KR20070033220A - Magnet Circuit of polyphase Iai parallel connection and switching control circuit - Google Patents

Magnet Circuit of polyphase Iai parallel connection and switching control circuit Download PDF

Info

Publication number
KR20070033220A
KR20070033220A KR1020050087680A KR20050087680A KR20070033220A KR 20070033220 A KR20070033220 A KR 20070033220A KR 1020050087680 A KR1020050087680 A KR 1020050087680A KR 20050087680 A KR20050087680 A KR 20050087680A KR 20070033220 A KR20070033220 A KR 20070033220A
Authority
KR
South Korea
Prior art keywords
phase
winding
circuit
parallel
magnetic
Prior art date
Application number
KR1020050087680A
Other languages
Korean (ko)
Inventor
배연수
Original Assignee
주식회사 한마음에너지과학원
배연수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한마음에너지과학원, 배연수 filed Critical 주식회사 한마음에너지과학원
Priority to KR1020050087680A priority Critical patent/KR20070033220A/en
Publication of KR20070033220A publication Critical patent/KR20070033220A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/282Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling field supply only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

A polyphase I parallel connection magnetic circuit and a switching control circuit are provided to make three-phase magnetic field balance and alternative magnetic flux induced by connecting start and end terminals of each coil winding with a switching control circuit. Polyphase I(ai) parallel connections(451-456) are formed by winding at least two power apply coil and composite power apply coil around a rotary and an armature. An I(ai) parallel connection switching control circuit(49-1) controls a magnetic circuit to induce alternative magnetic flux. A 3-phase 2-parallel 4-winding control member is adapted to reduce inductive reactance, counter electromotive force, and material resistance. A 3-phase 9winding magnetic circuit is formed by winding a functional coil around a three-phase magnetic circuit. A composite connection configuring circuit controls a voltage characteristic and a current characteristic.

Description

다상 아이 병렬결선자기회로 및 스위칭제어회로{Magnet Circuit of polyphase I(ai) parallel connection and switching control circuit}Magnetic circuit of polyphase I (ai) parallel connection and switching control circuit

도1a는 종래의 3상 Y결선 자계평형원리설명도,Figure 1a is a conventional three-phase Y-connection magnetic field balance principle explanatory diagram,

도1b는 본 발명의 3상 I(ai)병렬결선 자기회로도,1B is a three-phase I (ai) parallel wiring magnetic circuit diagram of the present invention;

도1c는 본 발명의 3상 I(ai)병렬결선의 자계평형원리설명도,Figure 1c is an explanatory diagram of the principle of magnetic field equilibrium of a three-phase I (ai) parallel connection of the present invention,

도2a는 본 발명의 1전원 3상 I(ai)병렬결선의 자계제어회로도,2A is a magnetic field control circuit diagram of a one-power three-phase I (ai) parallel connection of the present invention;

도2b는 본 발명의 스위칭제어 시퀸스도,2b is a switching control sequence diagram of the present invention;

도3은 본 발명의 2전원 3상 I(ai)병렬결선의 자계제어회로도,3 is a magnetic field control circuit diagram of a two-power three-phase I (ai) parallel connection of the present invention;

도4a는 본 발명의 실시예의 복합결선 자계제어회로도,4A is a schematic diagram of a multi-field magnetic field control circuit in accordance with an embodiment of the present invention;

도4b는 본 발명의 실시예의 Y결선제어 시퀸스도,4B is a Y-connection control sequence diagram of the embodiment of the present invention;

도4c는 본 발명의 실시예의 I(ai)병렬결선제어 시퀸스도,4C is an I (ai) parallel connection control sequence diagram of an embodiment of the present invention;

본 발명은 단상과 다상으로 구성된 회전기 및 변환기자기회로에 2기능성코일 및 복합기능성코일로 권선한 다음에 다상 I(ai)병렬결선하고 다상 I(ai)병렬결선된 코일권선의 각 시작단과 끝단을 I(ai)병렬결선스위칭제어회로(I(ai)인버터)에 연결하여 3상2병렬4권선전원인가제어로 3상 자계평형과 교번자속이 유도되도록 구성한 다상 I(ai)병렬결선자기회로와 스위칭제어회로에 관한 것이다.The present invention is a winding of a bi-functional coil and a multi-functional coil to the rotor and the converter magnetic circuit composed of single phase and multi-phase, and then each start and end of the coil windings of the multi-phase I (ai) parallel connection and the multi-phase I (ai) parallel connection Multi-phase I (ai) parallel wiring magnetic circuit which is connected to I (ai) parallel wiring switching control circuit (I (ai) inverter) and configured to induce 3-phase magnetic field equilibrium and alternating magnetic flux by 3-phase 2-parallel 4-wire power supply control. It relates to a switching control circuit.

지금까지 사용되어온 다상제어를 위한 자기회로는 Y결선과 △결선구조의 교류특성의 전원인가로 회전력과 전력변환을 하였다.  The magnetic circuits for polyphase control that has been used up to now have rotational power and power conversion by applying the AC characteristics of the Y and △ connection structures.

한국특허 제0336305호의 스위칭을 이용한 자기회로는 직류특성의 전원인가를 위하여 자기회로에 양극(Bipolar)권선하고 상(phase) 직렬 결선하여 양극(Bipolar)권선의 양단에 연결된 스위칭소자를 제어하여 자극을 발생시키도록 구성되었다.The magnetic circuit using the switching of Korean Patent No. 0336305 uses a bipolar winding to a magnetic circuit and a phase series connection to control a switching element connected to both ends of the bipolar winding to supply a DC power. It is configured to generate.

그러나 Y결선과 △결선은 3상 교류특성의 자속유도회로이므로 임피던스와 역기전력 및 재료저항이 합성되어 높은 전압인가가 요구되었다.However, since Y and △ connections are magnetic flux induction circuits with three-phase AC characteristics, high voltages are required by combining impedance, back EMF and material resistance.

그리고 한국특허 제0336305호의 스위칭을 이용한 자기회로는 임피던스는 줄었으나 상 직렬구조이므로 상 역기전력과 재료저항이 합성되어 전압인가를 높여야 했다. In addition, the magnetic circuit using the switching of Korean Patent No. 0336305 has a low impedance but has a phase series structure. Therefore, the reverse electromotive force and the material resistance have to be combined to increase the voltage application.

본 발명은 이러한 문제점을 해소하기 위한 것으로 그 목적은 다상 I(ai)병렬결선 자기회로 및 제어회로를 구성하여 교류저항과 재료저항을 줄이기 위함이다. The present invention is to solve this problem is to reduce the AC resistance and material resistance by configuring a multi-phase I (ai) parallel connection magnetic circuit and a control circuit.

본 발명의 다른 목적은 전압특성과 전류특성을 이용한 복합결선의 자기회로 및 제어회로를 구성하여 전원인가효율을 높이기 위함에 있다.Another object of the present invention is to increase the power supply efficiency by configuring the magnetic circuit and the control circuit of the composite connection using the voltage characteristics and the current characteristics.

상술한 목적을 달성하기 위한 본 발명의 일 특징에 의하면 본 발명은 단상과 다상으로 구성된 회전기 및 변압기자기회로의 전기자 각상에 2개 이상의 전원인가코일 및 복합전원인가코일을 권선하여 3상6권선 및 다상 다 권선의 I(ai)병렬결선; According to one aspect of the present invention for achieving the above object is a three-phase six winding by winding two or more power supply coils and composite power supply coils on each armature of the rotor and transformer magnetic circuit composed of single-phase and multi-phase and I (ai) parallel connection of multiphase multi winding;

하고 I(ai)병렬 결선한 자기회로를 제어하여 3상 자계평형과 교번자속을 유도하기 위하여 구성한 I(ai)병렬결선스위칭제어회로(I(ai)인버터);And an I (ai) parallel connection switching control circuit (I (ai) inverter) configured to control the I (ai) parallel connection magnetic circuit to induce three-phase magnetic field balance and alternating magnetic flux;

유도성 리액턴스와 역기전력 및 재료저항을 줄이기 위하여 1상 2권선 중첩전원인가와 1상1권선 전원인가 및 1상1권선 전원인가조합형태의 병렬제어가 되도록 구성한 3상2병렬4권선제어수단;Three-phase, two-parallel four-winding control means configured to perform parallel control of a combination of one-phase two-winding superposition power supply, one-phase one-winding power supply, and one-phase one-winding power supply in order to reduce inductive reactance, counter electromotive force and material resistance;

3가닥 및 3묶음으로 구성한 기능성코일을 3상 자기회로에 권선한 3상9권선자기회로;A three-phase nine winding magnetic circuit in which a functional coil composed of three strands and three bundles is wound on a three-phase magnetic circuit;

3상9권선자기회로를 Y결선과 I(ai)병렬결선으로 분리 결선하여 전압특성제어와 전류특성제어를 동시에 제어할 수 있도록 구성한 고전압·소 전류 및 저전압·대 전류분리인가 복합결선구성회로; A high-voltage, small-current and low-voltage-to-current separated-coupled composite wiring circuit configured to separate three-phase nine-wire magnetic circuits into Y-wires and I (ai) parallel wires to simultaneously control voltage characteristic and current characteristic control;

자기회로에 고전압·소 전류 및 저전압·대 전류분리인가 할 경우 저전압·대 전류인가 코일권선으로 유도되는 고전압을 제어하기 위하여 직류전원변환회로(컨버터)와 교번자속유도회로(인버터)사이에 전압조정초퍼회로를 부가한 복합인버터 구성회로;When high voltage, small current, low voltage, and large current separation are applied to the magnetic circuit, the voltage is adjusted between the DC power conversion circuit (converter) and the alternating magnetic flux induction circuit (inverter) to control the high voltage induced by the coil winding. A composite inverter circuit comprising a chopper circuit;

변환 인가 제어와 I(ai)병렬결선 대 전류인가제어 및 I(ai)병렬결선의 코일 권선으로 유도되는 고전압을 제어하기위하여 I(ai)병렬결선스위칭제어회로(I(ai)인버터)의 전압조정초퍼를 부가한 복합인버터 구성회로;The voltage of the I (ai) parallel connection switching control circuit (I (ai) inverter) to control the high voltage induced into the coil winding of the conversion application control and the I (ai) parallel connection to the current application control and the I (ai) parallel connection. A composite inverter configuration circuit including an adjustment chopper;

가 제공된다.Is provided.

이러한 구성에 대하여 그 원리와 작용을 설명하면 다음과 같다. The principle and operation of this configuration are as follows.

도1a는 종래 3상 Y결선의 자계평형조건을 설명한 원리도이다.Figure 1a is a principle diagram illustrating the magnetic field balance conditions of the conventional three-phase Y connection.

자석(1)은 N극과 S극으로 구성되며 자속의 흐름이 N극으로부터 S극으로 자력선이 형성됨은 자연의 법칙이다. 그런데 전동기와 변압기 등에서 3상구성에 의한 자계평형을 형성시키기 위한 3상 결선으로 Y결선과 △결선이 지금까지 사용되었다.The magnet 1 is composed of an N pole and an S pole, and it is a natural law that magnetic flux lines are formed from the N pole to the S pole. However, Y and △ connections have been used so far as three-phase connections for forming magnetic field equilibrium by three-phase configuration in electric motors and transformers.

Y결선 자기회로(A)는 U (2)상 코일권선과 V (3)상 코일권선 및 W (4)상 코일권선의 끝단이 공통결합 되어 있으므로 U (2)상 코일권선에 전원을 인가하면 1N 자속을 유도하고, V (3)상 코일권선에 ½전류가 흘러 ½S극을 유도하며, W (4)상 코일권선에 ½전류가 흘러 ½S극을 유도하여 자계평형을 이루게 된다.The Y-connected magnetic circuit (A) is connected to the coil winding of U L (2) because the ends of the coil winding of U L (2), coil winding of V L (3) and coil winding of W L (4) are commonly coupled. When the power is applied, 1N magnetic flux is induced, ½ current flows through the coil winding of V L (3) to induce ½S pole, and ½ current flows into the coil winding of W L (4) phase to induce ½S pole. Is achieved.

그러나 Y결선은 선간직렬결선 구성이므로 선간병렬결선의 △결선보다

Figure 112005052567396-PAT00001
배 만큼의 재료저항(R)과 리액턴스(X ) 및 역기전력(E C )이 합성저항으로 작용하기 때문에 높은 입력전압(V IN )이 요구되었다.However, since the Y connection is composed of line-to-line connection,
Figure 112005052567396-PAT00001
Since the material resistance (R), the reactance (X L ) and the counter electromotive force (E C ) are doubled, the high input voltage (V IN ) is required.

그런데 도시되지 않은 △결선은 선간병렬결선이기 때문에 Y결선보다는 합성저항이

Figure 112005052567396-PAT00002
배 낮아지지만 선간결선을 해체하여 I(ai)결선으로 구성할 경우 합성저항은 2배로 줄게 된다. 하지만 3상3권선에 전류를 인가하여 3상 자계평형을 이루려면 대단히 어려운 전류조건제어가 이루어져야한다.However, the △ connection (not shown) is a parallel line between lines, so the composite resistance is
Figure 112005052567396-PAT00002
Although lowered, the combined resistance would be doubled if the wires were disassembled to form I (ai) wires. However, to apply three-phase three-winding current to achieve three-phase magnetic field balance, very difficult current condition control is required.

따라서 본 발명은 자기회로의 전기자 각상에 2개의 코일로 권선하여 3상6권선I(ai)병렬결선하고 3상2병렬4권선 전류인가제어로 3상 자계평형을 이루면서 합성저항을 줄이는 방법을 제시하고자 한다. Therefore, the present invention proposes a method of reducing the combined resistance by winding two coils on each armature of a magnetic circuit in three-phase six winding I (ai) in parallel and achieving three-phase magnetic field equilibrium by three-phase two-parallel four-winding current application control. I would like to.

도1b는 본 발명의 3상6권선구성의 자기회로를 제시하고 있다.Fig. 1B shows a magnetic circuit of the three-phase six winding configuration of the present invention.

도1c에서는 I(ai)병렬결선의 3상2병렬4권선 전류인가에 의한 3상 자계평형원리를 설명하기 위한 원리를 도시한 것으로 그 구성과 작용은 살펴보면 다음과 같다.Figure 1c shows the principle for explaining the three-phase magnetic field equilibrium principle by applying the three-phase, two-parallel four-winding current of the I (ai) parallel connection, the configuration and operation will be described as follows.

전원1(12)의 분배선(14)에 U상의 U L 1(6)과 W상의 W L 1(10)(2권선)을 연결하고, 전원2(13)의 분배선(15)에 U상의 U L 2(7)와 V상의 V L 2(9)(2권선)를 연결하여 전원1(12)과 전원2(13)를 동시인가하면 U상의 U L 1(6)코일과 W상의 W L 1(10)코일에 전류가 나뉘어(병렬) 흐르게 되고, U상의 U L 2(7)코일과 V상의 V L 2(9)코일에 나뉘어(병렬) 흐르는 전류에 의하여 U상의 U L 1(6)코일에 인가된 ½전류와 U L 2(7)코일에 인가된 ½전류가 중첩되어 U상은 1N극의 합성자속이 유도되도록 하고, V상의 V L 1(8)코일에 ½전류가 흘러 ½S극자속이 유도되도록 하며, W상의 W L 1(10)코일에 ½전류가 흘러 ½S극의 자속이 유도되도록 하면,

Figure 112005052567396-PAT00003
되어 3상 자계평형이 이루어지게 된다.Connect U L 1 (6) of U phase and W L 1 (10) (2 windings) of W phase to the distribution line 14 of the power source 1 (12), and U to the distribution line 15 of the power source 2 (13). the U L 2 (7) and V on the V L 2 (9) (2 windings) for connection to power supply 1 12, and when applying the same time the power supply 2 (13) U L 1 (6) coils of U and W on the W L 1 (10) the current divided to the coil (parallel) flow and, divided in the U L 2 (7), the coil and the V L 2 (9) coiled on the V of the U (parallel) of the U by a current flowing in U L 1 (6) The ½ current applied to the coil and the ½ current applied to the U L 2 (7) coil are superimposed so that the synthetic magnetic flux of 1N pole is induced in the U phase, and ½ current is applied to the V L 1 (8) coil of the V phase. If ½ S pole flux is induced and ½ current flows to W L 1 (10) coil of W phase,
Figure 112005052567396-PAT00003
Thus, three-phase magnetic field equilibrium is achieved.

이 원리에 대하여 실제로 적용한 회로구성은 아래와 도2에서 제시하고 있다.The circuit configuration actually applied to this principle is shown in FIG. 2 below.

도2a는 설명의 편의상 4극3상 회전기 자기회로에 적용한 경우의 I(ai)병렬결선구성과 3상 자계평형자속유도를 위한 3상2병렬4권선제어 및 전원인가회로를 도시한 것으로 그 구성은 교류를 직류로 변환시켜 전원을 전원1(214)과 전원2(215)로 분리하여 병렬로 분배하는 전원부(21)와 U상에 2개의 자속유도코일 Lu1(231)과 Lu2(232)를 권선하고, V상에 2개의 자속유도코일 Lv1(233)과 Lv2(234)를 권선하며, W상에 2개의 자속유도코일 Lw1(235)과 Lw2(236)를 권선하여 3상6권선(23)을 I(ai)병렬로 나열하고 U상의 Lu1(231)권선과 V상의 Lv1(233)권선 및 W상의 Lw1(235)권선의 3상 3권선을 전원이 분리된 전원1(214)에 스위칭소자(22)를 매개로하여 I(ai)병렬연결하고, 나머지 3상 3권선은 전원2(215)에 스위칭소자(22)를 매개로 I(ai)병렬 연결하여 구성한다.FIG. 2A shows an I (ai) parallel connection configuration and a three phase two parallel four winding control and power supply circuit for the three-phase magnetic field magnetic flux induction when applied to a four-pole three-phase rotor magnetic circuit for convenience of explanation. The power supply 21 for distributing the power into power 1 (214) and power 2 (215) by distributing alternating current into DC and two magnetic flux induction coils Lu 1 (231) and Lu 2 (232) on the U. Winding, winding two magnetic flux induction coils Lv1 (233) and Lv2 (234) on V, winding two magnetic flux induction coils Lw1 (235) and Lw2 (236) on W; ) In parallel with I (ai), and switch the three-phase three windings of the Lu1 (231) winding of U, the Lv1 (233) winding of V, and the Lw1 (235) winding of W, to the power 1 (214) with the power disconnected. I (ai) parallel connection via the element 22, and the remaining three-phase three windings are configured by connecting the I (ai) in parallel to the power supply 2 (215) via the switching element 22.

이러한 구성에 대하여 3상 자계평형을 위한 자속을 유도하기위해서는 첫째, 전원을 분리한 병렬인가방법과 2전원인가방법 및 다 전원인가방법이 필요하며,In order to induce the magnetic flux for three-phase magnetic field balance for this configuration, first, separate parallel application, two-power application, and multi-power application method are required.

둘째, 2상 2권선병렬전원인가에 의한 3상4권선제어가 필요하다.Second, 3-phase 4-winding control by applying 2-phase 2-winding parallel power supply is required.

보다 상세하게는 도2b의 스위칭 시퀸스도에서 제시한 바와 같이 전기각(271)0°∼60° 기계각(272)0°~ 30°에서의 3상 자계를 유도하기 위해서 전원1인가선(214)에 연결된 U상 U1(24-1)의 U1-S1스위칭소자(241)와 U1-S3스위칭소자(243) 및 V상 V1(25-1)의 V1-S2스위칭소자(252)와 V1 -S4스위칭소자(254)를 Turn-On(도2b 스위칭 시퀸스 273, 274)하여 U상의 Lu1(231)권선에서 ½N극을 유도하게하고, V상의 Lv3(251)권선에서 ½S극을 유도(2상 양극(bipolar)자속유도)하게하며, 전원2인 가선(215)에 연결된 V상 V2(25-2)의 V2-S2스위칭소자(256)와 V2-S4스위칭소자(258) 및 W상 W2(26-2)의 W2-S1스위칭소자(265)와 W2-S3스위칭소자(267)를 Turn-On (275, 276)하여 V상의 Lv4(234)권선에서 ½S극이 유도되도록 하고, W상의 Lw6(236)권선에서 ½N극을 유도(2상 양극(bipolar)자속유도)되도록 한다.More specifically, as shown in the switching sequence diagram of FIG. 2B, a power supply 1 line 214 for inducing a three-phase magnetic field at an electric angle 271 0 ° to 60 ° machine angle 272 0 ° to 30 °. U1-S1 switching element 241 and U1-S3 switching element 243 of U-phase U1 (24-1) and V1-S2 switching element 252 and V1- of V-phase V1 (25-1) connected to The S4 switching element 254 is turned on (FIG. 2B switching sequences 273 and 274) to induce a ½ N pole in the Lu1 (231) winding of U phase and induces a ½ S pole in the Lv3 (251) winding of V phase (two phase). V2-S2 switching element 256, V2-S4 switching element 258 and V2-S4 switching element 258 of V-phase V2 (25-2) connected to a power line 2, the bipolar magnetic flux induction). 26-2) turns on the W2-S1 switching element 265 and the W2-S3 switching element 267 (275, 276) to induce a ½S pole from the Lv4 (234) winding of the V phase and the Lw6 of the W phase. Induce a ½ N pole (two-phase bipolar magnetic flux induction) at the winding (236).

이러한 3상 자계평형 자속유도방법을 요약정리하면 전원1에 연결된 U상의 U1(24-1)스위칭소자와 V상의V1(25-1)스위칭소자를 Turn-On시켜 전류를 인가(2상2권선병렬전원인가)하고, 동시에 전원2에 연결된 V상의 V2(25-2)스위칭소자와 W상의 W2(26-2)스위칭소자를 Turn-On시켜 전류를 인가(2상2권선병렬전원인가)하면 즉, U상과 V상, V상과 W상에 전류를 균등인가하면 V상에 인가된 전류는 권선방향과 전류방향이 같은 방향으로 중첩(280)인가 되어 전류단면적이 2배로 커지므로 합성자속이 유도되며, U상과 W상은 V상과 병렬 연결되어 전류가 인가되었기 때문에 V상보다 ½배의 전류단면적을 가지므로 ½배의 자속이 유도된다. 이 때, U상과 W상의 전류인가 방향이 V상과 반대가 되도록 제어하여 V상과 반대자극이 유도(2상 양극(bipolar)자속유도)되도록 전류인가제어하여 3상 자계평형이 이루어지도록 한다.Summarizing the three-phase magnetic field balancing magnetic flux induction method, the U-phase U1 (24-1) switching element connected to the power supply 1 and the V-phase V1 (25-1) switching element connected to the power source 1 are turned on to apply current (two-phase two-winding wire). Parallel power), and at the same time, the V-phase V2 (25-2) switching element connected to the power source 2 and the W-phase W2 (26-2) switching element are turned on to apply current (applied to a two-phase two-wire parallel power supply). That is, if the current is equally applied to the U phase and the V phase, the V phase and the W phase, the current applied to the V phase is superimposed 280 in the same direction as the winding direction and the current direction, so that the cross-sectional area of the current is doubled. Since the U phase and the W phase are connected in parallel with the V phase and the current is applied, the magnetic flux of ½ times is induced since the U phase and the W phase have a current cross-sectional area of ½ times that of the V phase. At this time, the current application direction of the U phase and the W phase is controlled to be opposite to the V phase so that the three phase magnetic field equilibrium is achieved by controlling the current application so as to induce the opposite stimulus to the V phase (bipolar magnetic flux induction). .

이렇게 도2b의 스위칭 시퀸스에 따라 연속으로 전원을 인가하면 교번자속이 유도되게 된다.Thus, when the power is continuously applied according to the switching sequence of FIG. 2B, the alternating magnetic flux is induced.

본 발명은 이러한 3상6권선과 3상9권선 및 이를 응용한 결선(23)을 다상 다 권선 I(ai)병렬결선이라 정의하며, 이 결선의 3상 자계평형제어방법을 3상2병렬4권선제어라고 정의하고, 3상2병렬4권선제어하기 위하여 스위칭소자로 구성된 제어회로(22)를 I(ai)결선스위칭제어회로라 정의한다. The present invention defines three-phase six windings, three-phase nine windings, and the wiring 23 using the same as a multiphase multi-winding I (ai) parallel connection, and the three-phase magnetic field balance control method of the three-phase two-parallel four. The winding control is defined, and the control circuit 22 composed of switching elements for three-phase, two-parallel four-winding control is defined as an I (ai) connection switching control circuit.

그리고 설명의 편의상 스위칭 구동회로와 제어기 및 각종검출제어회로는 설명의 편의상 도시하지 않았다.For convenience of description, the switching driving circuit, the controller, and various detection control circuits are not shown for the convenience of description.

도3은 도2a에 제시한 I(ai)병렬결선구성과 3상 자계평형자속유도를 위한 3상2병렬4권선제어 및 I(ai)병렬결선스위칭제어회로로 구성하고 있는 점에서는 같지만 2개의 전원으로 구성한 2전원 형태인 점에서 다르므로 그 작용은 도2와 같다.FIG. 3 is the same in terms of the configuration of the I (ai) parallel wiring configuration and the 3-phase 2-parallel 4-winding control and the I (ai) parallel wiring switching control circuit for the 3-phase magnetic field equalization flux induction shown in FIG. The operation is the same as in FIG.

도4는 Y결선(49)과 I(ai)병렬결선(451∼456)을 동시에 구현하도록 구성한 복합결선(40)으로 도2와 다른 점은 2전원(41, 45)이상으로 제어하는 점과 인버터(42)로 Y결선(49)을 제어하는 점에서 다르다. 4 is a complex connection 40 configured to simultaneously implement the Y connection 49 and the I (ai) parallel connection 451 to 456. The difference from FIG. It differs in the point which controls the Y connection 49 with the inverter 42. FIG.

대형 회전기는 자기회로의 단면적이 커기 때문에 재료저항은 적지만 역기전력과 임피던스가 크므로 인가전압을 높이지 않으면 회전속도를 높일 수 없게 된다. 특히 전압은 빠른 극성변환을 유도하며 정속도를 유지하는데 중요한 역할을 한다.Large rotors have a large cross-sectional area of the magnetic circuit, so the material resistance is small, but the counter electromotive force and impedance are large. Therefore, the rotation speed cannot be increased unless the applied voltage is increased. In particular, voltage induces rapid polarity change and plays an important role in maintaining constant speed.

그리고 전류는 흡인력과 반발력을 일으켜 힘으로 작용한다. And the electric current acts as a force by causing the suction and repulsive force.

본 발명은 전압과 전류의 성질을 이용한 전원제어를 위하여 Y결선(49)의 높은 합성저항 때문에 고전압이 요구되는 특성을 이용하여 전압형인버터(42)로 고전압을 교번으로 전원을 인가하고, I(ai)병렬결선(451∼456)의 낮은 합성저항 때문에 대 전류인가특성을 이용하여 I(ai)병렬결선스위칭제어회로(I(ai)인버터)(43)로 대 전류인가제어가 될 수 있도록 구성한 자기회로 및 제어회로를 제시한다. The present invention alternately applies a high voltage to the voltage inverter 42 using a characteristic requiring a high voltage due to the high synthesis resistance of the Y connection 49 for power control using the properties of voltage and current, and I ( ai) I (ai) parallel connection switching control circuit (I (ai) inverter) 43 can be used for high current control due to the low current resistance of the parallel connections 451 to 456. A magnetic circuit and a control circuit are presented.

도4a는 이러한 구성과 작용을 설명하기 위하여 도시한 것으로, Y결선의 전압중심인가(고전압·소 전류로 구성)와 I(ai)병렬결선의 전류중심인가(저전압·대 전류로 구성)를 분리하여 자기회로에 2전원으로 인가하는 방식의 결선구성과 제어 회로를 제시하여 기능성제어가 될 수 있도록 하고 있다. Fig. 4A is a diagram for explaining such a configuration and operation. The voltage center of the Y connection (consisting of high voltage and small current) and the current center of the I (ai) parallel connection (consisting of low voltage and high current) are separated. Therefore, the wiring configuration and the control circuit of the method applied to the magnetic circuit with two power sources are suggested to enable the functional control.

보다 상세하게는 도4b의 Y결선스위칭 시퀸스도와 도4c의 I(ai)병렬결선스위칭 시퀸스도에서 제시한 바와 같이 전기각(491)0°∼60°. 기계각(492)0°∼30°서의 3상 자계를 유도하기 위해서 3상 Y결선(49)전원인가용 전원회로(41)로부터 변환된 직류전원을 전압형인버터(42)의 스위칭소자S1(421), S5(425), S2(422)와 3상 I(ai)병렬결선(451∼456)전원인가용 전원회로(45)의 전원1인가선(457)에 연결된 I(ai)병렬결선스위칭제어회로(I(ai)인버터)(49-1)의 U상 U1(46-1)의 스위칭소자 U1-S1(461), U1-S3(463)과 V상 V1(47-1)의 스위칭소자 V1-S1(471), V1-S3(473) 및 전원2인가선(458)에 연결된 I(ai)병렬결선스위칭제어회로(I(ai)인버터)(49-2)의 V상 V2 (47 -2)의 스위칭소자 V2-S2(476), V2-S4(478)와 W상 W2(48-2)의 스위칭소자 W2-S2(486), W2-S4(488)를 Turn-On(도4b의 404, 405, 406 및 도4c의 493, 494, 495, 496)하여 전원을 인가하면 Y결선은 Y결선(49)의 U상권선(401)과 W상권선(403)으로 분배되어 흐르며, 중성점에서 분배된 전원이 합성되어 중성점의 끝단과 연결된 V상권선(402)을 지나 (-)로 흐르고, I(ai)병렬결선은 I(ai)병렬결선(451∼456)의 U상 iLu1권선(451)과 V상 iLv1권선(453) 및 V상 iLv2권선(454)과 W상 iLw2권선(456)으로 전원이 흘러 (-)로 흐른다.More specifically, as shown in the Y connection switching sequence of FIG. 4B and the I (ai) parallel connection switching sequence of FIG. 4C, electrical angles 491 to 0 ° to 60 °. Switching element S1 of the voltage inverter 42 converts the DC power converted from the power supply circuit 41 for supplying the three-phase Y connection 49 to induce a three-phase magnetic field at 0 ° to 30 ° of the mechanical angle 492. (421), S5 (425), S2 (422) and three-phase I (ai) parallel connection (451 to 456) I (ai) parallel connected to the power supply 1 line 457 of the power supply circuit 45 for power supply Switching elements U1-S1 (461), U1-S3 (463) and V-phase V1 (47-1) of U-phase U1 (46-1) of wiring switching control circuit (I (ai) inverter) 49-1. V phase of the I (ai) parallel connection switching control circuit (I (ai) inverter) 49-2 connected to the switching elements V1-S1 (471), V1-S3 (473) and power supply 2 applied line 458 Switching elements V2-S2 (476), V2-S4 (478) of V2 (47-2) and switching elements W2-S2 (486), W2-S4 (488) of W-phase W2 (48-2) Turn- When the power is applied by turning On (404, 405, 406 in FIG. 4B and 493, 494, 495, 496 in FIG. 4C), the Y connection is connected to the U phase winding 401 and the W phase winding 403 of the Y connection 49. It is distributed and flows, and the power distributed from the neutral point is synthesized and connected to the end of the neutral point. It passes through the line 402 to (-), and the I (ai) parallel connection is U-phase iLu1 winding 451 and V-phase iLv1 winding 453 and V-phase iLv2 of the I (ai) parallel wiring (451 to 456). Power flows through the winding 454 and the W-phase iLw2 winding 456 to flow negative.

이렇게 흐르는 전원에 의하여 Y결선 스위칭시퀸스 도4b에서 제시된 바와 같이 U상권선(401)과 W상권선(403)에서 N극(404, 406))을 유도하고, V상권선(402)에서는 S극(405)을 유도하여 3상 자계를 만들게 되며 연속으로 교번스위칭제어를 하게 되면 회전동력 및 기전력을 얻게 된다.As shown in FIG. 4B, the Y-phase switching sequence induces the N poles 404 and 406 in the U-phase winding 401 and the W-phase winding 403 by the flowing power, and the S-pole in the V-phase winding 402. 405 is induced to create a three-phase magnetic field, and rotational switching and electromotive force are obtained by performing alternating switching control continuously.

그리고 I(ai)병렬결선 스위칭시퀸스 도4c에서 제시된 바와 같이 U상 iLu1권선(451)의 N극(493)과 V상 iLv1권선(453)의 S극(494)을 유도하고, V상 iLv2권선(454)의 S극(495)과 W상 iLw2권선(456)의 N극(496)을 유도하여 3상 자계를 만들게 되며 Y결선과 연동하여 교번스위칭제어를 하게 되면 고 토크의 회전동력 및 고효율 기전력을 얻게 된다.And I (ai) parallel connection switching sequence as shown in FIG. The 3-pole magnetic field is generated by inducing the S-pole 495 of the 454 and the N-pole 496 of the W-phase iLw2 winding 456. The rotational power and the high efficiency of the high torque are achieved by alternating switching control in conjunction with the Y-connection. You get an electromotive force.

그런데 자기회로의 전기자 상에 고전압·소 전류와 저전압·대 전류를 동시에 인가하면 저전압·대 전류인가 코일권선으로 고전압이 유도되게 된다. However, when high voltage, small current, low voltage and large current are simultaneously applied to the armature of the magnetic circuit, high voltage is induced to the coil winding with low voltage and large current.

따라서 본 발명은 I(ai)병렬결선(451∼456)전원인가용 전원회로(45)와 I(ai)병렬결선스위칭제어회로(I(ai)인버터)(43) 사이에 스위치(441)와 다이오드(442) 및 저항(443)으로 구성한 전압조정용 초퍼회로(44)를 삽입 하여 유도된 고전압이 저전압 (-)로 흐르지 못하도록 스위치(441)로 환류시킴과 동시에 다이오드(442)와 함께 연결된 저항(443)이 부하로 작용하여 전압을 낮추도록 하였다. Accordingly, the present invention provides a switch 441 between the power supply circuit 45 for supplying the I (ai) parallel wirings 451 to 456 and the I (ai) parallel switching switching circuit (I (ai) inverter) 43. By inserting the voltage adjusting chopper circuit 44 composed of the diode 442 and the resistor 443, the high voltage induced is refluxed to the switch 441 so that the induced high voltage does not flow to the low voltage (−), and at the same time, a resistor connected with the diode 442 ( 443) acted as a load to lower the voltage.

본 발명의 다상병렬 I 결선자기회로 및 다중자계제어회로는The multi-phase parallel I-connected magnetic circuit and the multi- magnetic field control circuit of the present invention

Y결선 대비 역기전력과 임피던스를

Figure 112005052567396-PAT00004
배+2병렬만큼 줄일 수 있었다. The counter electromotive force and impedance
Figure 112005052567396-PAT00004
Could reduce by 2x parallel.

즉, 저항이 약 1.7배+ 2병렬만큼 줄이는 효과가 나타나므로 전압이 약 1.7배+ 2병렬만큼 줄여도 일정량의 전류가 인가되었다.That is, since the resistance is reduced by about 1.7 times + 2 parallel, a certain amount of current is applied even when the voltage is reduced by about 1.7 times + 2 parallel.

따라서 본 발명의 자기회로는 다상 I 병렬결선자기회로 및 I 병렬제어회로는 고전압인가가 어려운 전기자동차용 전동기 및 기타용도에 적합한 회로구성이라 하겠다.Therefore, the magnetic circuit of the present invention is a multi-phase I parallel connection magnetic circuit and I parallel control circuit is a circuit configuration suitable for electric motors and other applications difficult to apply high voltage.

Claims (1)

단상과 다상으로 구성된 회전기 및 변압기자기회로의 전기자 각상에 2개 이상의 전원인가코일 및 복합전원인가코일을 권선하여 3상6권선 및 다상 다 권선의 I(ai)병렬결선;I (ai) parallel connection of three-phase six winding and multi-phase multi winding by winding two or more power supply coils and multiple power supply coils on each armature of the rotor and transformer magnetic circuit composed of single phase and multi phase; 하고 I(ai)병렬 결선한 자기회로를 제어하여 3상 자계평형과 교번자속을 유도하기 위하여 구성한 I(ai)병렬결선스위칭제어회로(I(ai)인버터);And an I (ai) parallel connection switching control circuit (I (ai) inverter) configured to control the I (ai) parallel connection magnetic circuit to induce three-phase magnetic field balance and alternating magnetic flux; 유도성 리액턴스와 역기전력 및 재료저항을 줄이기 위하여 1상 2권선 중첩전원인가와 1상1권선 전원인가 및 1상1권선 전원인가조합형태 의 병렬제어가 되도록 구성한 3상2병렬4권선제어수단;Three-phase, two-parallel four-winding control means configured to perform parallel control in a combination of one-phase two-winding superposition power supply, one-phase one-winding power supply, and one-phase one-winding power supply in order to reduce inductive reactance, counter electromotive force and material resistance; 3가닥 및 3묶음으로 구성한 기능성코일을 3상 자기회로에 권선한 3상9권선자기회로;A three-phase nine winding magnetic circuit in which a functional coil composed of three strands and three bundles is wound on a three-phase magnetic circuit; 3상9권선자기회로를 Y결선과 I(ai)병렬결선으로 분리 결선하여 전압특성제어와 전류특성제어를 동시에 제어할 수 있도록 구성한 고전압·소 전류 및 저전압·대 전류분리인가 복합결선구성회로; A high-voltage, small-current and low-voltage-to-current separated-coupled composite wiring circuit configured to separate three-phase nine-wire magnetic circuits into Y-wires and I (ai) parallel wires to simultaneously control voltage characteristic and current characteristic control; 자기회로에 고전압·소 전류 및 저전압·대 전류분리인가 할 경우 저전압·대 전류인가 코일권선으로 유도되는 고전압을 제어하기 위하여 직류전원변환회로(컨버터)와 교번자속유도회로(인버터)사이에 전압조정초퍼회로를 부가한 복합인버터 구성회로; When high voltage, small current, low voltage, and large current separation are applied to the magnetic circuit, the voltage is adjusted between the DC power conversion circuit (converter) and the alternating magnetic flux induction circuit (inverter) to control the high voltage induced by the coil winding. A composite inverter circuit comprising a chopper circuit;
KR1020050087680A 2005-09-21 2005-09-21 Magnet Circuit of polyphase Iai parallel connection and switching control circuit KR20070033220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050087680A KR20070033220A (en) 2005-09-21 2005-09-21 Magnet Circuit of polyphase Iai parallel connection and switching control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050087680A KR20070033220A (en) 2005-09-21 2005-09-21 Magnet Circuit of polyphase Iai parallel connection and switching control circuit

Publications (1)

Publication Number Publication Date
KR20070033220A true KR20070033220A (en) 2007-03-26

Family

ID=41560774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050087680A KR20070033220A (en) 2005-09-21 2005-09-21 Magnet Circuit of polyphase Iai parallel connection and switching control circuit

Country Status (1)

Country Link
KR (1) KR20070033220A (en)

Similar Documents

Publication Publication Date Title
JP5725572B2 (en) Stator teeth, stator, rotating electric machine, and control method of rotating electric machine
EP2412091B1 (en) Electric motor system
CA2673578C (en) Brushless high-frequency alternator and excitation method for three-phase ac power-frequency generation
US8076814B2 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
US20040104700A1 (en) High phase order motor with mesh connected windings
US20050116570A1 (en) Mesh connected electrical rotating machine with span changing
US7928683B2 (en) High phase order AC machine with short pitch winding
AU2005258106A1 (en) High phase order AC machine with short pitch winding
CN102971944A (en) Electrical machines
WO1998001932A1 (en) Reluctance machine with fractional pitch winding and drive therefor
US20150008777A1 (en) Synchronous electric machine
KR20030044226A (en) Brushless dc motor having parallel connected windings and control circuit for it
CN101501982B (en) Power supply device for permanent magnet field type linear motor
WO2014034136A1 (en) Permanent-magnet ac power generator
CN111404293A (en) Four-phase 8-10 pole double armature winding reluctance motor
Lin et al. An innovative multiphase PWM control strategy for a PMSM with segmented stator windings
CN1326311C (en) Permanent-magnet type synchronous motor
CN212627343U (en) Four-phase 8-10 pole double armature winding reluctance motor
KR20070033220A (en) Magnet Circuit of polyphase Iai parallel connection and switching control circuit
CN211429232U (en) Switching circuit of motor winding and three-phase motor
WO2019204501A1 (en) Brushless, self-excited synchronous field-winding machine
JPWO2018207719A1 (en) Variable speed motor device
EP1389362A1 (en) Mesh connected electrical rotating machine with span changing
JPH0777507B2 (en) Motor device
AU2008200488B2 (en) Generator with de-saturation winding

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination