KR20050063482A - Fabrication method of porous sic ceramics - Google Patents

Fabrication method of porous sic ceramics Download PDF

Info

Publication number
KR20050063482A
KR20050063482A KR1020030094891A KR20030094891A KR20050063482A KR 20050063482 A KR20050063482 A KR 20050063482A KR 1020030094891 A KR1020030094891 A KR 1020030094891A KR 20030094891 A KR20030094891 A KR 20030094891A KR 20050063482 A KR20050063482 A KR 20050063482A
Authority
KR
South Korea
Prior art keywords
silicon carbide
weight
porous silicon
powder
sintering
Prior art date
Application number
KR1020030094891A
Other languages
Korean (ko)
Other versions
KR100993044B1 (en
Inventor
정두화
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020030094891A priority Critical patent/KR100993044B1/en
Publication of KR20050063482A publication Critical patent/KR20050063482A/en
Application granted granted Critical
Publication of KR100993044B1 publication Critical patent/KR100993044B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 다공체 탄화규소 세라믹스 제조방법에 관한 것으로서, 특히, 디젤 자동차에서 배출되는 배가스를 정화하기 위해 사용되는 디젤 입자상 분진 제거용 필터에 사용되는 탄화규소 필터 소재분야의 탄화규소 허니컴 필터의 소재로 이용할 수 있는 다공성 탄화규소 소결체의 제조 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing porous silicon carbide ceramics, and in particular, to use as a material of silicon carbide honeycomb filters in the field of silicon carbide filter materials used in diesel particulate filter used for purifying exhaust gas emitted from diesel vehicles. It relates to a method for producing a porous silicon carbide sintered body.

본 발명은 다공체 탄화규소 세라믹스 제조방법에 있어서, 알파형 실리콘 카바이드 분말 99.5~99.7 중량%와 소결조제로 알루미늄 보라이드(AlB2)가 0.3~0.5중량% 포함되게 하는 것을 기본조성으로 하고, 기본조성에 대하여 외삽으로 성형조제 PVB를 2중량% 되게 첨가한 후, 알콜매체내에서 충분히 혼합한 후 건조하여 성형분말을 얻은 뒤, 성형체를 제조한 후 알곤 분위기로 2000 ∼ 2200℃에서 30분간 소결하는 것을 특징으로 하는 다공체 탄화규소 세라믹스 제조방법을 요지로 한다.In the method for producing porous silicon carbide ceramics, the basic composition is to include 99.5 to 99.9% by weight of alpha-type silicon carbide powder and 0.3 to 0.5% by weight of aluminum boride (AlB 2) as a sintering aid. After the addition of 2% by weight of the forming aid PVB by extrapolation, the mixture is sufficiently mixed in an alcohol medium and dried to obtain a molding powder. The molded product is then sintered at 2000 to 2200 ° C. for 30 minutes in an argon atmosphere. The manufacturing method of the porous silicon carbide ceramics made into the summary is made into the summary.

Description

다공체 탄화규소 세라믹스 제조방법{Fabrication Method of Porous SiC Ceramics} Fabrication Method of Porous SiC Ceramics

본 발명은 다공체 탄화규소 세라믹스 제조방법에 관한 것으로서, 특히, 디젤 자동차에서 배출되는 배가스를 정화하기 위해 사용되는 디젤 입자상 분진 제거용 필터에 사용되는 탄화규소 필터 소재분야의 탄화규소 허니컴 필터의 소재로 이용할 수 있는 다공성 탄화규소 소결체의 제조 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing porous silicon carbide ceramics, and in particular, to use as a material of silicon carbide honeycomb filters in the field of silicon carbide filter materials used in diesel particulate filter used for purifying exhaust gas emitted from diesel vehicles. It relates to a method for producing a porous silicon carbide sintered body.

종래의 DPF(Diesel Particulate Filter)용 재질로서는 가솔린차의 배기가스 정화 담체용으로서 주로 코디어라이트가 사용되었는데, 이는 코디어라이트가 갖는 저열팽창특성으로 인해 내열충격성이 우수하다는 장점 때문이다. 그러나 디젤엔진용 DPF는 포집한 분진(PM)을 연소시켜 제거해야 하기 때문에 우수한 내열성과 내열충격성이 요구된다. 이러한 DPF시스템의 사용환경에 대응하기 위해 최신 새로운 재료 즉, SiC(Silicon Carbide)나 Si3N4(silicon Nitide)등이 개발되고 있다. SiC는 내열성 및 내 화학성이 우수하여 DPF 재료로서 적합하나, 난 소결성 물질로서 소결하는데 높은 온도가 요구되며, 이 때문에 제조비용이 높다는 단점이 있다. 그러므로 탄화규소 다공체를 DPF 재료로서 적용하기 위해서는 탄화규소 다공체의 제조비용을 낮추는 것이 무엇보다 중요하다. As a conventional DPF (Diesel Particulate Filter) material, cordierite is mainly used as an exhaust gas purification carrier of a gasoline vehicle, because of the advantage of excellent thermal shock resistance due to the low thermal expansion characteristics of cordierite. However, DPFs for diesel engines require excellent heat resistance and thermal shock resistance because they must be removed by burning the collected dust (PM). In order to cope with the use environment of the DPF system, new materials such as silicon carbide (SiC) and silicon nitride (Si3N4) are being developed. SiC is suitable as a DPF material due to its excellent heat resistance and chemical resistance, but requires a high temperature for sintering as a poorly sinterable material, and thus has a disadvantage of high manufacturing cost. Therefore, in order to apply the silicon carbide porous body as a DPF material, it is important to lower the manufacturing cost of the silicon carbide porous body.

따라서 본 발명에서는 탄화규소 분말에 소결조제의 첨가량을 변화하고, 소결온도를 변화함에 따라 소결체의 미세구조의 변화를 조사하여 효율적인 탄화규소 다공체의 소결조건을 도출하였다. Therefore, in the present invention, the addition amount of the sintering aid to the silicon carbide powder was changed, and the sintering conditions of the silicon carbide porous body were derived by investigating the change of the microstructure of the sintered body as the sintering temperature was changed.

본 발명은 디젤엔진에서 발생된 흑연입자상 물질의 제거 장치에 이용되는 탄화규소 허니컴 필터의 소재로 이용할 수 있는 탄화규소 다공체의 원료구성 및 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a raw material structure and a manufacturing method of a silicon carbide porous body that can be used as a material of the silicon carbide honeycomb filter used in the apparatus for removing graphite particulate matter generated in a diesel engine.

상술한 목적은 다공체 탄화규소 세라믹스 제조방법에 있어서, 알파형 실리콘 카바이드 분말 99.5~99.7 중량%와 소결조제로 알루미늄 보라이드(AlB2)가 0.3~0.5중량% 포함되게 하는 것을 기본조성으로 하고, 기본조성에 대하여 외삽으로 성형조제 PVB를 2중량% 되게 첨가한 후, 알콜매체내에서 충분히 혼합한 후 건조하여 성형분말을 얻은 뒤, 성형체를 제조한 후 알곤 분위기로 2000 ∼ 2200℃에서 30분간 소결하는 것을 특징으로 하는 다공체 탄화규소 세라믹스 제조방법에 의하여 달성된다. The above-mentioned object is the basic composition in the method of producing porous silicon carbide ceramics, in which 99.5 to 99.9% by weight of alpha-type silicon carbide powder and 0.3 to 0.5% by weight of aluminum boride (AlB2) are included as a sintering aid. After the addition of 2% by weight of PVB to the molding aid by extrapolation, the mixture was sufficiently mixed in an alcohol medium and dried to obtain a molding powder. The molded product was then sintered at 2000 to 2200 ° C. for 30 minutes in an argon atmosphere. It is achieved by a method for producing a porous silicon carbide ceramics.

이하, 첨부된 도면을 참조하여 본 발명의 구성에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration of the present invention.

본 발명은 알파형 실리콘 카바이드 분말 99.5~99.7 중량%와 소결조제로 알루미늄 보라이드(AlB2)가 0.3 ~ 0.5중량% 포함되게 하는 것을 기본조성으로 하고, 기본조성에 대하여 외삽으로 성형조제 PVB를 2중량% 되게 첨가한 후 알콜매체내에서 충분히 혼합한후 건조하여 성형분말을 얻은 뒤, 성형체를 제조, 알곤 분위기로 2000∼2200℃ 에서 30분간 소결하여 탄화규소 다공체 세라믹스를 제공하는 것을 요지로 한다.The present invention is based on the 99.5 to 99.9% by weight of the alpha-type silicon carbide powder and 0.3 to 0.5% by weight of aluminum boride (AlB2) as a sintering aid, and 2 weight of the molding aid PVB by extrapolation to the basic composition The present invention is to provide a silicon carbide porous ceramics by adding to a%, and then sufficiently mixed in an alcohol medium, dried to obtain a molded powder, and then a molded product is sintered at 2000 to 2200 ° C. for 30 minutes in an argon atmosphere.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명에서는 상기의 목적의 달성하기 위해 알파형 실리콘 카바이드 분말 99.5~99.7 중량%와 소결조제로 알루미늄 보라이드(AlB2)가 0.3~0.5중량% 포함되게 하는 것이 바람직 한데, 그 이유는 다음과 같다. In the present invention, in order to achieve the above object, it is preferable to include aluminum boride (AlB2) in an amount of 99.5 to 99.9% by weight of alpha-type silicon carbide powder and sintering aid, and the reason is as follows.

본 발명에서 사용하는 알파형 실리콘 카바이드의 분말의 경우 순도는 98% 급 이상, 입자크기 0.7마이크론의 것이 바람직하다. 실리콘 카바이드의 순도가 98% 이하로 떨어지면 함유되어 있는 탄소나 실리카에 의해 입자성장을 과도하게 촉진시킬 뿐 아니라 소결이 과도하게 진행되어 다공체제조에 어려움이 따른다. In the case of the powder of the alpha-type silicon carbide used in the present invention, the purity is preferably 98% or more and the particle size is 0.7 micron. When the purity of the silicon carbide falls below 98%, not only the grain growth is excessively promoted by the carbon or silica contained therein, but also the sintering proceeds excessively, resulting in difficulty in producing the porous body.

소결조제 알루미늄 보라이드의 첨가는 탄화규소분말의 소결을 촉진시키는 것으로서 그 첨가량은 탄화규소 분말과 알루미늄 보라이드의 합이 100중량%가 되게 0.3~0.5중량%를 첨가함이 바람직하다. 여기서 소결조제 알루미늄 보라이드의 첨가량이 0.3중량% 미만이면 소결이 미약하여 다공체로서의 강도가 나타나지 않으며, 0.5중량%를 초과하면 과도한 입성장과 과도한 소결을 이루어 다공체를 제조하기가 어렵다. The addition of the sintering aid aluminum boride promotes the sintering of the silicon carbide powder, and the amount of the sintering aid is preferably 0.3 to 0.5% by weight so that the sum of the silicon carbide powder and the aluminum boride is 100% by weight. If the addition amount of the sintering aid aluminum boride is less than 0.3% by weight, the sintering is weak and the strength as a porous body does not appear. When the amount of the sintering aid aluminum boride is less than 0.5% by weight, it is difficult to manufacture the porous body by excessive grain growth and excessive sintering.

포리비닐부티랄(PVB)의 첨가는 실리콘 카바이드의 성형성을 좋게 하기 위한 것으로 탄화규소 분말과 소결조제 100중량%에 대해 외삽으로 2~3중량%가 바람직하다. 포리비닐부티랄의 첨가량이 2중량% 미만이면 성형성 부족으로 성형체의 제조가 어렵고, 3중량%를 초과하면 성형체 분말 제조시 과량의 포리비닐부티랄로 인해 분말이 딱딱해져 처리하는데 어려움이 있다. 가장 바람직하게는 2중량%가 바람직하다. Addition of polyvinyl butyral (PVB) is to improve the moldability of silicon carbide, it is preferably 2-3% by extrapolation to 100% by weight of silicon carbide powder and the sintering aid. If the amount of polyvinyl butyral added is less than 2% by weight, it is difficult to manufacture a molded body due to lack of moldability. If the amount of polyvinyl butyral is more than 3% by weight, the powder becomes hard due to excessive polyvinyl butyral when the molded powder is manufactured. Most preferably 2% by weight is preferred.

탄화규소의 소결은 알곤분위기에서 행함이 바람직하며, 소결온도는 2000℃에서 2200℃범위내에서 30분간 행하는 것이 바람직하다. 2000℃ 미만에서는 소결이 이루어지지 않아 강도가 약하며, 2200℃를 초과면 과도한 입자성장과 과도한 소결로 다공체를 얻기 어렵다. Sintering of the silicon carbide is preferably performed in an argon atmosphere, and the sintering temperature is preferably carried out for 30 minutes in the range of 2000 ° C to 2200 ° C. If the temperature is lower than 2000 ° C., sintering is not performed and the strength is weak. If the temperature is higher than 2200 ° C., it is difficult to obtain a porous body by excessive grain growth and excessive sintering.

실시예Example

표1과 같이 구성되는 원료성분들과 적당량의 알콜 및 탄화규소 볼을 탄화규소질 포트밀에 넣고 24시간 볼밀링한 후 포트밀에서 꺼낸 슬러리를 건조기에서 건조한후 과립화하여 성형용 시료로 하였다. 성형체 제조는 4x4x42mm 크기로 성형하였으며, 성형압은 100kg/cm2으로 하였다. 제조된 성형체는 진공로를 이용 알곤분위기로 각 온도(2000 - 2250℃)에서 30분간 소성하였다. 소성된 소결체는 소성수축율과 기공율을 측정하였으며, 전자현미경을 이용 미세구조관찰을 통해 소결체의 입자크기 및 입자형상을 조사하여 다공체의 제조 가능성을 평가하였다. The raw materials and the appropriate amount of alcohol and silicon carbide balls as shown in Table 1 were put into a silicon carbide pot mill, ball milled for 24 hours, and the slurry taken out of the pot mill was dried in a dryer and granulated to form a sample for molding. The molded product was molded into a size of 4x4x42mm, and the molding pressure was 100kg / cm2. The molded article was fired for 30 minutes at each temperature (2000-2250 ℃) in an argon atmosphere using a vacuum furnace. The calcined sintered body was measured for plastic shrinkage and porosity, and the microstructure observation using electron microscopy was carried out to investigate the particle size and particle shape of the sintered body to evaluate the feasibility of producing the porous body.

구분division 실시예Example 비교예Comparative example 1One 22 33 1One 22 33 44 원료구성(중량%) Raw material composition (% by weight) α- SiCα-SiC 99.799.7 99.799.7 99.599.5 99.799.7 99.799.7 100100 9797 AIB2AIB2 0.30.3 0.30.3 0.50.5 0.30.3 0.30.3 00 33 PVBPVB +2+2 +2+2 +2+2 +2+2 +2+2 +2+2 +2+2 소결체특성Sintered Body Characteristics 소성온도(℃)Firing temperature (℃) 20002000 22002200 20002000 19001900 22502250 20002000 20002000 소성수축율(%)Plastic Shrinkage (%) 0.70.7 22 3.33.3 0.20.2 99 1One 4.74.7 결정크기(㎛)Crystal size (㎛) 2.52.5 55 1010 2.52.5 30<30 < 10-2010-20 30<30 < 다공체제조여부Whether to manufacture porous body 양호Good 양호Good 양호Good 불량Bad 불량Bad 불량Bad 불량Bad 상대밀도(%)Relative Density (%) 5252 5454 5757 5050 6565 5050 5555 기공율(%)Porosity (%) 4848 4646 4343 5050 3535 5050 4545 꺽임강도(Mpa)Bending Strength (Mpa) 6060 6565 6060 4040 8080 5050 5050

표1에서 알 수 있는 바와 같이 본 발명의 범위를 만족하는 실시예(1-3)는 다공체의 제조가 가능하고 비교예(1-4)는 다공체의 제조가 불가능하였다. As can be seen from Table 1, the embodiment (1-3) satisfying the scope of the present invention was able to produce a porous body, and Comparative Example (1-4) was unable to produce a porous body.

비교예1과 비교예 2는 소결온도가 청구범위를 초과한 것으로 비교예 1은 소결온도가 낮은 것으로 소결체의 강도가 약함을 알 수 있다. 비교예 2는 소결온도가 과도한 것으로 입자성장은 물론 기공율이 낮아 다공체로서의 효용이 저하되었다. In Comparative Example 1 and Comparative Example 2, the sintering temperature exceeded the claims, and in Comparative Example 1, the sintered body was low due to the low sintering temperature. In Comparative Example 2, the sintering temperature was excessive, and the particle growth as well as the porosity were low, and the utility as the porous body was lowered.

비교예 3과 비교예 4는 소결조제의 첨가량이 청구범위를 초과한 것으로 비교예 3은 소결조제가 첨가되지 않은 것으로 소결체의 강도가 약하며, 비교예 4는 소결조제의 첨가량이 과도하게 첨가된 것으로 소결체의 결정이 너무 커짐에 따라 기공경도 커짐을 추측할 수 있다. Comparative Example 3 and Comparative Example 4 is the addition amount of the sintering aid exceeded the claims, Comparative Example 3 is that the sintering aid is not added, the strength of the sintered body is weak, Comparative Example 4 is that the addition amount of the sintering aid is excessively added As the crystal of the sintered body becomes too large, it can be inferred that the pore size also increases.

본 발명은 이상에서 설명한 것처럼 알파형 탄화규소 분말에 소결조제로 알루미늄 보라이드를 첨가하여 적정온도범위에서 소결함으로써 흑연입자상 제거장치에 사용되는 탄화규소 허니컴의 소재로 사용할 수 있는 탄화규소 다공체의 제조가 가능하였다. According to the present invention, aluminum boride is added to an alpha-type silicon carbide powder as an sintering aid and sintered at an appropriate temperature range to produce a silicon carbide porous body that can be used as a material for silicon carbide honeycomb used in a graphite particulate removal device. It was possible.

도 1은 청구범위를 만족하는 탄화규소 소결체의 미세구조를 나타내는 도면.1 is a view showing a microstructure of a silicon carbide sintered body that satisfies the claims.

도 2는 청구범위를 벗어난 탄화규소 소결체의 미세구조(과도한 입자성장)를 나타내는 도면. 2 is a view showing a microstructure (excessive grain growth) of a silicon carbide sintered body outside the claims.

Claims (2)

다공체 탄화규소 세라믹스 제조방법에 있어서, 알파형 실리콘 카바이드 분말 99.5~99.7 중량%와 소결조제로 알루미늄 보라이드(AlB2)가 0.3~0.5중량% 포함되게 하는 것을 기본조성으로 하고, 기본조성에 대하여 외삽으로 성형조제 PVB를 2중량% 되게 첨가한 후, 알콜매체내에서 충분히 혼합한 후 건조하여 성형분말을 얻은 뒤, 성형체를 제조한 후 알곤 분위기로 2000 ∼ 2200℃에서 30분간 소결하는 것을 특징으로 하는 다공체 탄화규소 세라믹스 제조방법. In the method of producing porous silicon carbide ceramics, the basic composition is to include 99.5 to 99.9% by weight of alpha-type silicon carbide powder and 0.3 to 0.5% by weight of aluminum boride (AlB2) as a sintering aid, and extrapolate to the basic composition. Forming aid PVB is added to 2% by weight, mixed thoroughly in an alcohol medium, dried to obtain a molding powder, and then produced a molded body, and then sintered at 2000 to 2200 ° C. for 30 minutes in an argon atmosphere. Silicon carbide ceramics manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 알파형 실리콘 카바이드 분말의 순도는 98% 이상이며, 입자크기는 평균입경 0.5~0.7 마이크론인 것을 특징으로 하는 다공체 탄화규소 세라믹스 제조방법. Purity of the alpha-type silicon carbide powder is 98% or more, the particle size of the porous silicon carbide ceramics manufacturing method, characterized in that the average particle size of 0.5 ~ 0.7 microns.
KR1020030094891A 2003-12-22 2003-12-22 Fabrication Method of Porous SiC Ceramics KR100993044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030094891A KR100993044B1 (en) 2003-12-22 2003-12-22 Fabrication Method of Porous SiC Ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030094891A KR100993044B1 (en) 2003-12-22 2003-12-22 Fabrication Method of Porous SiC Ceramics

Publications (2)

Publication Number Publication Date
KR20050063482A true KR20050063482A (en) 2005-06-28
KR100993044B1 KR100993044B1 (en) 2010-11-08

Family

ID=37255326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030094891A KR100993044B1 (en) 2003-12-22 2003-12-22 Fabrication Method of Porous SiC Ceramics

Country Status (1)

Country Link
KR (1) KR100993044B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101033868B1 (en) * 2009-04-29 2011-05-11 한국기계연구원 Manufacturing method of SiC composite using calcined Al-B-C sintering additive
WO2014061898A1 (en) * 2012-10-18 2014-04-24 엘지이노텍 주식회사 Silicon carbide powder and preparation method therefor
KR20180130164A (en) 2017-05-29 2018-12-07 한국과학기술연구원 A compostion for preparing a liquid phase sintered silicon carbide porous body, the liquid phase sintered silicon carbide porous body using the composition having high strength and resistivity and a method for manufacturing thereof
KR20200048735A (en) 2018-10-30 2020-05-08 한국과학기술연구원 Liquid phase sintered silicon carbide porous body having dual pore structure and method for producing same
KR20200103957A (en) 2019-02-26 2020-09-03 한국화학연구원 Manufacturing method of porous silica
CN116143543A (en) * 2022-12-19 2023-05-23 中国建筑材料科学研究总院有限公司 High-purity porous silicon carbide ceramic and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157044B1 (en) 2004-12-24 2012-06-21 재단법인 포항산업과학연구원 Fabrication Method dof Porous Silicon Carbide Ceramics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239940B1 (en) 1997-10-07 2000-02-01 한종웅 method for manufacturing refractories material having SiC
JP3948797B2 (en) 1997-10-21 2007-07-25 電気化学工業株式会社 Method for producing silicon carbide composite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101033868B1 (en) * 2009-04-29 2011-05-11 한국기계연구원 Manufacturing method of SiC composite using calcined Al-B-C sintering additive
WO2014061898A1 (en) * 2012-10-18 2014-04-24 엘지이노텍 주식회사 Silicon carbide powder and preparation method therefor
KR20140049663A (en) * 2012-10-18 2014-04-28 엘지이노텍 주식회사 Method for preparing silicon carbide powder
US9440859B2 (en) 2012-10-18 2016-09-13 Lg Innotek Co., Ltd Silicon carbide powder comprising alpha phase silicon carbide granules of trimodal particle size distribution and low impurities
KR20180130164A (en) 2017-05-29 2018-12-07 한국과학기술연구원 A compostion for preparing a liquid phase sintered silicon carbide porous body, the liquid phase sintered silicon carbide porous body using the composition having high strength and resistivity and a method for manufacturing thereof
KR20200048735A (en) 2018-10-30 2020-05-08 한국과학기술연구원 Liquid phase sintered silicon carbide porous body having dual pore structure and method for producing same
KR20200103957A (en) 2019-02-26 2020-09-03 한국화학연구원 Manufacturing method of porous silica
CN116143543A (en) * 2022-12-19 2023-05-23 中国建筑材料科学研究总院有限公司 High-purity porous silicon carbide ceramic and preparation method and application thereof

Also Published As

Publication number Publication date
KR100993044B1 (en) 2010-11-08

Similar Documents

Publication Publication Date Title
EP1525042B1 (en) Mullite-aluminum titanate diesel exhaust filter
KR100931755B1 (en) Strontium Feldspa Aluminum Titanate for High Temperature
EP1911732B1 (en) Process for producing ceramic honeycomb structure
US6815038B2 (en) Honeycomb structure
US6736875B2 (en) Composite cordierite filters
KR100607481B1 (en) Porous material and method for production thereof
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
JP2014031317A (en) Mullite bodies and methods of forming mullite bodies
WO2004011386A1 (en) Aluminum titanate-based ceramic article
EP2194031B1 (en) Ceramic honeycomb structure and its production method
JP3185960B2 (en) Method for producing porous aluminum titanate sintered body
KR100993044B1 (en) Fabrication Method of Porous SiC Ceramics
KR101157044B1 (en) Fabrication Method dof Porous Silicon Carbide Ceramics
KR101133097B1 (en) Silicon carbide ceramic compositions for high temperature hot gas filters by mullite-zirconia bonding and preparing method of hot gas filters using this
KR101383352B1 (en) Composition for manufacturing silicon carbide-based porous body, silicon carbide-based porous body using the same, catalyst carrier and particulate filter containing the same
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JP4336772B2 (en) Method for producing silicon nitride ceramic porous body, silicon nitride porous body and structural member thereof
KR101355802B1 (en) Composition used for manufacturing porous sodium borate-bonded sic ceramics, method for manufacturing porous sodium borate-bonded sic ceramics using the same, porous sodium borate-bonded sic ceramics manufactured thereby, and catalyst substrate, preform for fabricating composite material and particulate filter containing the same
KR20120062088A (en) Porous silicon nitride ceramics composition having high density and high porous and method for fabricating silicon nitride ceramics using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131104

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee