KR20050066166A - Non-aqueous electrolyte for lithium battery - Google Patents

Non-aqueous electrolyte for lithium battery Download PDF

Info

Publication number
KR20050066166A
KR20050066166A KR1020030097417A KR20030097417A KR20050066166A KR 20050066166 A KR20050066166 A KR 20050066166A KR 1020030097417 A KR1020030097417 A KR 1020030097417A KR 20030097417 A KR20030097417 A KR 20030097417A KR 20050066166 A KR20050066166 A KR 20050066166A
Authority
KR
South Korea
Prior art keywords
carbonate
organic solvent
lithium
aqueous electrolyte
battery
Prior art date
Application number
KR1020030097417A
Other languages
Korean (ko)
Inventor
전종호
김학수
오정강
김종섭
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020030097417A priority Critical patent/KR20050066166A/en
Publication of KR20050066166A publication Critical patent/KR20050066166A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬전지용 비수전해액에 대한 것으로, 보다 상세하게는 리튬염이 0.8 내지 2M로 용해된 유기용매 100 중량부에 테트라에틸렌 설폰아미드를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액에 대한 것이며, 본 발명에 의해 고온 방치시 전지의 두께 증가율이 현저히 감소되고, 고온에서의 용량 저장 특성이 향상된 리튬 전지용 비수전해액을 제공할 수 있다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to a non-aqueous electrolyte for lithium batteries prepared by adding 0.1 to 10 parts by weight of tetraethylene sulfonamide to 100 parts by weight of an organic solvent in which lithium salt is dissolved in 0.8 to 2 M. The present invention can provide a nonaqueous electrolyte solution for a lithium battery, in which the rate of increase in thickness of the battery is significantly reduced and the capacity storage characteristics at high temperatures are improved.

Description

리튬전지용 비수전해액 {Non-aqueous Electrolyte for Lithium Battery} Non-aqueous Electrolyte for Lithium Battery

본 발명은 리튬전지용 비수전해액에 대한 것으로, 보다 상세하게는 리튬염이 0.8 내지 2M로 용해된 유기용매 100 중량부에 테트라에틸렌 설폰아미드(tetraethylene sulfonamide)를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액에 대한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to lithium batteries prepared by adding 0.1 to 10 parts by weight of tetraethylene sulfonamide in 100 parts by weight of an organic solvent in which lithium salt is dissolved in 0.8 to 2 M. It is about nonaqueous electrolyte.

민생용의 노트북 컴퓨터, 캠코더, 휴대폰 등에 사용되는 소형화 및 슬림화된 리튬이차전지는 리튬이온의 탈리 및 삽입이 가능한 리튬 금속 혼합 산화물로 된 양극 물질, 탄소재료 또는 금속 리튬 등으로 된 음극, 및 혼합 유기 용매에 리튬염이 적당량 용해된 전해액으로 구성되어 있다. 이러한 리튬전지의 형태로는 코인형, 18650 원통형, 063048 각형 등이 일반적으로 사용되고 있다. 리튬 전지에 있어서 3.6 내지 3.7V 정도의 높은 평균 방전 전압은 다른 알칼리 전지나 Ni-MH 또는 Ni-Cd전지에 비하여 높은 전력을 얻을 수 있어 매우 유리하다. 이러한 높은 구동 전압을 나타내기 위해서는 충방전 영역이 0 내지 4.2V에서 전기화학적으로 안정한 전해액 조성이 필요하며, 따라서 에틸렌카보네이트(ethylene carbonate, EC), 디메틸카보네이트(dimethyl carbonate, DMC), 디에틸카보네이트(diethyl carbonate, DEC) 등의 탄산염계 유기용매와 분리막과의 흡윤성 증가를 위하여 플루오로벤젠(Fluorobenzene, FB)을 적절히 혼합하여 전해액 용매로 사용한다. 전해액의 용질로 통상 LiPF6, LiBF4, LiClO4, LiN(C2F5 SO3)2 등의 리튬염을 사용하며, 이들은 전지 내에서 리튬이온의 공급원으로 작용하여 리튬 전지의 기본적인 작동을 가능하게 한다. 그러나 이와 같이 제조된 비수전해액은 Ni-MH 또는 Ni-Cd전지에 사용되는 수계 전해액에 비하여 이온 전도도가 현저하게 낮기 때문에 고율 충방전 등에서 불리한 점으로 작용하기도 한다.The miniaturized and slimmed lithium secondary battery used in consumer notebook computers, camcorders, mobile phones, etc. is a cathode material made of a lithium metal mixed oxide capable of detaching and inserting lithium ions, an anode made of carbon material or metal lithium, and a mixed organic material. It consists of electrolyte solution in which lithium salt was melt | dissolved in the solvent in appropriate quantity. Coins, 18650 cylinders, 063048 squares, and the like are generally used as the lithium battery. In the lithium battery, a high average discharge voltage of about 3.6 to 3.7 V is very advantageous because high power can be obtained as compared with other alkaline batteries or Ni-MH or Ni-Cd batteries. In order to exhibit such a high driving voltage, an electrochemically stable electrolyte composition is required at a charge and discharge region of 0 to 4.2 V. Therefore, ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate ( Fluorobenzene (FB) is suitably mixed and used as an electrolyte solvent in order to increase the absorbency between the carbonate organic solvent such as diethyl carbonate (DEC) and the separator. As the solute of the electrolyte, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , and LiN (C 2 F 5 SO 3 ) 2 are commonly used. They function as a source of lithium ions in the battery, thereby enabling basic operation of the lithium battery. Let's do it. However, the non-aqueous electrolyte prepared as described above may have disadvantages in high rate charge and discharge because the ionic conductivity is significantly lower than that of the aqueous electrolyte used in Ni-MH or Ni-Cd batteries.

리튬 전지의 초기 충전시 양극으로 사용되는 리튬 금속 복합 산화물로부터 나온 리튬 이온은 음극으로 사용되는 흑연(결정질 또는 비결정질) 전극으로 이동하여, 흑연 전극의 층간에 삽입(intercalation)된다. 이 때 리튬은 반응성이 강하므로 흑연 음극 표면에서 전해액과 음극을 구성하는 탄소가 반응하여 Li2CO3, Li2 O, LiOH 등의 화합물을 형성한다. 이들 화합물은 흑연 음극의 표면에 일종의 부동태 피막(passivation layer)을 형성하게 되는데, 이러한 피막을 SEI(Solid electrolyte interface) 필름이라고 한다. 상기 SEI 필름은 일단 형성되면 이온 터널의 역할을 수행하여 리튬 이온만을 통과시키게 된다. SEI 필름은 이러한 이온 터널의 효과로 리튬 이온을 용매화시켜, 전해액 중에서 리튬이온과 함께 이동하는 분자량이 큰 유기용매 분자, 예를 들면 EC, DMC 또는 DEC 등이 흑연 음극에 함께 삽입되어 흑연 음극의 구조를 붕괴시키는 것을 막아 준다. 일단 SEI필름이 형성되고 나면, 리튬 이온은 다시는 흑연 음극 또는 다른 물질과 부반응을 하지 않게 되고, 상기 SEI 필름 형성에 소모된 전하량은 비가역 용량으로 방전시 가역적으로 반응하지 않는 특성을 갖는다. 따라서 더 이상의 전해액 분해가 발생하지 않고 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다 (참조: J. Power Sources (1994) 51: 79~104). 그런 박형의 각형 전지에서는 상술한 SEI 형성 반응 중에 탄산염계 유기용매의 분해로부터 발생하는 CO, CO2, CH4, C2H 6 등의 기체 발생으로 인하여 충전시 전지의 두께가 팽창하는 문제가 발생한다 (참조: J. Power Sources (1998) 72: 66~70). 또한 만충전 상태에서 고온 저장시(예: 4.2V까지 만충전 후 85℃에서 4시간 방치) 시간이 경과함에 따라 상기의 SEI 필름이 증가된 전기화학적 에너지와 열 에너지에 의하여 서서히 붕괴되어, 노출된 음극 표면과 주위의 전해액이 반응하는 부반응이 지속적으로 발생하게 된다. 이때의 계속적인 기체발생으로 인하여 전지 내부의 내압이 상승하게 되며, 그 결과 각형 전지와 PLI(Polymer lithium ion) 전지의 경우 전지의 두께가 증가하여 세트 장착 자체를 어렵게 만드는 문제를 유발한다.In the initial charging of a lithium battery, lithium ions derived from a lithium metal composite oxide used as a positive electrode move to a graphite (crystalline or amorphous) electrode used as a negative electrode, and are intercalated between layers of the graphite electrode. At this time, since lithium is highly reactive, the electrolyte and the carbon constituting the cathode react on the graphite cathode surface to form compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a kind of passivation layer on the surface of the graphite cathode, which is called a solid electrolyte interface (SEI) film. Once formed, the SEI film functions as an ion tunnel to pass only lithium ions. The SEI film solvates lithium ions by the effect of this ion tunnel, and organic solvent molecules having a large molecular weight, such as EC, DMC, or DEC, which move together with lithium ions in the electrolyte are inserted together in the graphite cathode to form a graphite anode. It prevents the structure from breaking down. Once the SEI film is formed, lithium ions again do not react sideways with the graphite anode or other materials, and the amount of charge consumed to form the SEI film has a property of not reversibly reacting upon discharge with an irreversible capacity. Thus, no further electrolyte decomposition occurs and the amount of lithium ions in the electrolyte is reversibly maintained to maintain stable charge and discharge (see J. Power Sources (1994) 51: 79-104). In such thin rectangular batteries, the thickness of the battery is expanded during charging due to the generation of gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated from decomposition of the carbonate organic solvent during the above-mentioned SEI formation reaction. (See J. Power Sources (1998) 72: 66-70). In addition, when stored at high temperature in a fully charged state (for example, left at 85 ° C. for 4 hours after being fully charged to 4.2V), the SEI film is gradually decayed due to increased electrochemical energy and thermal energy. Side reactions continue to occur between the cathode surface and the surrounding electrolyte. In this case, the internal pressure of the battery increases due to the continuous gas generation, and as a result, in the case of the square battery and the polymer lithium ion (PLI) battery, the thickness of the battery increases, which causes the problem of making the set itself difficult.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 종래의 리튬 전지용 비수전해액에 테트라에틸렌 설폰아미드를 첨가함으로써, 전지특성에 영향을 주지 않으면서도, 고온 방치시 전지의 두께 증가율이 현저히 감소되고, 고온에서의 용량 저장 특성이 향상된 리튬 전지용 비수전해액을 제공하는 것을 목적으로 한다. The present invention is to solve the problems of the prior art as described above, by adding tetraethylene sulfonamide to the conventional non-aqueous electrolyte for lithium batteries, significantly reducing the thickness increase rate of the battery when left at high temperature without affecting the battery characteristics It is an object of the present invention to provide a nonaqueous electrolyte solution for lithium batteries having improved capacity storage characteristics at high temperatures.

즉, 본 발명은 리튬염이 0.8 내지 2M로 용해된 유기용매 100 중량부에 하기 화학식 1로 표시되는 테트라에틸렌 설폰아미드를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액에 대한 것이다.That is, the present invention relates to a non-aqueous electrolyte solution for lithium batteries prepared by adding 0.1 to 10 parts by weight of tetraethylene sulfonamide represented by the following Formula 1 to 100 parts by weight of an organic solvent in which lithium salt is dissolved in 0.8 to 2M.

[화학식 1][Formula 1]

이하에서 본 발명을 보다 상세하게 설명한다.The present invention will be described in more detail below.

본 발명의 리튬 전지용 비수전해액에서는 유기 용매로서 환형 탄산염계 유기용매와 선형 탄산염계 유기용매를 혼합하여 사용한다. 바람직하게는 에틸렌카보네이트 및 프로필렌카보네이트로 이루어진 군에서 선택된 일종 이상의 환형 탄산염계 유기용매와 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 및 에틸프로필카보네이트로 이루어지는 군으로부터 선택된 일종 이상의 선형 탄산염계 유기용매를 혼합하여 사용하고, 보다 바람직하게는 에틸렌카보네이트, 에틸메틸카보네이트 및 디에틸카보네이트를 혼합하여 사용한다. In the nonaqueous electrolyte solution for lithium batteries of the present invention, a cyclic carbonate organic solvent and a linear carbonate organic solvent are used as an organic solvent. Preferably, at least one cyclic carbonate organic solvent selected from the group consisting of ethylene carbonate and propylene carbonate and at least one linear carbonate selected from the group consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate. An organic solvent is mixed and used, More preferably, ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate are mixed and used.

이외에도, 필요에 따라 아세트산메틸, 아세트산에틸, 아세트산프로필, 아세트산부틸, 프로피온산메틸, 프로피온산에틸, 플루오르벤젠 등의 용매를 추가로 혼합하여 사용할 수도 있다. In addition, if necessary, solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate and fluorobenzene may be further mixed and used.

각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한 받는 것은 아니며, 통상의 리튬 전지용 비수전해액 제조시의 혼합비를 따른다.The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio in the production of a nonaqueous electrolyte solution for a lithium battery is followed.

한편, 본 발명의 비수전해액에 포함된 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiN(C2F5SO3)2 및 LiN(CF3SO 3)2으로 구성되는 군으로부터 선택되는 하나 또는 그 이상을 사용하는 것이 바람직하며, 보다 바람직하게는 LiPF6를 사용한다.Meanwhile, lithium salts included in the nonaqueous electrolyte of the present invention include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiN (C 2 F 5 SO 3 ) 2 and LiN (CF 3 SO 3 ) 2 . Preference is given to using one or more selected, more preferably LiPF 6 .

상기 리튬염의 첨가 농도는 0.8~2M의 범위이다. 리튬염의 농도가 0.8M 미만이면 전해액의 전도도가 낮아짐으로써 전해액 성능이 떨어지고, 2M을 초과하는 경우는 저온에서의 점도 증가에 기인한 리튬 이온의 이동성이 감소하여 저온 성능이 떨어지는 문제점이 발생할 수 있다. The addition concentration of the lithium salt is in the range of 0.8 to 2M. If the concentration of the lithium salt is less than 0.8M, the conductivity of the electrolyte is lowered and the performance of the electrolyte is lowered. If it exceeds 2M, the mobility of the lithium ions due to the increase in viscosity at low temperatures may decrease, resulting in a problem of low temperature performance.

본 발명의 비수전해액은 하기 화학식 1로 표시되는 테트라에틸렌 설폰아미드(tetraethylene sulfonamide)를 첨가함으로써 전해액의 분해를 방지함을 특징으로 한다. The nonaqueous electrolyte of the present invention is characterized by preventing decomposition of the electrolyte by adding tetraethylene sulfonamide represented by the following formula (1).

상기 물질은 리튬염을 포함하는 유기용매 100중량부에 대하여 0.1 내지 10중량부, 바람직하게는 0.1 내지 0.5 중량부의 범위로 첨가된다. 상기 첨가량이 0.1 중량부 미만인 경우 고온방치 시 두께 증가를 억제할 수 없는 문제점이 있고, 10중량부를 초과하는 경우 수명열화와 용량저하 등의 전지성능이 저하되는 문제점이 있다.The material is added in the range of 0.1 to 10 parts by weight, preferably 0.1 to 0.5 parts by weight with respect to 100 parts by weight of the organic solvent containing a lithium salt. If the added amount is less than 0.1 parts by weight, there is a problem that can not suppress the increase in thickness when left at high temperature, if it exceeds 10 parts by weight there is a problem that the battery performance, such as deterioration of life and capacity reduction.

본 발명의 리튬 전지용 비수전해액을 사용하여 통상의 방법에 따라 리튬 전지를 제조할 수 있으며, 이와 같이 제조된 리튬 전지는 고온 방치시 전해액의 분해에 따른 전지 내부의 기체 발생이 억제되기 때문에, 전지의 두께가 팽창하는 부풀림 현상이 방지되고 고온에서의 용량 저장특성 또한 우수하다.The lithium battery can be manufactured according to a conventional method using the nonaqueous electrolyte solution for a lithium battery of the present invention, and the lithium battery thus produced can suppress gas generation inside the battery due to decomposition of the electrolyte when left at high temperature. The bulging phenomenon of thickness expansion is prevented and the capacity storage characteristic at high temperature is also excellent.

이하에서 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are for the purpose of explanation and are not intended to limit the present invention.

실시예 1Example 1

에틸렌카보네이트(EC), 에틸메틸카보네이트(EMC) 및 디에틸카보네이트(DEC)를 1:1:1의 비율로 혼합한 용매에 용질로 LiPF6를 1.0M 용해시킨 전해액 100중량부에 대하여, 테트라에틸렌 설폰아미드 1중량부 첨가하여 비수전해액을 제조하고, 이를 이용하여 각형 423048 전지를 제조하였다. 전지 음극은 활물질로 흑연, 결착제로 폴리비닐리덴플루오라이드(이하, “PVDF”라 함)를 사용하여 구성하였다. 양극은 활물질로 LiCoO2를, 결착제로 PVDF를, 도전제로 아세틸렌블랙을 사용하여 구성하였다.Tetraethylene with respect to 100 parts by weight of an electrolyte solution in which 1.0 M of LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1. 1 part by weight of sulfonamide was added to prepare a non-aqueous electrolyte, and a rectangular 423048 battery was prepared using the same. The battery negative electrode was constructed using graphite as an active material and polyvinylidene fluoride (hereinafter referred to as “PVDF”) as a binder. The positive electrode was composed of LiCoO 2 as an active material, PVDF as a binder, and acetylene black as a conductive agent.

상기 전지를 사용하여 화성충방전과 표준충방전 과정 후 4.2V 만충전 상태에서 고온(85℃, 4시간) 방치후 물성변화를 측정하여, 그 결과를 표 1에 나타내었다. 또한 수명(표준충방전) 특성(50cycle)을 측정하여 이를 도 1에 나타내고, CV(Cyclic Voltametry)법으로 전기화학적 반응특성을 평가하여 이를 도 2에 나타내었다.(Working electrode: MCF, Reference electrode: Li-metal, Counter electrode: Li-metal, Voltage range: 3V~0V, Scan rate: 0.1mV/s)Using the battery, the change in physical properties after standing at high temperature (85 ° C., 4 hours) in 4.2V full charge state after the process of Mars charge and discharge and standard charge and discharge was measured, and the results are shown in Table 1. In addition, by measuring the life (standard charge and discharge) characteristics (50 cycles) is shown in Figure 1, it was shown in Figure 2 by evaluating the electrochemical reaction characteristics by the CV (Cyclic Voltametry) method. Li-metal, Counter electrode: Li-metal, Voltage range: 3V ~ 0V, Scan rate: 0.1mV / s)

실시예 2Example 2

테트라에틸렌 설폰아미드의 첨가량을 3중량부로 하는 것을 제외하고는 실시예와 동일하게 실시하였다. 그 결과를 표 1에 나타내었다.The same procedure as in Example was conducted except that the amount of tetraethylene sulfonamide added was 3 parts by weight. The results are shown in Table 1.

실시예 3Example 3

테트라에틸렌 설폰아미드의 첨가량을 5중량부로 하는 것을 제외하고는 실시예와 동일하게 실시하였다. 그 결과를 표 1에 나타내었다.The same procedure as in Example was conducted except that the amount of tetraethylene sulfonamide added was 5 parts by weight. The results are shown in Table 1.

비교예 1Comparative Example 1

테트라에틸렌 설폰아미드를 첨가하지 않고 기본전해액 만을 사용하는 것을 제외하고는 실시예 1과 동일하게 실시하였다. 그 결과를 표 1 및 도 1, 3에 나타내었다.The same procedure as in Example 1 was carried out except that only the basic electrolyte was used without adding tetraethylene sulfonamide. The results are shown in Table 1 and FIGS. 1 and 3.

화성 충전Mars charging 화성 방전Mars Discharge 화성 효율Mars efficiency △IR(mΩ)△ IR (mΩ) △V(volt)ΔV (volt) △T(mm)△ T (mm) 실시예 1Example 1 682.4682.4 615.5615.5 90.290.2 32.932.9 -0.06-0.06 0.40.4 실시예 2Example 2 678.3678.3 609.8609.8 89.989.9 31.831.8 -0.05-0.05 0.30.3 실시예 3Example 3 679.1679.1 608.5608.5 89.689.6 32.432.4 -0.05-0.05 0.30.3 비교예 1Comparative Example 1 678.9678.9 610.3610.3 89.989.9 30.530.5 -0.06-0.06 1.31.3

여기서, △IR(mΩ): 고온 방치 전, 후의 내부저항 변화Where ΔIR (mΩ): internal resistance change before and after high temperature

△V(volt): 고온 방치 전, 후의 전압 변화ΔV (volt): voltage change before and after high temperature

△T(mm): 고온 방치 전, 후의 두께 변화ΔT (mm): thickness change before and after high temperature standing

(고온방치 조건: 85℃±0.2℃, 4시간)(High temperature leaving condition: 85 degrees Celsius ± 0.2 degrees Celsius, four hours)

본 발명에 의해 고온 방치시 전지의 두께 증가율이 현저히 감소되고 고온에서의 용량 저장 특성이 향상된 리튬 전지용 비수전해액을 제공할 수 있다.Advantageous Effects of Invention The present invention can provide a non-aqueous electrolyte solution for a lithium battery in which the rate of increase in thickness of the battery is significantly reduced and the capacity storage characteristic at high temperature is improved.

도 1은 실시예 1 및 비교예 1에서 제조된 전지를 사용하여 측정된 수명특성 그래프, 1 is a life characteristic graph measured using the battery prepared in Example 1 and Comparative Example 1,

도 2는 실시예 1에서 제조된 비수전해액의 CV(Cyclic Voltametry) 결과를 보여주는 그래프, 및 2 is a graph showing a CV (Cyclic Voltametry) results of the non-aqueous electrolyte prepared in Example 1, and

도 2는 비교예 1에서 제조된 비수전해액의 CV 결과를 보여주는 그래프이다.Figure 2 is a graph showing the CV results of the non-aqueous electrolyte prepared in Comparative Example 1.

Claims (5)

리튬염이 0.8 내지 2M로 용해된 유기용매 100 중량부에 하기 화학식 1로 표시되는 테트라에틸렌 설폰아미드를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액.A non-aqueous electrolyte solution for lithium batteries prepared by adding 0.1 to 10 parts by weight of tetraethylene sulfonamide represented by the following formula (1) to 100 parts by weight of an organic solvent in which lithium salt is dissolved in 0.8 to 2M. [화학식 1][Formula 1] 제 1항에 있어서, 상기 유기용매는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합물인 것을 특징으로 하는 리튬 전지용 비수전해액.The non-aqueous electrolyte solution for lithium batteries according to claim 1, wherein the organic solvent is a mixture of a cyclic carbonate organic solvent and a linear carbonate organic solvent. 제 2항에 있어서, 상기 환형 탄산염계 유기용매는 에틸렌카보네이트, 프로필렌카보네이트 또는 이들의 혼합물이고, 상기 선형 탄산염계 유기용매는 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트 또는 이들의 혼합물인 것을 특징으로 하는 리튬 전지용 비수전해액.According to claim 2, wherein the cyclic carbonate organic solvent is ethylene carbonate, propylene carbonate or a mixture thereof, the linear carbonate organic solvent is dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate or It is a mixture of these, The nonaqueous electrolyte solution for lithium batteries. 제 2항에 있어서, 상기 환형 유기용매가 아세트산메틸, 아세트산에틸, 아세트산프로필, 아세트산부틸, 프로피온산메틸, 프로피온산에틸 및 플루오르벤젠으로 구성되는 군으로부터 선택되는 1종 이상을 추가로 포함하는 것을 특징으로 하는 리튬 전지용 비수전해액.3. The cyclic organic solvent according to claim 2, further comprising at least one member selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate and fluorobenzene. Non-aqueous electrolyte for lithium batteries. 제 1항에 있어서, 상기 리튬염이 LiPF6, LiClO4, LiAsF6, LiBF4, LiN(C2F5SO3)2 및 LiN(CF3SO3)2로 이루어진 군중에서 선택된 1종 이상인 것을 특징으로 하는 리튬 전지용 비수전해액.The method according to claim 1, wherein the lithium salt is at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiN (C 2 F 5 SO 3 ) 2 and LiN (CF 3 SO 3 ) 2 A nonaqueous electrolyte for lithium batteries, characterized by the above-mentioned.
KR1020030097417A 2003-12-26 2003-12-26 Non-aqueous electrolyte for lithium battery KR20050066166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030097417A KR20050066166A (en) 2003-12-26 2003-12-26 Non-aqueous electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030097417A KR20050066166A (en) 2003-12-26 2003-12-26 Non-aqueous electrolyte for lithium battery

Publications (1)

Publication Number Publication Date
KR20050066166A true KR20050066166A (en) 2005-06-30

Family

ID=37257277

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030097417A KR20050066166A (en) 2003-12-26 2003-12-26 Non-aqueous electrolyte for lithium battery

Country Status (1)

Country Link
KR (1) KR20050066166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277587A (en) * 2018-03-16 2019-09-24 三星Sdi株式会社 Electrolyte and lithium rechargeable battery for lithium rechargeable battery
WO2023224361A1 (en) * 2022-05-16 2023-11-23 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277587A (en) * 2018-03-16 2019-09-24 三星Sdi株式会社 Electrolyte and lithium rechargeable battery for lithium rechargeable battery
KR20190109099A (en) * 2018-03-16 2019-09-25 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery
US10879565B2 (en) 2018-03-16 2020-12-29 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery
CN110277587B (en) * 2018-03-16 2022-05-27 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery
WO2023224361A1 (en) * 2022-05-16 2023-11-23 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
KR100603303B1 (en) Lithium battery having effective performance
KR100508923B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20010082428A (en) Electrolyte for Lithium Rechargeable Batteries
KR100515331B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100510869B1 (en) Nonaqueous Electrolyte Battery and secondary battery comprising the electrolyte
KR100642435B1 (en) Nonaqueous Electrolyte for Battery
KR100534011B1 (en) Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte
KR100412527B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20050066166A (en) Non-aqueous electrolyte for lithium battery
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20050041513A (en) Method for manufacturing lithium battery
KR20050029971A (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100370389B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100860441B1 (en) Nonaqueous battery electrolyte
KR100510865B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100534010B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20050066181A (en) Non-aqueous electrolyte for lithium battery
KR100370388B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100510863B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060529

Effective date: 20070622