KR20060057226A - Multi type air conditioning system and controlling method of the system - Google Patents

Multi type air conditioning system and controlling method of the system Download PDF

Info

Publication number
KR20060057226A
KR20060057226A KR1020040096315A KR20040096315A KR20060057226A KR 20060057226 A KR20060057226 A KR 20060057226A KR 1020040096315 A KR1020040096315 A KR 1020040096315A KR 20040096315 A KR20040096315 A KR 20040096315A KR 20060057226 A KR20060057226 A KR 20060057226A
Authority
KR
South Korea
Prior art keywords
refrigerant
unit
cycle
indoor
sensing means
Prior art date
Application number
KR1020040096315A
Other languages
Korean (ko)
Other versions
KR100758902B1 (en
Inventor
오세기
송치우
박봉수
김주원
장세동
정백영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020040096315A priority Critical patent/KR100758902B1/en
Priority to EP05025039A priority patent/EP1662212A3/en
Priority to US11/283,694 priority patent/US20060107683A1/en
Priority to CNA2005101248842A priority patent/CN1779391A/en
Publication of KR20060057226A publication Critical patent/KR20060057226A/en
Application granted granted Critical
Publication of KR100758902B1 publication Critical patent/KR100758902B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

본 발명은 실내기의 냉매 유량을 최적으로 제어할 수 있는 멀티 공기조화 시스템 및 그 제어방법에 관한 것이다.The present invention relates to a multi-air conditioning system and a control method thereof capable of optimally controlling the refrigerant flow rate of the indoor unit.

이를 위해, 본 발명은 압축기(11)와, 실외 열교환기(12)와, 팽창장치(14)가 포함되는 제1차 냉매사이클(10); 상기 제1차 냉매사이클 냉매와 독립된 유로상의 냉매를 펌핑하는 구동부(21)와, 상기 펌핑된 냉매와 실내 공기를 열교환시키는 적어도 2개 이상의 실내기(22)와, 상기 실내기의 냉매 흡입부와 토출부 및 상기 냉매 흡/토출부 사이의 소정 부분에 각각 설치되는 온도감지수단(23a,23b,23c)과, 상기 온도감지수단에서 측정된 온도에 따라 소정의 개도로 개방되어 상기 실내기(22)에 유출입되는 냉매량을 제어하는 냉매량 제어밸브(25a,25b)가 포함되는 제2차 냉매사이클(20); 그리고, 상기 제1차 냉매사이클의 열원을 제2차 냉매사이클에 열전달시키도록 설치되는 하이브리드 유닛(30)을 포함하여 구성되는 멀티 공기조화 시스템을 제공한다.To this end, the present invention includes a primary refrigerant cycle (10) including a compressor (11), an outdoor heat exchanger (12), and an expansion device (14); A driving unit 21 for pumping refrigerant on a flow path independent of the primary refrigerant cycle refrigerant, at least two indoor units 22 for heat-exchanging the pumped refrigerant with indoor air, and a refrigerant suction unit and a discharge unit of the indoor unit; And temperature sensing means (23a, 23b, 23c) provided at predetermined portions between the refrigerant absorbing and discharging portions, respectively, and opened at a predetermined opening degree according to the temperature measured by the temperature sensing means to flow into and out of the indoor unit (22). A second refrigerant cycle 20 including refrigerant amount control valves 25a and 25b for controlling the amount of refrigerant to be used; And, it provides a multi-air conditioning system comprising a hybrid unit 30 is installed to heat transfer the heat source of the primary refrigerant cycle to the secondary refrigerant cycle.

또한, 본 발명은, 냉/난방 운전시, 냉매 흡/토출부 사이의 온도감지수단과 냉매 토출부의 온도감지수단 사이의 온도차에 따라 상기 냉매량 제어밸브의 개도를 조절하는 멀티 공기조화 시스템의 제어방법을 제공한다.In addition, the present invention, the control method of the multi-air conditioning system for adjusting the opening degree of the refrigerant amount control valve in accordance with the temperature difference between the temperature sensing means between the refrigerant intake / discharge unit and the temperature sensing means of the refrigerant discharge unit during the cooling / heating operation To provide.

멀티 공기조화 시스템, 제어방법Multi air conditioning system, control method

Description

멀티 공기조화 시스템 및 그 제어방법{multi type air conditioning system and controlling method of the system}Multi type air conditioning system and controlling method of the system

도 1은 종래 공기조화기의 냉매사이클을 나타낸 블럭도.1 is a block diagram showing a refrigerant cycle of a conventional air conditioner.

도 2는 도 1의 냉매사이클의 작용을 나타낸 P-h 선도.2 is a P-h diagram showing the action of the refrigerant cycle of FIG.

도 3은 본 발명에 따른 멀티 공기조화기의 냉매사이클을 나타낸 블럭도.3 is a block diagram showing a refrigerant cycle of the multi-air conditioner according to the present invention.

도 4는 도 3의 냉매사이클 중 제2차 냉매사이클의 냉방 운전을 나타낸 블럭도.4 is a block diagram showing a cooling operation of a second refrigerant cycle of the refrigerant cycle of FIG.

도 5는 도 3의 제1,2차 냉매사이클의 냉방 운전시 작용을 나타낸 P-h 선도.Figure 5 is a P-h diagram showing the action during the cooling operation of the first and second refrigerant cycle of FIG.

도 6은 도 3의 제1,2차 냉매사이클의 난방 운전시 작용을 나타낸 P-h 선도.Figure 6 is a P-h diagram showing the action during the heating operation of the first and second refrigerant cycle of FIG.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 제1차 냉매사이클 11 : 압축기10: first refrigerant cycle 11: compressor

12 : 실외 열교환기 13 : 유로 제어부12: outdoor heat exchanger 13: flow control unit

14 : 팽창장치 20 : 제2차 냉매사이클14: expansion device 20: secondary refrigerant cycle

21 : 구동부 22 : 실내기21: drive unit 22: indoor unit

23a,23b,23c : 온도감지수단 25a,25b : 냉매량 제어밸브23a, 23b, 23c: temperature sensing means 25a, 25b: refrigerant amount control valve

30 : 하이브리드 유닛30: hybrid unit

본 발명은 공기조화기에 관한 것으로서, 더욱 상세하게는 실내기의 냉매 유량을 최적으로 제어할 수 있는 멀티 공기조화 시스템 및 그 제어방법에 관한 것이다.The present invention relates to an air conditioner, and more particularly, to a multi-air conditioner system and a control method thereof capable of optimally controlling the flow rate of a refrigerant of an indoor unit.

일반적으로 공기조화 시스템은 냉매를 압축, 응축, 팽창 및 증발시키는 과정을 수행함에 따라 실내 공간을 냉방 또는/및 난방시키는 장치이다. 이러한 공기조화 시스템은 냉매사이클을 일방향으로만 가동하여 실내에 냉기만을 공급하도록 냉각 시스템과, 냉매사이클을 양방향으로 선택적으로 가동하여 실내에 냉기 또는 온기를 공급하는 냉난방 시스템으로 구분된다. In general, an air conditioning system is a device that cools and / or heats an indoor space by performing a process of compressing, condensing, expanding, and evaporating a refrigerant. Such an air conditioning system is classified into a cooling system that operates only one direction of the refrigerant cycle to supply only cold air to the room, and a cooling and heating system that selectively supplies the refrigerant cycle in both directions to supply cold or warm air to the room.

도 1을 참조하여, 냉난방 시스템에 관해 설명하기로 한다.Referring to Figure 1, it will be described with respect to the air conditioning system.

상기 공기조화 시스템는 통상적으로 압축기(1), 실외 열교환기(2), 팽창장치(3) 및 실내 열교환기(3)를 포함하여 구성된다. 상기 실내 열교환기(3)의 냉매 흡토출부에는 냉매관의 개도를 조절함에 따라 실내기의 냉매 유량을 제어할 수 있도록 냉매량 제어밸브(5a,5b)가 설치되고, 상기 냉매 흡토출부의 온도를 측정할 수 있도록 온도센서(6a,6b)가 각각 설치된다.The air conditioning system typically comprises a compressor (1), an outdoor heat exchanger (2), an expansion device (3) and an indoor heat exchanger (3). A refrigerant amount control valve (5a, 5b) is installed in the refrigerant intake and discharge portion of the indoor heat exchanger (3) to control the flow rate of the refrigerant in the indoor unit by adjusting the opening degree of the refrigerant pipe, and measures the temperature of the refrigerant intake and discharge portion. The temperature sensors 6a and 6b are installed respectively.

이때, 제어부에는 실내 열교환기(4)의 냉매 흡/토출부의 설정 온도차가 미리 설정된다. 따라서, 상기 제어부는 실내 열교환기의 흡/토출부의 측정된 온도차가 상기 설정 온도차에 도달하는 방향으로 상기 냉매량 제어밸브(5a,5b)의 개도를 조절한다. 여기서, 상기 설정 온도차와 측정된 온도차는 냉매가 실내 공기와 열교환 되기 전/후의 온도차를 나타내므로, 이하에서는 설정 과열도 및 측정 과열도라고 한다.At this time, the control unit is set in advance the set temperature difference of the refrigerant intake / discharge section of the indoor heat exchanger (4). Therefore, the controller adjusts the opening degree of the refrigerant amount control valves 5a and 5b in a direction in which the measured temperature difference of the intake / discharge portion of the indoor heat exchanger reaches the set temperature difference. Here, since the set temperature difference and the measured temperature difference represent the temperature difference before and after the refrigerant is heat-exchanged with the indoor air, hereinafter, it is referred to as the set superheat degree and the measured superheat degree.

도 2를 참조하여, 상술한 냉난방 시스템의 냉방 운전에 관해 설명하기로 한다. 여기서, 도 2는 도 1의 냉난방 시스템의 작용을 나타낸 P-h 선도이다.Referring to Figure 2, it will be described with respect to the cooling operation of the above-described air conditioning system. 2 is a P-h diagram illustrating the operation of the air conditioning and heating system of FIG. 1.

압축기(1)가 가동되면, 상기 압축기의 액냉매는 고온 고압으로 압축된다(제A-B구간). 상기 압축기에서 토출된 냉매는 실외 열교환기(2)에서 실외 공기와 열교환됨에 따라 응축된다(제B-C구간). 응축된 냉매는 팽창장치(3)에서 팽창되어 저온 저압으로 바뀌게 된다(제C-D구간). 팽창된 냉매는 실내 열교환기(4)에서 실내 공기와 열교환된 후 압축기(1)에 재유입된다(제D-A구간).When the compressor 1 is operated, the liquid refrigerant of the compressor is compressed to high temperature and high pressure (section A-B). The refrigerant discharged from the compressor is condensed as it is heat-exchanged with the outdoor air in the outdoor heat exchanger (Section B-C). The condensed refrigerant expands in the expansion device 3 and changes to low temperature low pressure (section C-D). The expanded refrigerant is exchanged with the indoor air in the indoor heat exchanger 4 and then reintroduced into the compressor 1 (section D-A).

또한, 실내 열교환기의 온도센서(6a,6b)는 흡입되는 냉매와 토출되는 냉매의 온도를 감지하여 상기 온도에 관한 정보를 제어부에 전달한다. 제어부는 측정된 과열도와 설정 과열도를 판단하여 상기 냉매량 제어밸브(5a,5b)의 개도를 제어한다. 즉, 냉매가 실내 공기로부터 상대적으로 많은 열을 흡수함에 따라 상기 측정된 과열도가 설정 과열도보다 커지게 되고, 이때에는 상기 냉매량 제어밸브(5a,5b)의 개도를 확장시킨다. 반면, 냉매가 실내 공기로부터 상대적으로 적은 열을 흡수함에 따라 상기 측정된 과열도가 설정 과열도보다 작아지게 되고, 이때에는 상기 냉매량 제어밸브의 개도를 축소시킨다. 이렇게 실내 열교환기의 냉매량을 제어함으로써, 실내 공간을 냉방시키게 된다.In addition, the temperature sensors 6a and 6b of the indoor heat exchanger sense the temperatures of the sucked refrigerant and the discharged refrigerant and transmit information on the temperature to the controller. The control unit determines the measured superheat degree and the set superheat degree to control the opening degree of the refrigerant amount control valves 5a and 5b. That is, as the refrigerant absorbs a relatively large amount of heat from the indoor air, the measured degree of superheat becomes larger than the set degree of superheat, and in this case, the opening degree of the refrigerant amount control valves 5a and 5b is expanded. On the other hand, as the refrigerant absorbs relatively little heat from the indoor air, the measured superheat becomes smaller than the set superheat degree, and at this time, the opening degree of the refrigerant amount control valve is reduced. By controlling the amount of refrigerant in the indoor heat exchanger as described above, the indoor space is cooled.

최근에는 제1,2차 냉매사이클과 하이브리드 유닛으로 구성된 멀티 공기조화 시스템이 적용되고 있다. 여기서, 상기 제1,2차 냉매사이클의 냉매는 상호 섞이지 않고 각각 독립적인 냉매사이클을 유동하고, 하이브리드 유닛은 제1차 냉매사이클에서 발생된 열에너지를 제2차 냉매사이클에 열전달시키고, 상기 제2차 냉매사이클은 실내 공간을 냉난방시킨다. 또한, 상기 제1차 냉매사이클은 냉매 유동의 구동원이 압축기이고, 상기 제2차 냉매사이클은 냉매 유동의 구동원이 펌프이다.Recently, a multi-air conditioning system composed of a first and a second refrigerant cycle and a hybrid unit has been applied. Here, the refrigerants of the first and second refrigerant cycles do not mix with each other and flow independent refrigerant cycles, and the hybrid unit heat transfers heat energy generated in the first refrigerant cycle to the second refrigerant cycle, and the second refrigerant cycle. The secondary refrigerant cycle cools the indoor space. In addition, in the first refrigerant cycle, the driving source of the refrigerant flow is a compressor, and in the second refrigerant cycle, the driving source of the refrigerant flow is a pump.

한편, 도 2에 나타난 바와 같이, 종래 냉매사이클에서, 실내 열교환기의 흡입부(D)에서의 냉매는 2상 상태이고, 실내 열교환기의 토출부(A)에서의 냉매는 기체 상태이다. 이때, 상기 흡입부의 2상 상태(two phase)의 냉매는 온도는 변하지 않으면서 상태만 변하는 포화온도를 갖고, 상기 토출부의 기체 상태의 냉매는 포화온도에서 실내 공기와 열교환됨에 따라 소정의 과열도를 갖는다. 따라서, 종래에는 실내 열교환기의 흡토출부의 과열도차(포화온도와 과열도 차이)를 측정함에 따라 상기 실내 열교환기의 냉매량을 제어할 수 있었다.On the other hand, as shown in Figure 2, in the conventional refrigerant cycle, the refrigerant in the suction portion (D) of the indoor heat exchanger is a two-phase state, the refrigerant in the discharge portion (A) of the indoor heat exchanger is a gas state. At this time, the two-phase refrigerant of the suction unit has a saturation temperature that changes only in the state without changing the temperature, and the refrigerant in the gas state of the discharge unit has a predetermined degree of superheat as it is heat-exchanged with indoor air at the saturation temperature. Have Therefore, in the related art, the amount of refrigerant in the indoor heat exchanger can be controlled by measuring the overheating difference (difference in saturation temperature and superheat degree) of the intake and discharge portion of the indoor heat exchanger.

반면, 상기 제2차 냉매사이클은 액체 상태의 냉매를 펌프에 의해 유동시키고 별도의 팽창장치가 없기 때문에, 상기 실내기에 흡토출되는 냉매는 사이클의 특성상 거의 액체 상태이다. 따라서, 실내기의 흡/토출부에 온도센서를 설치하여 종래와 같이 냉래량을 제어한다 하더라도, 상기 흡입부의 냉매가 2상 상태가 아니기 때문에 냉매의 압력에 대한 포화온도를 측정하기 곤란하였다. 이렇게 포화온도를 측정하기 곤란함에 따라 결과적으로 과열도차를 측정할 수 없었다. 따라서, 실내 열교환기의 흡토출부의 과열도차에 의한 냉매량 제어를 할 수 없었으므로, 실내기의 흡토출 측에 온/오프 밸브를 적용하였었다. 결국, 실내 공간의 미세한 온도 조절이 불가능하였다.On the other hand, since the secondary refrigerant cycle flows a liquid refrigerant by a pump and there is no separate expansion device, the refrigerant drawn into and out of the indoor unit is almost liquid due to the cycle characteristics. Therefore, even if a temperature sensor is installed at the suction / discharge part of the indoor unit to control the amount of cold as in the prior art, it is difficult to measure the saturation temperature with respect to the pressure of the refrigerant because the refrigerant in the suction part is not in a two-phase state. As it is difficult to measure the saturation temperature as a result, the superheat difference could not be measured. Therefore, since the amount of refrigerant cannot be controlled by the overheating difference of the intake-outtake portion of the indoor heat exchanger, an on / off valve is applied to the intake-discharge side of the indoor unit. As a result, fine temperature control of the indoor space was impossible.

상술한 제반 문제점을 해결하기 위해, 본 발명의 목적은 실내기의 냉매 유량을 최적으로 제어할 수 있는 멀티 공기조화 시스템 및 그 제어방법을 제공하는 것이다.In order to solve the above-mentioned problems, it is an object of the present invention to provide a multi-air conditioning system and a control method thereof capable of optimally controlling the flow rate of the refrigerant of the indoor unit.

상기한 목적을 달성하기 위하여, 본 발명은 냉매를 압축하는 압축기와, 냉매와 외기를 열교환시키는 실외 열교환기와, 냉매를 팽창시키는 팽창장치가 포함되는 제1차 냉매사이클; 상기 제1차 냉매사이클 냉매와 독립된 유로상의 냉매를 펌핑하여 유동시키는 구동부와, 상기 펌핑된 냉매와 실내 공기를 열교환시키는 적어도 2개 이상의 실내기와, 상기 실내기의 냉매관 중에서 냉매 흡입부와 토출부 및 상기 냉매 흡/토출부 사이의 소정 부분에 각각 설치되는 온도감지수단과, 상기 온도감지수단에서 측정된 온도에 따라 소정의 개도로 개방되어 상기 실내기에 유출입되는 냉매량을 제어하는 냉매량 제어밸브가 포함되는 제2차 냉매사이클; 그리고, 상기 제1차 냉매사이클과 제2차 냉매사이클을 연결하여, 상기 제1차 냉매사이클의 열원을 제2차 냉매사이클에 열전달시키도록 설치되는 하이브리드 유닛을 포함하여 구성되는 멀티 공기조화 시스템을 제공한다.In order to achieve the above object, the present invention includes a first refrigerant cycle including a compressor for compressing a refrigerant, an outdoor heat exchanger for heat exchange between the refrigerant and the outside air, and an expansion device for expanding the refrigerant; A driving unit for pumping and flowing a refrigerant on a flow path independent of the primary refrigerant cycle refrigerant, at least two indoor units for heat-exchanging the pumped refrigerant with indoor air, a refrigerant suction unit and a discharge unit in the refrigerant pipe of the indoor unit; And a temperature sensing means installed in each of the predetermined portions between the refrigerant absorbing and discharging portions, and a refrigerant amount control valve opening the predetermined opening according to the temperature measured by the temperature sensing means to control the amount of refrigerant flowing into and out of the indoor unit. Secondary refrigerant cycle; And a hybrid unit configured to connect the primary refrigerant cycle and the secondary refrigerant cycle to heat transfer the heat source of the primary refrigerant cycle to the secondary refrigerant cycle. to provide.

이때, 하나의 온도감지수단은 상기 냉매관을 전개했을 때에 상기 냉매 흡/토출부의 중간에 설치되는 것이 바람직하다.At this time, it is preferable that one temperature sensing means is provided in the middle of the coolant suction / discharge unit when the coolant pipe is deployed.

또한, 본 발명에 의하면, 냉/난방 운전시, 냉매 흡/토출부 사이의 온도감지수단과 냉매 토출부의 온도감지수단 사이의 온도차에 따라 상기 냉매량 제어밸브의 개도를 조절하는 멀티 공기조화 시스템의 제어방법을 제공한다.In addition, according to the present invention, in the cooling / heating operation, the control of the multi-air conditioning system to adjust the opening degree of the refrigerant amount control valve in accordance with the temperature difference between the temperature sensing means between the refrigerant absorbing / discharging portion and the temperature sensing means of the refrigerant discharge portion Provide a method.

이때, 실내기의 냉매 흡입부에 배치되는 냉매량 제어밸브의 개도를 조절하고, 실내기의 냉매 토출부에 배치되는 냉매량 제어밸브의 개도는 최대로 확장하는 것이 바람직하다.At this time, it is preferable that the opening degree of the refrigerant amount control valve disposed in the refrigerant suction part of the indoor unit is adjusted, and the opening degree of the refrigerant amount control valve disposed in the refrigerant discharge part of the indoor unit is expanded to the maximum.

이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention that can specifically realize the above object will be described.

도 3을 참조하여, 본 발명에 따른 멀티 공기조화 시스템에 관해 설명하면 다음과 같다.Referring to Figure 3, it will be described with respect to the multi-air conditioning system according to the present invention.

상기 멀티 공기조화 시스템은, 열원을 발생시키는 제1차 냉매사이클(10)과, 상기 제1차 냉매사이클의 열원에 의해 실내 공기를 열교환시키는 제2차 냉매사이클(20)과, 상기 제1차 냉매사이클(10)과 제2차 냉매사이클(20)의 열교환을 매개하는 하이브리드 유닛(30)으로 구성된다. 여기서, 제1차 냉매사이클(10)과 제2차 냉매사이클(20)은 독립된 냉매 유로를 갖는다.The multi-air conditioning system includes: a primary refrigerant cycle (10) for generating a heat source, a secondary refrigerant cycle (20) for exchanging indoor air by a heat source of the primary refrigerant cycle, and the primary It consists of a hybrid unit 30 that mediates the heat exchange between the refrigerant cycle 10 and the secondary refrigerant cycle 20. Here, the primary refrigerant cycle 10 and the secondary refrigerant cycle 20 has independent refrigerant passages.

상세히 설명하면 다음과 같다.It will be described in detail as follows.

상기 제1차 냉매사이클(10)은, 냉매를 압축하는 압축기(11)와, 냉매와 외기를 열교환시키는 실외 열교환기(12)와, 상기 냉매의 유동 방향을 제어하는 유로 제어부(13)와, 냉매를 팽창시키는 팽창장치(14)를 포함하여 구성된다. 이때, 상기 유로 제어부(13)는 사방밸브를 적용한다. 또한, 상기 압축기(11)는 가동 주파수가 가변되는 인버터 압축기를 적용한다. 물론, 가동 주파수가 일정한 정속 압축기를 적용할 수 있음도 이해 가능하다.The primary refrigerant cycle (10) includes a compressor (11) for compressing a refrigerant, an outdoor heat exchanger (12) for exchanging heat with a refrigerant, a flow path control unit (13) for controlling a flow direction of the refrigerant, And an expansion device 14 for expanding the refrigerant. At this time, the flow path control unit 13 applies a four-way valve. In addition, the compressor 11 applies an inverter compressor whose operating frequency is variable. Of course, it is also possible to apply a constant speed compressor having a constant operating frequency.

한편, 상기 제1차 냉매사이클(10)은 제2차 냉매사이클(20)의 냉매에 열원을 제공할 수 있는 한 다양한 형태가 적용될 수 있다. 가령, 온수에 의해 열원을 제공하는 형태, 또는, 폐열을 이용할 수 있는 형태가 적용 가능하다.On the other hand, the primary refrigerant cycle 10 may be applied in various forms as long as it can provide a heat source to the refrigerant of the secondary refrigerant cycle 20. For example, the form which provides a heat source by hot water, or the form which can utilize waste heat is applicable.

상기 제2차 냉매사이클(20)은, 상기 제1차 냉매사이클(10)의 냉매와 독립된 유로상의 냉매를 펌핑하는 구동부(21)와, 상기 펌핑된 냉매와 실내 공기를 열교환시키는 적어도 2개 이상의 실내기(22)와, 상기 실내기에 설치되는 온도감지수단(23a,23b,23c : 도 4 참조)과, 상기 온도감지수단에서 측정된 온도에 따라 소정의 개도로 개방되어 상기 각 실내기(22)에 유출입되는 냉매량을 제어하는 냉매량 제어밸브(25a,25b)가 포함되어 구성된다. 상기 온도감지수단에 관해서는 아래에서 상세히 설명하기로 한다.The secondary refrigerant cycle 20 may include a driving unit 21 for pumping refrigerant on a flow path independent of the refrigerant of the primary refrigerant cycle 10, and at least two or more heat exchangers between the pumped refrigerant and indoor air. The indoor unit 22, the temperature sensing means 23a, 23b, and 23c installed in the indoor unit (see FIG. 4), and the predetermined openings are opened according to the temperature measured by the temperature sensing means to the respective indoor units 22. Refrigerant amount control valves 25a and 25b for controlling the amount of refrigerant flowing in and out are included. The temperature sensing means will be described in detail below.

상기 구동부(21)로는 냉매를 펌핑시키는 펌프를 적용하는 것이 바람직하다. 이때, 상기 펌프는 펌핑 모터와 임펠러로 구성된다. 이러한 펌프에는 액냉매를 공급하는 것이 바람직한데, 상기 하이브리드 유닛과 구동부 사이에는 상기 구동부에 액냉매를 공급할 수 있도록 별도의 냉매 저장 탱크를 설치하는 것이 더욱 바람직하다.As the driving unit 21, it is preferable to apply a pump for pumping a refrigerant. At this time, the pump is composed of a pumping motor and an impeller. It is preferable to supply liquid refrigerant to such a pump, and it is more preferable to provide a separate refrigerant storage tank to supply liquid refrigerant to the driving unit between the hybrid unit and the driving unit.

이때, 상기 펌핑 모터로는 회전수를 조절할 수 있는 인버터 모터를 적용하는 것이 바람직하다. 이는 펌핑 모터의 회전수를 조절하여 냉매 유량을 제어할 수 있도록 하기 위함이다. 물론, 일정한 회전수를 갖는 정속 모터를 적용할 수 있음도 이해 가능하다.In this case, it is preferable to apply an inverter motor capable of adjusting the rotation speed as the pumping motor. This is to control the refrigerant flow rate by adjusting the rotation speed of the pumping motor. Of course, it is also possible to apply a constant speed motor having a constant rotation speed.

또한, 상기 냉매량 제어밸브(25a,25b)로는 전자기력에 의해 유로의 개도를 조절할 수 있는 솔레노이드 밸브를 적용하는 것이 바람직하다. 물론, 상기 냉매량 제어밸브(25a,25b)는 유로의 개도를 조절할 수 있는 한 다양한 형태를 적용할 수 있다.In addition, it is preferable to apply a solenoid valve capable of adjusting the opening degree of the flow path by the electromagnetic force as the refrigerant amount control valves (25a, 25b). Of course, the refrigerant amount control valve (25a, 25b) can be applied in various forms as long as the opening degree of the flow path can be adjusted.

상기 하이브리드 유닛(30)은, 상기 제1차 냉매사이클(10)과 제2차 냉매사이클(20)을 연결하여, 상기 제1차 냉매사이클(10)의 열원을 제2차 냉매사이클(20)에 열전달시키도록 설치된다. 이때, 하이브리드 유닛(30) 내에서 제1,2차 냉매사이클의 냉매는 섞이지 않고 독립적으로 유동한다.The hybrid unit 30 connects the primary refrigerant cycle 10 and the secondary refrigerant cycle 20 to supply a heat source of the primary refrigerant cycle 10 to the secondary refrigerant cycle 20. It is installed to heat transfer. At this time, the refrigerant of the first and second refrigerant cycles in the hybrid unit 30 flows independently without mixing.

상기 하이브리드 유닛(30)은 상기 제1차 냉매사이클의 팽창장치(14)와 유로 제어부(13) 사이의 냉매관과, 상기 제2차 냉매사이클의 실내기(22)와 구동부(21) 사이의 냉매관을 열접촉시키도록 설치된다. 가령, 상기 하이브리드 유닛(30)은 다수개의 적층된 판형 열전도핀에 제1,2차 냉매사이클의 냉매관들이 열접촉되게 삽입되어 이루어진다. 또는, 상기 제1,2차 냉매사이클의 냉매관들이 열전도성 유체들에 의해 열교환되는 구조를 적용할 수도 있다. 또한, 제1,2차 냉매사이클의 냉매관을 2중관 형태로 구성하여 이루어질 수도 있다.The hybrid unit 30 includes a refrigerant pipe between the expansion device 14 of the first refrigerant cycle and the flow path controller 13 and a refrigerant between the indoor unit 22 and the driving unit 21 of the second refrigerant cycle. It is installed to thermally contact the tube. For example, the hybrid unit 30 is formed by inserting the refrigerant tubes of the first and second refrigerant cycles into thermal contact with a plurality of stacked plate heat conductive fins. Alternatively, a structure in which the refrigerant tubes of the first and second refrigerant cycles are heat exchanged by thermally conductive fluids may be applied. In addition, the refrigerant pipes of the first and second refrigerant cycles may be configured in a double tube form.

여기서, 제2차 냉매사이클(20)에는 냉매 유동을 위한 구동원으로 압축기 대신에 펌프가 적용되고, 냉매를 팽창시키기 위한 별도의 팽창장치가 설치되지 않는다. 이때, 상기 제2차 냉매 사이클은 압축기의 구동을 위한 오일이 불필요하고, 결국, 냉매 회수운전도 할 필요가 없다.Here, a pump is applied to the secondary refrigerant cycle 20 instead of the compressor as a driving source for the refrigerant flow, and a separate expansion device for expanding the refrigerant is not installed. At this time, the second refrigerant cycle does not require oil for driving the compressor, and thus, there is no need for a refrigerant recovery operation.

도 4를 참조하여, 상기 제2차 냉매사이클의 온도감지수단의 설치 형태에 관해 설명한다.With reference to FIG. 4, the installation form of the temperature sensing means of the said 2nd refrigerant cycle is demonstrated.

상기 온도감지수단(23a,23b,23c)은 실내기의 냉매관 중에서 냉매 흡입부와 토출부 및 상기 냉매 흡/토출부 사이의 소정 부분에 각각 설치된다. 즉, 각 실내기마다 3개씩의 온도감지수단이 설치된다.The temperature sensing means 23a, 23b, 23c are respectively provided in predetermined portions between the refrigerant suction part and the discharge part and the refrigerant suction / discharge part of the refrigerant pipe of the indoor unit. That is, three temperature sensing means are provided for each indoor unit.

이때, 하나의 온도감지수단(23b)은 상기 냉매관을 전개했을 때에 냉매 흡/토출부의 중간에 설치되는 것이 바람직하다. 이는 흡토출부의 중간에 설치된 온도감지수단(23b)(이하, 중간 온도감지수단이라 함)을 이용하여 실내기(22)의 포화온도를 측정할 수 있도록 하기 위함이다. 여기서, 실내기의 포화온도는 실내기에서 냉매가 열교환됨에 따라 온도는 변하지 않지만 상태는 변하는 온도를 의미한다.At this time, it is preferable that one temperature sensing means 23b is provided in the middle of the coolant suction / discharge unit when the coolant pipe is deployed. This is for enabling the saturation temperature of the indoor unit 22 to be measured using the temperature sensing means 23b (hereinafter referred to as an intermediate temperature sensing means) provided in the middle of the suction and discharge unit. Here, the saturation temperature of the indoor unit refers to a temperature at which the temperature does not change but the state changes as the refrigerant is heat-exchanged in the indoor unit.

또한, 제어부에는 냉매의 수압에 따른 냉매의 과열도차와 과냉도차가 기 설정된다. 여기서, 과열도차는 냉방 운전시 중간 온도감지수단(23b)과 냉매 토출측 온도감지수단(23c)의 온도차를 의미하고, 과냉도차는 난방 운전시 중간 온도감지수단(23b)과 냉매 토출측 온도감지수단(23a)의 온도차를 의미한다.In addition, the control unit is pre-set the superheat difference and the supercooled difference of the refrigerant according to the pressure of the refrigerant. Here, the superheat difference means the temperature difference between the intermediate temperature sensing means 23b and the refrigerant discharge side temperature sensing means 23c during the cooling operation, and the supercooling difference refers to the intermediate temperature sensing means 23b and the refrigerant discharge side temperature sensing means during the heating operation ( It means the temperature difference of 23a).

상술한 본 발명에 따른 멀티 공기조화 시스템의 작용에 관해 설명하기로 한다.The operation of the multi-air conditioning system according to the present invention described above will be described.

상기 멀티 공기조화 시스템은 냉매 사이클의 가동형태에 따라 냉방 및 난방 운전을 수행한다. 상기 냉/난방 운전시 상기 하이브리드 유닛(30)은 제1차 냉매사이클(10)의 냉기 또는 열기를 제2차 냉매사이클(20)에 열전달한다. The multi-air conditioning system performs cooling and heating operations according to the operation type of the refrigerant cycle. In the cooling / heating operation, the hybrid unit 30 heat transfers cool air or heat from the first refrigerant cycle 10 to the second refrigerant cycle 20.

먼저, 도 4 및 도 5를 참조하여, 냉방 운전을 설명하기로 한다.First, the cooling operation will be described with reference to FIGS. 4 and 5.

제1차 냉매사이클(10)의 냉매는 압축기(11)에서 압축된 후 유로 제어부(13) 에 보내진다(제A-B구간). 상기 유로 제어부(13)는 냉매를 실외 열교환기(12)측으로 절환시킨다. 이때, 상기 실외 열교환기(12)에 유입된 냉매는 외기와 열교환됨에 따라 응측된다(제B-C구간). 상기 응축된 냉매는 팽창장치(14)를 통과하면서 저온 저압으로 변환된다(제C-D구간). 상기 저온 저압 냉매는 상기 하이브리드 유닛(30)을 냉각시킨 후 상기 유로 제어부(13)를 거쳐 압축기(11)에 유입된다(제D-A구간). 이러한 제1차 냉매사이클(10)에서는 압축기(11)가 냉매 유동의 구동원으로 작용한다.The refrigerant of the primary refrigerant cycle 10 is compressed by the compressor 11 and then sent to the flow path controller 13 (section A-B). The flow path control unit 13 switches the refrigerant to the outdoor heat exchanger 12 side. At this time, the refrigerant introduced into the outdoor heat exchanger 12 is condensed as it is heat-exchanged with the outside (Section B-C). The condensed refrigerant is converted to a low temperature low pressure while passing through the expansion device (section C-D). The low temperature low pressure refrigerant cools the hybrid unit 30 and then flows into the compressor 11 through the flow path controller 13 (section D-A). In the primary refrigerant cycle 10, the compressor 11 serves as a driving source of the refrigerant flow.

이어, 제2차 냉매 사이클의 냉매는 하이브리드 유닛(30)과 열교환됨에 따라 냉각된다(제e-a구간). 이렇게 냉각된 냉매는 구동부(21)에 의해 실내기(22) 측으로 펌핑된다(제a-b구간). 이때, 냉매는 2상 상태에 도달하지 않았으며, 포화 온도에 도달하지 못한 상태에 있다. 상기 펌핑된 냉매는 소정의 실내기(22)의 흡입측 냉매량 제어밸브(25a)를 통해 실내기(22)에 유입되고, 실내기(22)에서 실내 공기와 열교환된 후 토출된다(제b-구간).Subsequently, the refrigerant of the second refrigerant cycle is cooled as it exchanges heat with the hybrid unit 30 (section e-a). The coolant thus cooled is pumped to the indoor unit 22 by the drive unit 21 (a-b section). At this time, the refrigerant did not reach the two-phase state, and the state did not reach the saturation temperature. The pumped refrigerant flows into the indoor unit 22 through the suction side refrigerant amount control valve 25a of the predetermined indoor unit 22, heat exchanges with the indoor air in the indoor unit 22, and is discharged (b-section).

이때, 실내기(22)의 냉매는 실내 공기와 열교환됨에 따라, 온도는 변하지 않고 상태만 변하는, 포화 온도에 도달된다(제b-c구간). 이때, 냉매는 2상 상태에 도달한다. 이러한 과정에서, 실내기(22)의 흡토출부 중간에 설치된 온도감지수단(23b : 도 5a의 c지점에 대응됨)에서는 냉매의 포화 온도를 측정하고, 실내기(22)의 토출부에 설치된 온도감지수단(23c)에서는 냉매의 과열도를 측정한다. 따라서, 제어부에서는 상기 포화 온도와 과열도의 차이(이하, 과열도차라 한다)를 판단하여 상기 냉매량 제어밸브(25)의 개도를 조절한다. 즉, 측정된 과열도차가 설정 과열도차보다 크다고 판단되면, 상기 실내기의 흡입측에 배치된는 냉매량 제어밸브(25a)의 개도를 확장하여 실내기(22)의 냉매량을 증대시킨다. 반면, 측정된 과열도차가 설정 과열도차보다 작다고 판단되면, 상기 실내기의 흡입측에 배치되는 냉매량 제어밸브(25a)의 개도를 축소시켜 냉매량을 감소시킨다. 이때, 실내기의 토출측에 배치되는 냉매량 제어밸브(25b)의 개도는 최대로 개방시킨다. 이에 따라, 상기 실내기(22)에 유입되는 냉매량을 최적으로 조절할 수 있다. 상기 실내기(22)의 냉매는 실내 공기와 열교환된 후 상기 하이브리드 유닛(30)으로 유입되어 다시 냉각된다. At this time, as the refrigerant of the indoor unit 22 is heat-exchanged with the indoor air, the temperature reaches a saturation temperature, in which only the state does not change (section b-c). At this time, the refrigerant reaches a two-phase state. In this process, the temperature sensing means 23b (corresponding to point c of FIG. 5A) installed in the middle of the suction and discharging portion of the indoor unit 22 measures the saturation temperature of the refrigerant, and the temperature sensing unit installed in the discharge portion of the indoor unit 22. In the means 23c, the degree of superheat of the refrigerant is measured. Therefore, the controller determines the difference between the saturation temperature and the superheat degree (hereinafter referred to as the superheat difference) to adjust the opening degree of the refrigerant amount control valve 25. That is, when it is determined that the measured superheat difference is larger than the set superheat difference, the amount of refrigerant of the indoor unit 22 is increased by extending the opening degree of the refrigerant amount control valve 25a disposed at the suction side of the indoor unit. On the other hand, if it is determined that the measured superheat difference is smaller than the set superheat difference, the amount of refrigerant is reduced by reducing the opening degree of the refrigerant amount control valve 25a disposed on the suction side of the indoor unit. At this time, the opening degree of the refrigerant amount control valve 25b disposed on the discharge side of the indoor unit is opened to the maximum. Accordingly, the amount of refrigerant flowing into the indoor unit 22 can be optimally adjusted. After the refrigerant of the indoor unit 22 is heat-exchanged with the indoor air, the refrigerant is introduced into the hybrid unit 30 and cooled again.

다음으로, 도 4 및 도 6을 참조하여 난방 운전을 설명하기로 한다.Next, the heating operation will be described with reference to FIGS. 4 and 6.

제1차 냉매사이클(10)의 냉매는 압축기(11)에서 압축된 후 유로 제어부(13)에 보내진다(제A-B구간). 상기 유로 제어부(13)는 냉매를 하이브리드 유닛(30) 측으로 절환시킨다. 이때, 상기 하이브리드 유닛(30)에 유입된 냉매는 하이브리드 유닛(30)을 가열하면서 응축된다(제B-C구간). 상기 응축된 냉매는 팽창장치(14)를 통과하면서 저온 저압으로 변환되고(제C-D구간), 이어, 상기 유로 제어부(13)를 거쳐 압축기(11)에 유입된다(제D-A구간). 여기서, 상기 제1차 냉매사이클의 냉매 순환방향은 냉방 운전시와 반대로 행해진다.The refrigerant of the primary refrigerant cycle 10 is compressed by the compressor 11 and then sent to the flow path controller 13 (section A-B). The flow path controller 13 switches the refrigerant to the hybrid unit 30 side. At this time, the refrigerant introduced into the hybrid unit 30 is condensed while heating the hybrid unit 30 (section B-C). The condensed refrigerant is converted to low temperature and low pressure while passing through the expansion device 14 (section C-D), and then flows into the compressor 11 via the flow path controller 13 (section D-A). Here, the refrigerant circulation direction of the primary refrigerant cycle is performed in the opposite direction to that of the cooling operation.

이어, 제2차 냉매 사이클의 냉매는 구동부(21)의 펌핑에 의해 압력이 상승된다(제a-b구간). 상기 펌핑된 냉매는 하이브리드 유닛(30)과 열교환됨에 따라 가열된다(제b-c구간). 이렇게 가열된 냉매는 구동부(21)에 의해 실내기(22) 측으로 펌핑된다. 상기 실내기(22)에 유입된 냉매는 실내 공간을 난방시키면서 자신은 응축된다(c-a구간). Subsequently, the pressure of the refrigerant of the second refrigerant cycle is increased by the pumping of the driving unit 21 (section a-b). The pumped refrigerant is heated as it heat exchanges with the hybrid unit 30 (section b-c). The heated refrigerant is pumped to the indoor unit 22 by the drive unit 21. The refrigerant introduced into the indoor unit 22 condenses itself while heating the indoor space (section c-a).

이때, 상기 실내기(22)의 냉매는 실내 공기와 열교환됨에 따라, 온도는 변하 지 않고 상태만 변하는, 포화 온도에 도달된다(제d-e구간). 이러한 과정에서, 도 4와 같이 실내기(22)의 흡/토출부 사이에 설치된 중간 온도감지수단(23b)에서는 냉매의 포화 온도를 측정하고(제e지점에 해당됨), 실내기(22)의 토출부에 설치된 온도감지수단(23a)에서는 냉매의 과냉도를 측정한다(제a지점에 해당됨). 따라서, 제어부에서는 상기 포화 온도와 과냉도의 차이(이하, 과냉도차라 한다)를 판단하여 상기 냉매량 제어밸브(25a,25b)의 개도를 조절한다. 즉, 측정된 과냉도차가 설정 과냉도차보다 크다고 판단되면, 상기 실내기의 냉매 흡입측의 냉매량 제어밸브(25a)의 개도를 확장하여 실내기(22)의 냉매량을 증대시키는 반면, 측정된 과냉도차가 설정된 과냉도차보다 작다고 판단되면, 상기 실내기의 냉매 흡입측 냉매량 제어밸브(25a)의 개도를 축소시켜 냉매량을 감소시킨다. 이에 따라, 실내기(22)에 유입되는 냉매량을 조절한다. 상기 실내기(22)의 냉매는 실내 공기와 열교환된 후 상기 하이브리드 유닛(30)으로 유입되어 다시 가열된다. At this time, as the refrigerant of the indoor unit 22 is heat-exchanged with the indoor air, the temperature is not changed but the saturation temperature is changed (d-e section). In this process, in the intermediate temperature sensing means 23b installed between the suction / discharge portions of the indoor unit 22 as illustrated in FIG. 4, the saturation temperature of the refrigerant is measured (corresponding to point e), and the discharge portion of the indoor unit 22 is measured. In the temperature sensing means 23a installed at, measure the subcooling degree of the refrigerant (corresponding to point a). Therefore, the controller determines the difference between the saturation temperature and the subcooling degree (hereinafter referred to as subcooling difference) to adjust the opening degree of the refrigerant amount control valves 25a and 25b. That is, when it is determined that the measured subcooling difference is greater than the set subcooling difference, the amount of refrigerant of the indoor unit 22 is increased by expanding the opening degree of the refrigerant amount control valve 25a on the refrigerant suction side of the indoor unit, while the measured subcooling difference is When determined to be smaller than the set subcooling difference, the opening amount of the refrigerant suction side refrigerant amount control valve 25a of the indoor unit is reduced to reduce the refrigerant amount. Accordingly, the amount of refrigerant flowing into the indoor unit 22 is adjusted. The refrigerant of the indoor unit 22 is heat-exchanged with the indoor air and then flows into the hybrid unit 30 and is heated again.

상술한 바와 같이, 본 발명에 따른 멀티 공기조화 시스템 및 그 제어방법에 따른 효과는 다음과 같다.As described above, the effects of the multi-air conditioning system and control method thereof according to the present invention are as follows.

첫째, 본 발명에 의하면, 제2차 냉매사이클의 실내기에서 포화온도를 측정할 수 있기 때문에, 상기 실내기에 최적의 냉매 유량을 공급할 수 있는 효과가 있다.First, according to the present invention, since the saturation temperature can be measured in the indoor unit of the second refrigerant cycle, there is an effect that can supply the optimum refrigerant flow rate to the indoor unit.

둘째, 본 발명에 의하면, 실내기에 토출되는 냉매량을 최적으로 조절함으로써, 실내 공간의 온도를 미세하게 조절할 수 있는 효과가 있다.Second, according to the present invention, by optimally adjusting the amount of refrigerant discharged to the indoor unit, it is possible to finely control the temperature of the indoor space.

셋째, 본 발명에 의하면, 실내기의 구조를 간단히 함으로써 열교환 능력을 증대시킬 수 있는 효과가 있다.Third, according to the present invention, the heat exchange capability can be increased by simplifying the structure of the indoor unit.

넷째, 본 발명에 의하면, 제2차 냉매사이클에서는 펌프를 구동원으로 하여 냉매를 순환시키기 때문에, 종래와 같이 별도의 냉매 회수 운전을 수행할 필요가 없는 효과가 있다. 또한, 냉매 회수 운전을 하지 않기 때문에, 냉매관의 길이를 종래보다 현저히 연장시킬 수 있는 효과가 있다.Fourth, according to the present invention, since the refrigerant is circulated in the secondary refrigerant cycle by using the pump as a driving source, there is no need to perform a separate refrigerant recovery operation as in the prior art. In addition, since the refrigerant recovery operation is not performed, there is an effect that the length of the refrigerant pipe can be significantly extended than before.

Claims (4)

냉매를 압축하는 압축기와, 냉매와 외기를 열교환시키는 실외 열교환기와, 냉매를 팽창시키는 팽창장치가 포함되는 제1차 냉매사이클;A first refrigerant cycle including a compressor for compressing the refrigerant, an outdoor heat exchanger for exchanging heat with the refrigerant, and an expansion device for expanding the refrigerant; 상기 제1차 냉매사이클 냉매와 독립된 유로상의 냉매를 펌핑하여 유동시키는 구동부와, 상기 펌핑된 냉매와 실내 공기를 열교환시키는 적어도 2개 이상의 실내기와, 상기 실내기의 냉매관 중에서 냉매 흡입부와 토출부 및 상기 냉매 흡/토출부 사이의 소정 부분에 각각 설치되는 온도감지수단과, 상기 온도감지수단에서 측정된 온도에 따라 소정의 개도로 개방되어 상기 실내기에 유출입되는 냉매량을 제어하는 냉매량 제어밸브가 포함되는 제2차 냉매사이클; 그리고, A driving unit for pumping and flowing a refrigerant on a flow path independent of the primary refrigerant cycle refrigerant, at least two indoor units for heat-exchanging the pumped refrigerant with indoor air, a refrigerant suction unit and a discharge unit in the refrigerant pipe of the indoor unit; And a temperature sensing means installed in each of the predetermined portions between the refrigerant absorbing and discharging portions, and a refrigerant amount control valve opening the predetermined opening according to the temperature measured by the temperature sensing means to control the amount of refrigerant flowing into and out of the indoor unit. Secondary refrigerant cycle; And, 상기 제1차 냉매사이클과 제2차 냉매사이클을 연결하여, 상기 제1차 냉매사이클의 열원을 제2차 냉매사이클에 열전달시키도록 설치되는 하이브리드 유닛을 포함하여 구성되는 멀티 공기조화 시스템.And a hybrid unit configured to connect the primary refrigerant cycle and the secondary refrigerant cycle to heat transfer the heat source of the primary refrigerant cycle to the secondary refrigerant cycle. 제1항에 있어서,The method of claim 1, 하나의 온도감지수단은 상기 냉매관을 전개했을 때에 상기 냉매 흡/토출부의 중간에 설치되는 것을 특징으로 하는 멀티 공기조화 시스템.One temperature sensing means is provided in the middle of the refrigerant suction / discharge unit when the refrigerant pipe is deployed. 냉/난방 운전시, 냉매 흡/토출부 사이의 온도감지수단과 냉매 토출부의 온도감지수단 사이의 온도차에 따라 상기 냉매량 제어밸브의 개도를 조절하는 제1항에 따른 멀티 공기조화 시스템의 제어방법.The control method according to claim 1, wherein the opening degree of the refrigerant amount control valve is adjusted according to the temperature difference between the temperature sensing means between the refrigerant intake / discharge unit and the temperature sensing means of the refrigerant discharge unit during the cooling / heating operation. 제3항에 있어서,The method of claim 3, 실내기의 냉매 흡입부에 배치되는 냉매량 제어밸브의 개도를 조절하고,Adjust the opening degree of the refrigerant amount control valve disposed in the refrigerant suction portion of the indoor unit, 실내기의 냉매 토출부에 배치되는 냉매량 제어밸브의 개도는 최대로 확장하는 것을 특징으로 하는 공기조화 시스템의 제어방법.A control method of an air conditioning system, characterized in that the opening degree of the refrigerant amount control valve disposed in the refrigerant discharge part of the indoor unit is expanded to the maximum.
KR1020040096315A 2004-11-23 2004-11-23 multi type air conditioning system and controlling method of the system KR100758902B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020040096315A KR100758902B1 (en) 2004-11-23 2004-11-23 multi type air conditioning system and controlling method of the system
EP05025039A EP1662212A3 (en) 2004-11-23 2005-11-16 Air conditioning system and method for controlling the same
US11/283,694 US20060107683A1 (en) 2004-11-23 2005-11-22 Air conditioning system and method for controlling the same
CNA2005101248842A CN1779391A (en) 2004-11-23 2005-11-23 Air conditioning system and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040096315A KR100758902B1 (en) 2004-11-23 2004-11-23 multi type air conditioning system and controlling method of the system

Publications (2)

Publication Number Publication Date
KR20060057226A true KR20060057226A (en) 2006-05-26
KR100758902B1 KR100758902B1 (en) 2007-09-14

Family

ID=35840122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040096315A KR100758902B1 (en) 2004-11-23 2004-11-23 multi type air conditioning system and controlling method of the system

Country Status (4)

Country Link
US (1) US20060107683A1 (en)
EP (1) EP1662212A3 (en)
KR (1) KR100758902B1 (en)
CN (1) CN1779391A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125124B2 (en) * 2007-01-31 2013-01-23 ダイキン工業株式会社 Refrigeration equipment
US7900468B2 (en) 2007-07-11 2011-03-08 Liebert Corporation Method and apparatus for equalizing a pumped refrigerant system
IL193004A0 (en) * 2008-07-23 2009-08-03 Joul Srhan Deviding unit of the air-conditioner
US10775054B2 (en) * 2009-03-13 2020-09-15 Treau, Inc. Modular air conditioning system
CN102422093B (en) 2009-05-12 2014-03-19 三菱电机株式会社 Air conditioner
US8145363B2 (en) * 2009-05-28 2012-03-27 American Power Conversion Corporation Systems and methods for controlling load dynamics in a pumped refrigerant cooling system
US8452459B2 (en) * 2009-08-31 2013-05-28 Fisher-Rosemount Systems, Inc. Heat exchange network heat recovery optimization in a process plant
EP2505938B1 (en) * 2009-11-25 2019-04-10 Mitsubishi Electric Corporation Air conditioning device
WO2012032580A1 (en) * 2010-09-10 2012-03-15 三菱電機株式会社 Air-conditioning device
KR101294082B1 (en) * 2011-11-24 2013-08-08 현대자동차주식회사 Heat exchanger for lpi vehicle
US9915453B2 (en) * 2012-02-07 2018-03-13 Systecon, Inc. Indirect evaporative cooling system with supplemental chiller that can be bypassed
CN102607146B (en) * 2012-04-06 2014-09-10 谭仲禧 Central air-conditioning system and control method thereof
CN102620494B (en) * 2012-05-08 2014-03-12 程有凯 Control technology for superheat degree of automatic cascade refrigeration thermostatic expansion valve
FR2991029B1 (en) * 2012-05-22 2014-05-16 Ciat Sa KIT AND METHOD FOR OPERATING A TEMPERATURE REGULATION INSTALLATION FOR A BUILDING
FR2995389B1 (en) * 2012-09-13 2017-10-20 Alstom Transport Sa AIR CONDITIONING DEVICE, IN PARTICULAR FOR A RAILWAY VEHICLE
CN104791941B (en) * 2014-01-21 2017-11-10 广东美的暖通设备有限公司 Air-conditioning system and its control method, the outdoor unit of air-conditioning system
WO2016187600A1 (en) 2015-05-20 2016-11-24 Other Lab, Llc Near-isothermal compressor/expander
US10739024B2 (en) 2017-01-11 2020-08-11 Semco Llc Air conditioning system and method with chiller and water
JP6834562B2 (en) * 2017-02-13 2021-02-24 株式会社富士通ゼネラル Air conditioner
CN107477780A (en) * 2017-08-14 2017-12-15 珠海格力电器股份有限公司 Method for adjusting evaporation temperature of indoor unit of air conditioner and air conditioner
US11054194B2 (en) 2017-10-10 2021-07-06 Other Lab, Llc Conformable heat exchanger system and method
CN108375241A (en) * 2018-03-23 2018-08-07 中国工程物理研究院流体物理研究所 A kind of accurate temperature controlling cooling system required suitable for high insulation resistance
US11253958B2 (en) 2019-01-29 2022-02-22 Treau, Inc. Polymer film heat exchanger sealing system and method
US11498163B2 (en) 2019-09-13 2022-11-15 Treau, Inc. Window installation system and method for split-architecture air conditioning unit
KR20210096785A (en) * 2020-01-29 2021-08-06 엘지전자 주식회사 An air conditioning apparatus and a method controlling the same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779171A (en) * 1954-01-04 1957-01-29 Rca Corp Room temperature conditioner
US3478534A (en) * 1967-08-11 1969-11-18 Controls Co Of America Thermistor controlled refrigeration expansion valve
US4067203A (en) * 1976-09-07 1978-01-10 Emerson Electric Co. Control system for maximizing the efficiency of an evaporator coil
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
US4576011A (en) * 1982-11-01 1986-03-18 Electric Power Research Institute Air conditioning system and method of operation
US4644756A (en) * 1983-12-21 1987-02-24 Daikin Industries, Ltd. Multi-room type air conditioner
JPH07111283B2 (en) * 1987-03-20 1995-11-29 株式会社日立製作所 Multi-room air conditioner
JPH0311250A (en) * 1989-06-08 1991-01-18 Matsushita Refrig Co Ltd Multi-room air-conditioning equipment
JP2725709B2 (en) * 1989-06-28 1998-03-11 松下冷機株式会社 Multi-room air conditioner
GB2241091B (en) * 1990-02-14 1994-01-19 Toshiba Kk Air conditioning apparatus connecting one outdoor unit with several indoor units through several refrigerant tubes and signal conductors
DE4315924A1 (en) * 1993-05-12 1994-11-17 Forschungszentrum Fuer Kaeltet Coolant for refrigerating machines or heat pumps
JP3414825B2 (en) * 1994-03-30 2003-06-09 東芝キヤリア株式会社 Air conditioner
JPH07324836A (en) * 1994-05-31 1995-12-12 Toshiba Corp Multi-room air conditioner
US5551248A (en) * 1995-02-03 1996-09-03 Heatcraft Inc. Control apparatus for space cooling system
US5761921A (en) * 1996-03-14 1998-06-09 Kabushiki Kaisha Toshiba Air conditioning equipment
JPH10197171A (en) * 1996-12-27 1998-07-31 Daikin Ind Ltd Refrigerator and its manufacture
JP4043074B2 (en) * 1997-06-27 2008-02-06 三菱重工業株式会社 Refrigeration equipment
JPH11201560A (en) * 1998-01-08 1999-07-30 Denso Corp Supercritical refrigerating cycle
US6505475B1 (en) * 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
JP4063465B2 (en) 2000-01-13 2008-03-19 三菱電機株式会社 Air conditioner and multi-type air conditioner
KR100851005B1 (en) * 2002-03-06 2008-08-12 엘지전자 주식회사 Refrigerant flow amount control apparatus for multi air conditioner
JP3966044B2 (en) * 2002-04-02 2007-08-29 株式会社デンソー Air conditioner
JP3709482B2 (en) * 2004-03-31 2005-10-26 ダイキン工業株式会社 Air conditioning system
JP3781046B2 (en) * 2004-07-01 2006-05-31 ダイキン工業株式会社 Air conditioner
CA2575974C (en) * 2004-08-11 2010-09-28 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
JP4670329B2 (en) * 2004-11-29 2011-04-13 三菱電機株式会社 Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
JP2008533429A (en) * 2005-03-18 2008-08-21 キャリア・コマーシャル・リフリージレーション・インコーポレーテッド Defroster for bottle cooler and method thereof
EP2000751B1 (en) * 2006-03-27 2019-09-18 Mitsubishi Electric Corporation Refrigeration air conditioning device
US7874499B2 (en) * 2006-11-22 2011-01-25 Store-N-Stuff Llc System and method to control sensible and latent heat in a storage unit
US20090031735A1 (en) * 2007-08-01 2009-02-05 Liebert Corporation System and method of controlling fluid flow through a fluid cooled heat exchanger

Also Published As

Publication number Publication date
US20060107683A1 (en) 2006-05-25
EP1662212A2 (en) 2006-05-31
EP1662212A3 (en) 2006-09-06
CN1779391A (en) 2006-05-31
KR100758902B1 (en) 2007-09-14

Similar Documents

Publication Publication Date Title
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
KR101212698B1 (en) Heat pump type speed heating apparatus
JP4651627B2 (en) Refrigeration air conditioner
KR100810870B1 (en) Hot-water supply device
JP5784117B2 (en) Air conditioner
US20130000340A1 (en) Refrigeration cycle apparatus
CN102483250A (en) Air conditioning device
JP4428341B2 (en) Refrigeration cycle equipment
JP2006071137A (en) Refrigeration unit
US6062035A (en) Air conditioner
WO2011052038A1 (en) Air conditioning device
JP2018132269A (en) Heat pump system
JP6341326B2 (en) Refrigeration unit heat source unit
JP2003172523A (en) Heat-pump floor heater air conditioner
JP4696634B2 (en) Engine driven air conditioner
JP2007218460A (en) Refrigerating cycle device and cool box
JP2005257231A (en) Heat pump hot water supply air conditioner
WO2020174618A1 (en) Air-conditioning device
KR100426640B1 (en) Refrigeration cycle
JP6758506B2 (en) Air conditioner
JP2009162403A (en) Air conditioner
JPH11182953A (en) Refrigerator
JP4258426B2 (en) Refrigeration cycle equipment
JP6978242B2 (en) Refrigerant circuit equipment
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20061101

Effective date: 20070622

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20120827

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130823

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160824

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee