 반응은 연료 전지의 역작동과 같은 전기화학적 공정이다.In another embodiment, the reaction of CO 2 with hydrogen according to the invention is an electrochemical process such as reverse operation of a fuel cell.

연료 전지는 연료, 예컨대 수소 및 산화제, 예컨대 산소의 화학적 에너지를 연소없이 전기적 에너지 및 열로 전환시키는 전기화학적 에너지 전환 장치이다. 상기 장치는 배터리와 유사하나, 연료 전지는 배터리와는 달리 소모된 반응물이 계속적으로 보충되도록 설계되었는 바, 즉 연료 및 산화제가 통상적으로 연료 전지의 바깥에 저장되어 반응물이 소모됨에 따라 연료 전지 내로 이동된다. 전형적인 연료 전지의 경우, 연료가 애노드(anode)에서 소모되고 산화제가 캐소드(cathode)에서 소모된다. 각각 상이한 화학 원리를 이용하는 몇몇 종류의 연료 전지가 존재한다. 연료 전지는 보통, 사용하는 전해질 종류에 따라 분류되며, 이에는 인산-기재, 양성자 교환 막, 고체 중합체, 용융 탄산염, 고체 산화물, 알칼리, 직접 메탄올, 재생성 아연-공기(zinc-air) 및 양성자성 세라믹 연료 전지가 포함된다.Fuel cells are electrochemical energy conversion devices that convert chemical energy of fuels such as hydrogen and oxidants such as oxygen into electrical energy and heat without combustion. The device is similar to a battery, but unlike a battery, the fuel cell is designed to continuously replenish spent reactants, ie fuel and oxidant are typically stored outside the fuel cell and moved into the fuel cell as the reactants are consumed. do. In a typical fuel cell, fuel is consumed at the anode and oxidant is consumed at the cathode. There are several types of fuel cells, each using different chemistry principles. Fuel cells are usually classified according to the type of electrolyte used, including phosphate-based, proton exchange membranes, solid polymers, molten carbonates, solid oxides, alkalis, direct methanol, regenerated zinc-air, and protons. Ceramic fuel cells are included.

연료 전지에 있어서, 메탄과 같은 탄화수소가 연료인 경우 상기 탄화수소를 전지 내에서 물의 전기분해에 의해 수득된 산소와 반응시켜서 CO2 및 수소를 생성하고 전기를 발생시킨다.In fuel cells, when a hydrocarbon such as methane is the fuel, the hydrocarbon is reacted with oxygen obtained by electrolysis of water in the cell to produce CO 2 and hydrogen and generate electricity.

본 발명에 따르면, 연료 전지의 역작동은 물의 전기분해에 의해 그 자리에서 생성된 수소와 반응하는 CO2 를 포함한 연료전지에 전기가 공급되어, 예컨대 메탄 연료와 같은 목적하는 탄화수소를 생성하도록 수행된다. 상기 공정에 공급되는 전기 전압은 수행되는 구체적 공정의 특성을 기초로 결정되나, 이는 그 반대 공정, 즉 연료 전지의 정상적 작동에서 발생되는 전기 전압 보다는 항상 크다.According to the invention, the reverse operation of the fuel cell comprises CO 2 which reacts with the hydrogen produced on the spot by the electrolysis of water. The fuel cell is supplied with electricity to carry out the production of the desired hydrocarbons, for example methane fuel. The electrical voltage supplied to the process is determined on the basis of the characteristics of the specific process performed, but this is always greater than the electrical voltage generated in the reverse process, i.e., the normal operation of the fuel cell.

바람직한 일 구현예에서, 전기화학적 공정은 역(逆) 직접 메탄올 연료 전지 (DMFC) 에 해당하고 수득된 연료는 메탄올이다.In one preferred embodiment, the electrochemical process is a reverse direct methanol fuel cell. Corresponding to (DMFC) and the fuel obtained is methanol.

DMFC 는 30-130℃ 의 온도에서 작동하며 하기 반응식에 따라 액체 메탄올을 전해질로 사용하는 저온 연료 전지이다: DMFC is a low temperature fuel cell that operates at a temperature of 30-130 ° C. and uses liquid methanol as electrolyte according to the following scheme:

CH3OH + 3/2O2 → CO2 + 2H2OCH 3 OH + 3 / 2O 2 → CO 2 + 2H 2 O

DMFC 의 중심 성분은 막, 촉매 및 확산층으로 이루어진 막 전극 어셈블리이다. 상기 막은 양성자를 분리(splitting off)하여 막을 통해 이동시킬 수 있는 산성 기를 갖는 중합체일 수 있다. 확산층은 연료를 촉매층으로 보내고 연소 산물을 제거한다. 촉매층에서, 화학 에너지가 전기 에너지로 전환되는 전기화학적 반응이 일어난다. 촉매에는 기질 상에 이를 적용하기 위해 접착제로서 첨가제가 제공되며, 이는 보통 백금 및 백금/루테늄과 같은 귀금속을 기재로 한다.The central component of DMFC is a membrane electrode assembly consisting of a membrane, a catalyst and a diffusion layer. The membrane may be a polymer having acidic groups capable of splitting off protons and moving through the membrane. The diffusion layer directs fuel to the catalyst bed and removes combustion products. In the catalyst bed, an electrochemical reaction occurs in which chemical energy is converted into electrical energy. The catalyst is provided with an additive as an adhesive for applying it on a substrate, which is usually based on precious metals such as platinum and platinum / ruthenium.

본 발명에 따르면, DMFC 의 역작동에 사용되는 촉매는 메탄올 연료 전지의 정상 작동 방식에서 사용되는 것과 동일하고, 온도 및 공정에 공급되는 전기 전압과 같은 다른 파라미터는 수행되는 구체적 공정의 특성에 따라 결정된다.According to the invention, the catalyst used for the reverse operation of the DMFC is the same as that used in the normal operation of a methanol fuel cell, and other parameters such as temperature and the electrical voltage supplied to the process are determined depending on the specific process characteristics performed. do.

다른 바람직한 구현예에서, 전기화학적 공정은 역 용융 탄산염 연료 전지 (MCFC) 와 일치하고 수득된 연료는 메탄과 같은 탄화수소이다.In another preferred embodiment, the electrochemical process is consistent with a reverse molten carbonate fuel cell (MCFC) and the fuel obtained is a hydrocarbon such as methane.

MCFC 는 600-650℃ 온도에서 작동하는 고온 연료 전지이므로, 저온 연료 전지에 비해 더 높은 연료 대 전기 비율 및 총 에너지 사용 효율을 달성할 수 있다. MCFC 에 사용되는 전해질은 LiAlO2 과 같은 세라믹 매트릭스에서 유지될 수 있는 Na2CO3, K2CO3, Li2CO3 등의 알칼리 탄산염 또는 이의 조합이다. 연료 전지에 있어서, 알칼리 탄산염은 전해질 매트릭스을 통해 이온 전도성을 제공하는 탄산염 이온과 함께 고전도성 용융염으로 용융된다. 니켈 및 니켈 산화물은 각각 애노드 및 캐소드 상의 반응을 촉진하는 데 적당하고, 고가의 촉매 (귀금속) 은 필요치않다.Since MCFCs are high temperature fuel cells operating at 600-650 ° C, higher fuel-to-electricity ratio and total energy use efficiency can be achieved compared to low temperature fuel cells. The electrolyte used in MCFC is an alkali carbonate such as Na 2 CO 3 , K 2 CO 3 , Li 2 CO 3 , or a combination thereof that can be maintained in a ceramic matrix such as LiAlO 2 . In fuel cells, alkali carbonates are melted into highly conductive molten salts with carbonate ions that provide ionic conductivity through the electrolyte matrix. Nickel and nickel oxide are suitable for catalyzing the reaction on the anode and cathode, respectively, and expensive catalysts (noble metals) are not needed.

MCFC 에서 소모되는 연료는 보통 천연 가스, 주로 메탄이며, 이 경우 메탄 및 스팀은 연료 전지 스택 내부에서 수소가 풍부한 기체로 전환된다 ("내부 개질" 이라 불리는 공정). 전지 내부에서 수행되는 전체 반응은 다음과 같다:Fuel consumed in MCFC is usually natural gas, mainly methane, in which methane and steam are converted into hydrogen-rich gas inside the fuel cell stack (a process called "internal reforming"). The overall reaction carried out inside the cell is as follows:

CH4 + O2 → CO2 + 2H2 CH 4 + O 2 → CO 2 + 2H 2

본 발명에 따르면, MCFC 의 역작동을 위한 작동 조건 (온도 및 압력) 은 상기 전지의 정상적 작동 방식에서와 유사하다. 정확한 조건 뿐만 아니라 공정에 공급되는 전압은 수행되는 구체적 공정의 특성을 기초로 결정된다. According to the invention, the operating conditions (temperature and pressure) for reverse operation of the MCFC are similar to those of the normal operation of the cell. The exact conditions as well as the voltage supplied to the process are determined based on the specific process characteristics performed.

본 발명의 방법에 의해 수득되는 메탄 또는 메탄올은 이후 공지의 화학 반응에 의해 더 긴 탄화수소로 전환될 수 있다.Methane or methanol obtained by the process of the invention can then be converted to longer hydrocarbons by known chemical reactions.

Claims (11)

하기 단계를 포함하는, 이산화탄소를 함유한 기체 혼합물로부터 가연성 연료의 생성 방법:A method of producing combustible fuel from a gas mixture containing carbon dioxide, comprising the following steps: (i) 상기 기체 혼합물로부터 K2CO3 에 의해 CO2 를 포집하여 KHCO3 을 생성함; (i) CO 2 is trapped by K 2 CO 3 from the gas mixture to form KHCO 3 To generate; (ii) 상기 KHCO3 으로부터 CO2 를 방출시킴; 및(ii) releasing CO 2 from the KHCO 3 ; And (iii) 이어서, 방출된 CO2 로부터 수소와의 반응에 의해 연료를 생산함.(iii) Then, fuel is produced by reaction with hydrogen from the released CO 2 . 제 1 항에 있어서, 상기 기체 혼합물이 공기인 방법.The method of claim 1 wherein said gas mixture is air. 제 2 항에 있어서, K2CO3 수용액을 통해 수 중에 공기를 발포시킴으로써 CO2 의 포집을 수행하는 방법.The method of claim 2, wherein the capture of CO 2 is carried out by foaming air in water through an aqueous K 2 CO 3 solution. 제 2 항에 있어서, K2CO3 수용액의 액적을 공기 스트림에 분무시킴으로써 CO2 의 포집을 수행하는 방법.The process of claim 2, wherein the capture of CO 2 is carried out by spraying droplets of aqueous K 2 CO 3 aqueous solution into the air stream. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 단계 (ii) 에서의 CO2 를, CO2 를 유리시키기에 충분한 온도로 KHCO3 을 가열함으로써 KHCO3 으로부터 방출시 키고, 이로써 K2CO3 을 재사용하는 방법.The method according to any one of the preceding claims, kigo when the CO 2 in step (ii), released from the KHCO 3 by heating the KHCO 3 to a temperature sufficient to liberate the CO 2, whereby K 2 CO 3 How to reuse it. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 단계 (ii) 에서의 CO2 를 전기화학적 공정에 의해 KHCO3 으로부터 방출시키는 방법.The process according to any one of claims 1 to 4, wherein the CO 2 in step (ii) is released from KHCO 3 by an electrochemical process. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, 단계 (iii) 에서 CO2 와 수소의 반응이 촉매적 열 반응 (catalytic thermal reaction) 인 방법.The process according to any one of claims 1 to 6, wherein the reaction of CO 2 with hydrogen in step (iii) is a catalytic thermal reaction. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, 단계 (iii) 에서 CO2 와 수소의 반응이 전기화학적 반응인 방법.The process according to any one of claims 1 to 6, wherein the reaction of CO 2 with hydrogen in step (iii) is an electrochemical reaction. 제 8 항에 있어서, 상기 전기화학적 반응이 연료 전지의 역작동 (reverse operation) 에 해당하고 수소가 그 자리 (in situ) 에서 발생하는 방법.The method of claim 8, wherein the electrochemical reaction corresponds to a reverse operation of a fuel cell and hydrogen is generated in situ . 제 9 항에 있어서, 상기 전기화학적 반응이 직접 메탄올 연료 전지 (DMFC) 의 역작동에 해당하고 생성되는 연료는 메탄올인 방법. 10. The method of claim 9, wherein the electrochemical reaction corresponds to the reverse operation of a direct methanol fuel cell (DMFC) and the fuel produced is methanol. 제 6 항에 있어서, 상기 전기화학적 반응이 용융 탄산염 연료 전지 (MCFC) 의 역작동에 해당하고 생성되는 연료는 메탄과 같은 탄화수소인 방법.7. The method of claim 6, wherein the electrochemical reaction corresponds to the reverse operation of a molten carbonate fuel cell (MCFC) and the fuel produced is a hydrocarbon such as methane.
KR1020077003333A 2004-07-12 2005-07-12 Method for producing fuel from captured carbon dioxide KR20070067676A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58686904P 2004-07-12 2004-07-12
US60/586,869 2004-07-12

Publications (1)

Publication Number Publication Date
KR20070067676A true KR20070067676A (en) 2007-06-28

Family

ID=35784255

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077003333A KR20070067676A (en) 2004-07-12 2005-07-12 Method for producing fuel from captured carbon dioxide

Country Status (7)

Country Link
US (1) US20080072496A1 (en)
EP (1) EP1778583A2 (en)
KR (1) KR20070067676A (en)
AU (1) AU2005261273A1 (en)
CA (1) CA2579133A1 (en)
RU (1) RU2007105092A (en)
WO (1) WO2006006164A2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614364B2 (en) * 2005-07-06 2013-12-24 Inentec Inc. Renewable electricity conversion of liquid fuels from hydrocarbon feedstocks
GB0615731D0 (en) * 2006-08-08 2006-09-20 Itm Fuel Cells Ltd Fuel synthesis
EP2057253A4 (en) * 2006-09-02 2011-12-07 Hydrocarbons Unltd Llc A system and process for hydrocarbon synthesis
SE530745C2 (en) * 2006-10-06 2008-09-02 Morphic Technologies Ab Publ Method of running a fuel cell wherein the anode has a catalyst comprising tellurium
US8366966B2 (en) 2006-10-25 2013-02-05 Engineuity Research And Development Ltd. Methods and systems for producing energy from carbon dioxide
FR2912421B1 (en) * 2007-02-14 2010-08-20 Charzat Claude Maurice PROCESS FOR THE PRODUCTION OF SUBSTITUTE TO CARBOHYDROGENIC PRODUCTS OF FOSSIL ORIGIN, PROVIDING THE TOTAL RECYCLING OF THE CARBON DIOXIDE FROM THEIR USE
GB2457929A (en) * 2008-02-28 2009-09-02 David James Benton Process to extract carbon dioxide from air
WO2010019378A2 (en) 2008-08-13 2010-02-18 Schlumberger Technology Corporation Plug removal and setting system and method
EP2382174A4 (en) 2009-01-29 2013-10-30 Trustees Of The University Of Princeton Conversion of carbon dioxide to organic products
AU2010320483A1 (en) 2009-11-20 2012-07-12 Cri Ehf Storage of intermittent renewable energy as fuel using carbon containing feedstock
WO2011100719A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Engineered fuel storage, respeciation and transport
US8784661B2 (en) * 2010-02-13 2014-07-22 Mcallister Technologies, Llc Liquid fuel for isolating waste material and storing energy
US8845877B2 (en) * 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
PL3401410T3 (en) 2010-06-26 2021-11-29 Virdia, Llc Methods for production of sugar mixtures
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8524066B2 (en) * 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
CA2807102C (en) 2010-07-31 2018-08-21 Myriant Corporation Improved fermentation process for the production of organic acids
IL207329A0 (en) 2010-08-01 2010-12-30 Robert Jansen A method for refining a recycle extractant and for processing a lignocellulosic material and for the production of a carbohydrate composition
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
EP2694594A4 (en) 2011-04-07 2015-11-11 Virdia Ltd Lignocellulose conversion processes and products
AU2012278949A1 (en) 2011-07-06 2014-01-16 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
EP2729600A2 (en) 2011-07-06 2014-05-14 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
US9056275B2 (en) 2011-08-18 2015-06-16 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For An On Behalf Of Arizona State University Capture and release of carbon dioxide
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
WO2013112619A1 (en) 2012-01-23 2013-08-01 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
EP2638951A1 (en) 2012-03-14 2013-09-18 Artan Holding Ag Combined gas treatment
EP2695946A1 (en) 2012-08-09 2014-02-12 Methapower Biogas GmbH Method and device for manufacturing dimethyl ether
WO2014027116A1 (en) * 2012-08-17 2014-02-20 Antecy B.V. Process for converting a gaseous feedstock to liquid organic compounds
EP3242871B1 (en) 2015-01-07 2019-11-06 Virdia, Inc. Methods for extracting and converting hemicellulose sugars
AU2017383560B2 (en) * 2016-12-23 2023-05-25 Carbon Engineering Ltd. Method and system for synthesizing fuel from dilute carbon dioxide source
AU2022207712A1 (en) 2021-01-15 2023-07-06 Cri Hf Methanol synthesis reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959094A (en) * 1975-03-13 1976-05-25 The United States Of America As Represented By The United States Energy Research And Development Administration Electrolytic synthesis of methanol from CO2
US4609440A (en) * 1985-12-18 1986-09-02 Gas Research Institute Electrochemical synthesis of methane
US4609441A (en) * 1985-12-18 1986-09-02 Gas Research Institute Electrochemical reduction of aqueous carbon dioxide to methanol
US4919910A (en) * 1988-08-17 1990-04-24 Church & Dwight Co., Inc. Process for the production of potassium bicarbonate
EP1125337A2 (en) * 1998-10-27 2001-08-22 Quadrise Limited Electrical energy storage compound

Also Published As

Publication number Publication date
EP1778583A2 (en) 2007-05-02
CA2579133A1 (en) 2006-01-19
WO2006006164A3 (en) 2009-05-07
RU2007105092A (en) 2008-08-20
AU2005261273A1 (en) 2006-01-19
WO2006006164A2 (en) 2006-01-19
US20080072496A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
KR20070067676A (en) Method for producing fuel from captured carbon dioxide
KR101939687B1 (en) Reformer-electrolyzer-purifier(rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen
US7883803B2 (en) SOFC system producing reduced atmospheric carbon dioxide using a molten carbonated carbon dioxide pump
KR101240704B1 (en) Fuel reforming system having movable heat source and fuel cell system comprising the same
EP1584122B1 (en) Process for generating electricity and concentrated carbon dioxide
KR100987823B1 (en) Solid Oxide Fuel Cell System
US20230046387A1 (en) Method and plant for producing hydrogen
JP2013119556A (en) Fuel fabrication method and fuel fabrication equipment
KR100786462B1 (en) reformer with oxygen supplier and fuel cell system using the same
Fu et al. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode
Wiyaratn Reviews on fuel cell technology for valuable chemicals and energy co-generation
Dong et al. Ion-conducting ceramic membranes for renewable energy technologies
CN105702992B (en) A kind of method based on molten carbonate fuel cell synthesis ammonia
KR102439950B1 (en) Ammonia based complex fuel cell system
KR101620237B1 (en) Complex fuel cell system
KR100987824B1 (en) Start-up protocol of Self-sustained Solid Oxide Fuel Cell System
KR20160007821A (en) Direct carbon fuel cell system with high efficiency of fuel utilization
Rai et al. Fuel Cell Utilization for Energy Storage
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
JP7340093B2 (en) fuel cell power generation system
JP2005166486A (en) Direct type fuel cell system
JP6863124B2 (en) Fuel cell power generation system
Ghasem Ammonia and fuel cell technology
KR101401451B1 (en) Heat exchange type catalytic oxidizer and high concentration dioxide recycle apparatus using the same
Yildiz et al. Fuel cells

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid