KR20050063286A - Process of producing fluorescent powders for led - Google Patents

Process of producing fluorescent powders for led Download PDF

Info

Publication number
KR20050063286A
KR20050063286A KR1020030094676A KR20030094676A KR20050063286A KR 20050063286 A KR20050063286 A KR 20050063286A KR 1020030094676 A KR1020030094676 A KR 1020030094676A KR 20030094676 A KR20030094676 A KR 20030094676A KR 20050063286 A KR20050063286 A KR 20050063286A
Authority
KR
South Korea
Prior art keywords
powder
phosphor powder
present
led
metal salt
Prior art date
Application number
KR1020030094676A
Other languages
Korean (ko)
Other versions
KR100563363B1 (en
Inventor
조성률
김광진
마사키다카키
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR1020030094676A priority Critical patent/KR100563363B1/en
Publication of KR20050063286A publication Critical patent/KR20050063286A/en
Application granted granted Critical
Publication of KR100563363B1 publication Critical patent/KR100563363B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

본 발명은 이트륨(Y), 알루미늄(Al), 가돌리움(Gd), 갈륨(Ga), 터비움(Tb), 프라세오디뮴(Pr)및 세륨(Ce)의 금속염수용액을 고분자물에 함침하는 공정, 상기 금속염수용액이 함침된 고분자물을 건조한 후, 1000∼1200℃로 가열하고 냉각하는 공정 및 상기 냉각된 약한 응집 분말을 분쇄하여 일반식 (Y1-x-yGdxMy) 3(Al1-zGaz)5O12 (M은 Ce, Tb, Pr 중에서 1종이상이고, 0<x≤0.5, 0<y≤0.5, 0.005≤z≤0.1)로 표시되는 형광체분말을 얻는 것을 특징으로 하는 LED용 형광체 분말의 제조방법에 관한 것으로서, 본 발명에 의하여 종래의 제조방법에 비하여 분말을 제조하는 공정 중 혼합, 건조, 하소, 분쇄에 이르는 장시간의 공정을 필요로 하지 않고 대폭적으로 단시간 내에 저온에서 균일한 크기의 분말을 얻을 수 있다.The present invention is a process of impregnating a metal salt solution of yttrium (Y), aluminum (Al), gadolium (Gd), gallium (Ga), turbium (Tb), praseodymium (Pr) and cerium (Ce) in the polymer material, After drying the polymer material impregnated with the metallic saline solution, heating and cooling to 1000 ~ 1200 ℃ and pulverized the cooled weak aggregated powder by the general formula (Y 1-xy Gd x M y ) 3 (Al 1-z Ga z ) 5 O 12 (M is for at least one of Ce, Tb, Pr, and obtain a phosphor powder represented by 0 <x ≤ 0.5, 0 <y ≤ 0.5, 0.005 ≤ z ≤ 0.1) The present invention relates to a method for producing a phosphor powder, wherein the present invention does not require a long time step of mixing, drying, calcining, and pulverizing in the process of preparing the powder, compared to a conventional manufacturing method, and is uniformly uniform at low temperatures within a short time. A powder of size can be obtained.

Description

엘이디용 형광체 분말의 제조방법{Process of producing fluorescent powders for LED}  Process of producing fluorescent powders for LED

본 발명은 LED용으로 적용 가능하고 입도가 균일한 형광체 분말을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a phosphor powder that is applicable for an LED and has a uniform particle size.

종래에는 LED(발광다이오드 디스플레이), 백라이트 광원, 신호기, 각종 표시장치 등으로 이용되는 발광다이오드로서 질화인듐갈륨(InGaN)계 화합물 반도체 칩을 구비한 발광다이오드가 알려져 있다. 그래서 이 발광다이오드를 백색광원으로 이용하는 경우에는 청색으로 발광하는 다이오드에 황색으로 발광하는 YAG 형광체를 도포하면 백색이 되는 것이 알려져 있다.Background Art Conventionally, light emitting diodes equipped with indium gallium nitride (InGaN) compound semiconductor chips are known as light emitting diodes used in LEDs (light emitting diode displays), backlight light sources, signaling devices, various display devices, and the like. Therefore, when this light emitting diode is used as a white light source, it is known that when a YAG phosphor emitting yellow light is applied to a diode emitting blue light, it becomes white.

형광체 분말은 3㎛ 이하이고, 입자 크기가 균일하고, 구형인 특성이 요구된다. 그러나 종래 형광체 분말 제조 방법은 금속산화물을 혼합, 건조, 하소, 분쇄를 거쳐 1~20㎛ 사이의 불균일한 입자를 얻는다. 이 공정은 시간이 많이 걸리며, 산화물을 출발 원료로 사용하기 때문에 1600℃이상의 고온에서 하소하여야 하며, 입자들 사이의 고상반응으로 조성과 입자 크기가 불균일하며, 장시간의 분쇄가 필요하여 오염에 의한 순도저하 및 형광 특성 저하가 발생한다. 예를 들어 YAG:Ce 형광체 분말을 제조할 때 산화이트륨, 산화알루미늄, 산화세륨 등을 장시간 균일하게 혼합하고, 건조를 거쳐 1700℃이상에서 소성해야 한다. BaF2와 같은 융제를 첨가하더라도 열처리 온도는 1500℃이상이 되어야 한다. 그리고 강하게 응집된 분말을 다시 장시간 분쇄하여야 한다. 이때 불순물의 혼입뿐만 아니라 입자 크기가 불균일하다.The phosphor powder is 3 mu m or less, the particle size is uniform, and spherical characteristics are required. However, in the conventional phosphor powder production method, the metal oxide is mixed, dried, calcined and pulverized to obtain nonuniform particles of 1 to 20 µm. This process takes a long time and should be calcined at a high temperature of 1600 ℃ or higher because the oxide is used as a starting material.The composition and particle size are uneven due to the solid phase reaction between the particles, and the long-term grinding is required, so that the purity of contamination Deterioration and fluorescence deterioration occur. For example, when preparing a YAG: Ce phosphor powder, yttrium oxide, aluminum oxide, cerium oxide, and the like must be uniformly mixed for a long time, dried, and calcined at 1700 ° C. or higher. Even if a flux such as BaF 2 is added, the heat treatment temperature must be at least 1500 ° C. And the strongly agglomerated powder must be pulverized again for a long time. At this time, not only the incorporation of impurities but also the particle size is nonuniform.

고상법 이외의 다른 방법으로는 열분해반응(pyrolysis), 공침법 등이 있다. 열분해반응방법으로는 구형의 입자는 얻을 수 있느나 입자크기가 불균일하며 장치구성이 복잡하고 양산에는 부적합하다. 공침법은 비교적 간단한 공정이나 다성분계인 경우에 균일한 조성의 공침물을 얻기가 어려우며 반복적인 세척공정이 필요하며 균일한 입자를 얻기가 어렵다.  Other methods besides the solid phase method include pyrolysis and coprecipitation. As the pyrolysis method, spherical particles can be obtained, but the particle size is uneven, the device configuration is complicated, and it is not suitable for mass production. The coprecipitation method is difficult to obtain coprecipitates of uniform composition in the case of a relatively simple process or a multi-component system, requires repeated washing processes, and hard to obtain uniform particles.

따라서 본 발명에서는 종래의 결점을 해결하여 간단한 공정으로 보다 저온에서 균일한 입도와 균일한 조성을 갖는 형광체 분말을 제조하는 방법을 제공하는 것이다.   Accordingly, the present invention is to provide a method for manufacturing a phosphor powder having a uniform particle size and uniform composition at a lower temperature by a simple process to solve the conventional drawbacks.

그러므로 본 발명에서는 LED용 형광체 분말의 제조방법에 있어서,  Therefore, in the present invention, in the method for producing a phosphor powder for LED,

이트륨(Y), 알루미늄(Al), 가돌리움(Gd), 갈륨(Ga), 터비움(Tb), 프라세오디뮴(Pr)및 세륨(Ce)의 금속염수용액을 고분자물에 함침하는 공정;  Impregnating the polymer material with a metal salt solution of yttrium (Y), aluminum (Al), gadolium (Gd), gallium (Ga), turbium (Tb), praseodymium (Pr), and cerium (Ce);

상기 금속염수용액이 함침된 고분자물을 건조한 후, 1000∼1200℃로 가열하고 냉각하는 공정 및After drying the polymer material impregnated with the metal salt solution, heating and cooling to 1000 ~ 1200 ℃ and

상기 냉각된 약한 응집 분말을 분쇄하여 일반식 (Y1-x-yGdxMy)3(Al 1-zGaz)5O12 (M은 Ce, Tb, Pr 중에서 1종이상이고, 0<x≤0.5, 0<y≤0.5, 0.005≤z≤0.1)로 표시되는 형광체분말을 얻는 것을 특징으로 하는 LED용 형광체 분말의 제조방법이 제공된다.The cooled weak agglomerated powder is pulverized to general formula (Y 1-xy Gd x M y ) 3 (Al 1-z Ga z ) 5 O 12 (M is at least one of Ce, Tb, and Pr, and 0 <x≤ There is provided a method for producing phosphor powder for LEDs, wherein the phosphor powder is expressed as 0.5, 0 <y ≦ 0.5, 0.005 ≦ z ≦ 0.1).

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 이트륨(Y), 알루미늄(Al), 가돌리움(Gd), 갈륨(Ga), 터비움(Tb), 프라세오디뮴(Pr) 및 세륨(Ce)으로 이루어진 수용성금속염(더욱 좋게는 염의 가수분해 생성물) 수용액을 만들고 고분자물에 함침, 탈수, 건조, 가열하여 고분자물 구조와 유사한 형상의 분말을 얻을 수 있다.In the present invention, a water-soluble metal salt (more preferably, hydrolysis of a salt composed of yttrium (Y), aluminum (Al), gadolium (Gd), gallium (Ga), turbium (Tb), praseodymium (Pr), and cerium (Ce) Product) The aqueous solution can be impregnated, dehydrated, dried and heated to obtain a powder having a shape similar to that of the polymer.

상기 수용성 금속염은 염화물, 질화물, 황화물이 있으며 염화물을 사용한 경우에 최종 조성의 산화물을 보다 낮은 온도에서 합성하기가 가장 좋으며 다음으로 질화물, 황화물의 순서로 좋다.  The water-soluble metal salts include chlorides, nitrides, and sulfides, and when chlorides are used, oxides of the final composition are best synthesized at lower temperatures, followed by nitrides and sulfides.

형광체 분말을 합성하기 위해 금속염 수용액을 함침하는 고분자물로는 금속염수용액을 잘 흡수하는 특성이 있는 레이온, 아세테트, 셀룰로오즈, 목재, 펄프 등이 바람직하고, 미세한 조직상의 고분자물로는 셀로판, 목재 등의 미세 셀 구조를 가진 고분자물이 바람직하다. 이 중에서 셀룰로오즈가 특히 좋으며, 무정형 셀룰로오즈의 메트릭스 중에 유지되어 있는 셀룰로오즈의 작은 미세한 결정(40~250Å) 내에 금속염수용액이 흡수되고 이것을 건조하게 되면 무정형의 미세한 분말이 형성되고 후에 열처리를 하면 결정형의 미분말을 얻을 수 있다.  In order to synthesize the phosphor powder, a polymer material impregnated with an aqueous metal salt solution is preferably rayon, acetet, cellulose, wood, pulp, etc., which have a characteristic of absorbing a metal salt solution, and cellophane, wood, etc. Polymers having a fine cell structure of are preferred. Among them, cellulose is particularly good, and the metal saline solution is absorbed into small crystalline crystals of cellulose (40 to 250Å) held in the matrix of amorphous cellulose. You can get it.

상기 고분자물의 표면에 과량의 금속염수용액이 있으면 건조 후에 고분자물의 표면에 결정이 석출되거나 큰덩어리의 염이 형성되어 균일한 크기의 분말을 얻을 수 없게 되므로 원심분리기나 롤러에 의한 압축수단등으로 여분의 금속염수용액을 제거해야 한다. 본 발명에서는 상기 압축수단등에 의해 제거되는 여분의 금속염수용액을 재사용할 수 있다. 상기 금속염수용액 모두를 고분자물에 함침하는 것이 좋겠으나, 함침되는 금속염수용액과 고분자물의 중량비는 1:1이 바람직하다. 또한 금속염수용액을 고분자물에 함침하는데 있어서 진공처리를 하게 되면 고분자물 내의 미세한 결정 속으로 상기 금속염수용액이 잘 스며들게 되어 수율을 높일 수 있다.  If there is an excessive amount of metal salt solution on the surface of the polymer material, crystals are precipitated on the surface of the polymer material after drying, or salts of large mass are formed, so that powders of uniform size cannot be obtained. Metal saline solution should be removed. In the present invention, the excess metal saline solution removed by the compression means or the like can be reused. It is preferable to impregnate all of the metal saline solution into the polymer, but the weight ratio of the metal saline solution and the polymer to be impregnated is preferably 1: 1. In addition, when the vacuum treatment is performed to impregnate the metal salt solution into the polymer material, the metal salt solution is well penetrated into the fine crystals in the polymer material, thereby increasing the yield.

다음 공정으로 금속염수용액이 함침된 고분자물을 80~120℃사이에서 4시간 이상 열풍건조하고 100~200℃/h의 속도로 400℃까지 승온하여 고분자물를 제거하는데 이때 금속염의 일부는 탄화된다. 그리고 1000∼1200℃로 가열하여 산화시키면 매우 약하게 응집된 산화분말을 얻게 된다. 그리고 이것을 볼밀, 제트밀, 프레너터리밀 등으로 분쇄하여 입도가 60 ~ 1000 nm, 비표면적이 1.3 ~ 22 m2/g 되는 균일한 형광체분말을 얻을 수 있다.In the following process, the polymer material impregnated with the metal salt solution is hot-air dried at 80 to 120 ° C. for at least 4 hours and heated to 400 ° C. at a rate of 100 to 200 ° C./h to remove the polymer. And when it oxidizes by heating to 1000-1200 degreeC, very weakly aggregated oxidation powder will be obtained. Then, this can be pulverized with a ball mill, jet mill, or pretend mill to obtain a uniform phosphor powder having a particle size of 60 to 1000 nm and a specific surface area of 1.3 to 22 m 2 / g.

한편 상기의 고분자물을 연소시킬 때 습도가 높은 미결정체 금속염이 산화되는 경우에는 결정생성 속도보다 결정 성장 속도가 크게 되는바 이를 이용하여 입자의 크기를 조절할 수 있다. 또한 열처리 온도와 금속염 수용액의 농도를 변화시켜서 입자의 크기를 조절할 수 있다.  On the other hand, when the high-humidity microcrystalline metal salt is oxidized when the polymer is combusted, the crystal growth rate is greater than the crystal formation rate, and thus the particle size can be controlled. In addition, the size of the particles can be controlled by changing the heat treatment temperature and the concentration of the aqueous metal salt solution.

상기와 같이 본 발명에서는 금속염 수용성을 간단히 혼합하여 고분자물에 함침시키는 공정으로 쉽게 조성이 균일한 미결정 분말을 제조할 수 있다.As described above, in the present invention, the microcrystalline powder can be easily prepared by uniformly mixing the metal salt water solubility and impregnating the polymer material.

본 발명에 따라 제조되는 LED용 형광체는 일반식으로 (Y1-x-yGdxMy)3 (Al1-zGaz)5O12로 표시되며, 여기서 M은 Ce, Tb, Pr 중에서 1종이상이고, 0<x≤0.5, 0<y≤0.5, 0.005≤z≤0.1이다. x가 0.5를 초과하면 휘도의 저하가 발생하고, y가 0.5를 초과하면 Ga의 분리가 증가하여 휘도가 저하된다. z가 0.005미만이면 활성제로서의 기능할 발휘하지 못하므로 형광체가 될 수 없고, z가 0.1을 초과하면 활성제의 농도가 증가하여 소광현상에 따른 휘도저하가 발생하는 문제점이 있다. 상기 형광체는 특히 황색 발광을 하며 청색 다이오드와 조합하여 백색광을 낼 수 있다.Phosphor for LED produced according to the present invention is represented by the general formula (Y 1-xy Gd x M y ) 3 (Al 1-z Ga z ) 5 O 12 , where M is one of Ce, Tb, Pr Phase, and 0 <x ≦ 0.5, 0 <y ≦ 0.5, and 0.005 ≦ z ≦ 0.1. When x exceeds 0.5, a decrease in luminance occurs. When y exceeds 0.5, separation of Ga increases and the luminance decreases. If z is less than 0.005, the phosphor cannot function as an activator and thus cannot be a phosphor. If z is more than 0.1, the concentration of the activator increases, causing a decrease in luminance due to quenching. The phosphor emits yellow light in particular and can emit white light in combination with a blue diode.

이하 본 발명을 비한정적인 실시예에 의하여 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to non-limiting examples.

[실시예 1~3][Examples 1-3]

염화이트륨, 염화알루미늄, 염화세륨을 (Y0.955Ce0.045)3Al5O 12의 조성이 되도록 혼합한 후 증류수에 녹여 0.3몰 농도로 만든 후 상기 혼합용액 30g을 셀룰로즈계 펄프 30g에 3시간동안 함침하였다. -100kPa 이하의 압력으로 진공처리를 한 후 원심분리기를 사용하여 여분의 금속염 수용액을 제거하고 80℃에서 8시간 건조하였다. 100℃/h의 속도로 300℃까지 가열하고 400℃까지 2시간 가열하고 200℃/h의 속도로 승온하여 하기 표 1의 온도까지 가열하여 2시간 유지한 후 냉각하였다. 얻어지는 섬유상과 같은 형상을 한 분말을 유발에서 분쇄하여 LED용 형광체를 제조하였다.Yttrium chloride, aluminum chloride, and cerium chloride are mixed to a composition of (Y 0.955 Ce 0.045 ) 3 Al 5 O 12 , and dissolved in distilled water to make 0.3 molar concentration. 30 g of the mixed solution is impregnated with 30 g of cellulose-based pulp for 3 hours. It was. After vacuuming at a pressure of -100 kPa or less, an excess aqueous metal salt solution was removed using a centrifuge and dried at 80 ° C. for 8 hours. It heated to 300 degreeC at the rate of 100 degree-C / h, heated to 400 degreeC for 2 hours, heated up at the rate of 200 degree-C / h, it heated to the temperature of Table 1, it maintained for 2 hours, and cooled. The powder having the same shape as the fibrous obtained was ground in a mortar to prepare a phosphor for LEDs.

구 분division 소성온도(℃)Firing temperature (℃) 실시예 1Example 1 10001000 실시예 2Example 2 11001100 실시예 3Example 3 12001200

상기제조된 LED용 형광체를 X선 회절법, 비표면적, 전자현미경으로 분석하였다. 비표면적 측정결과로부터 입도를 계산하였다. 분석 결과를 표1에 나타내었다. X선 회절법 측정 결과 1000℃에서 미량의 YAP(YAlO3) 상이 관찰되었으나 1100℃부터는 YAG(Y3Al5O12) 단일상으로 나타났다(도 3). 도 4는 1100℃에서 소성한 형광체 분말의 전자현미경 사진으로 계산된 입도 181nm와 유사하고 매우 균일한 입자가 합성되었음을 보여준다. 입도는 1000℃에서 1200℃로 증가할 때 88nm에서 242nm로 증가하였다. 간단히 열처리 온도를 조절하여 입도를 조절할 수 있었고 열처리 온도를 더 증가시키면 입자의 성장이 촉진되어 더 큰 입자도 제조할 수 있다.The prepared phosphor for LED was analyzed by X-ray diffraction, specific surface area, and electron microscope. Particle size was calculated from the specific surface area measurement results. Table 1 shows the analysis results. As a result of X-ray diffraction measurement, a trace amount of YAP (YAlO 3 ) phase was observed at 1000 ° C., but it was shown as YAG (Y 3 Al 5 O 12 ) single phase from 1100 ° C. (FIG. 3). FIG. 4 shows that particles having a particle size similar to that of 181 nm calculated by electron micrographs of the phosphor powder calcined at 1100 ° C. were synthesized. The particle size increased from 88 nm to 242 nm as it increased from 1000 ° C to 1200 ° C. The particle size could be controlled simply by adjusting the heat treatment temperature, and further increasing the heat treatment temperature promoted the growth of the particles, thus producing larger particles.

[실시예 4∼5][Examples 4 to 5]

상기 실시예1의 조성으로 하기 표 2와 같은 농도로 금속염수용액을 제조하여 같은 공정으로 YAG 분말을 합성하였다. 소결온도는 1000℃로 고정하였다. X선 회절법, 비표면적, 전자현미경으로 분석하였다. 비표면적 측정결과로부터 입도를 계산하였다. 실시예1은 참고로 비교하였다. X선 회절법 측정 결과 1.0몰 수용액을 사용한 경우 1000℃에서 순수한 YAG 상이 관찰되었으나, 2.0몰 수용액을 사용한 경우에는 YAM(Y4Al2O9) 상이 나타났다(도 5). 입도는 0.3몰에서 2.0몰로 증가할 때 88nm에서 42nm로 감소하였다. 금속염수용액의 농도를 조절하여도 입도를 조절할 수 있었다.To prepare a metal salt solution in the concentration shown in Table 2 in the composition of Example 1 to synthesize a YAG powder in the same process. Sintering temperature was fixed at 1000 ℃. It was analyzed by X-ray diffraction, specific surface area and electron microscope. Particle size was calculated from the specific surface area measurement results. Example 1 was compared for reference. As a result of X-ray diffraction measurement, pure YAG phase was observed at 1000 ° C. when 1.0 mole aqueous solution was used, but YAM (Y 4 Al 2 O 9 ) phase was observed when 2.0 mole aqueous solution was used (FIG. 5). The particle size decreased from 88 nm to 42 nm as it increased from 0.3 mol to 2.0 mol. The particle size was also controlled by adjusting the concentration of the metal saline solution.

구 분division 농도(몰)Concentration (mol) 실시예 4Example 4 1.01.0 실시예 5Example 5 2.02.0

[비교예 1]Comparative Example 1

마노유발을 사용하여 산화이트륨, 산화알루미늄, 산화세륨을 실시예 1의 조성이 되도록 아세톤 중에서 혼합하였다. 혼합한 시료를 80℃ 오븐에서 24시간 건조시킨 다음 고순도 알루미나 용기에 넣고 전기로에 장입하여 1650℃에서 8시간 열처리하였다. 냉각 후에 마노유발에서 다시 분쇄하여 YAG 형광체 분말을 제조하였다. 이 분말의 전자현미경 관찰 결과 1~10㎛로 넓은 입도 분포를 보였고, X선 회절결과는 순수한 YAG 상을 보였으며 비표면적은 0.38 m2/g으로 평균입경 약 3500 nm였다.Using agate induction, yttrium oxide, aluminum oxide, and cerium oxide were mixed in acetone to form the composition of Example 1. The mixed samples were dried in an oven at 80 ° C. for 24 hours, placed in a high purity alumina container, charged into an electric furnace, and heat-treated at 1650 ° C. for 8 hours. After cooling, the mixture was pulverized again in agate induction to prepare a YAG phosphor powder. The electron microscopic observation of the powder showed a broad particle size distribution of 1 ~ 10㎛, the X-ray diffraction showed a pure YAG image, the specific surface area was 0.38 m 2 / g with an average particle diameter of about 3500 nm.

상기 실시예 중에서 2차상이 없이 순수한 YAG 상을 나타낸 실시예2, 3, 4에 의해 제조된 형광체 분말과 기존의 합성공정인 비교예에서 제조된 YAG 분말을 에폭시에 혼합하여 청색광을 내는 InGaN 다이오드에 도포하여 시간에 따른 휘도의 감소율을 측정한 결과를 표 3에 나타내었다. 기존 공정으로 제조된 YAG 분말에 비하여 휘도의 장기 안정성이 우수함을 알 수 있다.Phosphor powders prepared in Examples 2, 3, and 4 showing pure YAG phases without secondary phases in the above examples, and YAG powders prepared in Comparative Example, a conventional synthesis process, were mixed with epoxy to emit blue light. Table 3 shows the results of measuring the rate of decrease in brightness over time by coating. It can be seen that the long-term stability of the luminance is superior to the YAG powder prepared by the conventional process.

비표면적(m2/g)Specific surface area (m 2 / g) 입도(nm)Particle size (nm) 휘도의 감소율(500시간)Decrease rate of luminance (500 hours) 휘도의 감소율(1000시간)Decrease rate of luminance (1000 hours) 실시예 2Example 2 7.47.4 181181 -22.4-22.4 -32.5-32.5 실시예 3Example 3 5.55.5 242242 -21.9-21.9 -31.7-31.7 실시예 4Example 4 19.419.4 6969 -21.3-21.3 -30.1-30.1 비교예 1Comparative Example 1 0.380.38 35003500 -34.6-34.6 -44.8-44.8

그러므로 본 발명에 의하면 종래의 제조방법에 비하여 분말을 제조하는 공정 중 혼합, 건조, 하소, 분쇄에 이르는 장시간의 공정을 필요로 하지 않고 대폭적으로 단시간 내에 쉽게 미분말이 얻어진다. 또한 본 방법으로 특히 YAG계 형광체 합성의 경우 종래의 방법으로는 BaF2와 같은 플럭스(flux)를 사용하더라도 1500℃ 이상에서 열처리하였으나, 본 발명에서는 1000℃에서 제조가 가능하고 1㎛ 이하의 균일한 크기의 분말을 제조할 수 있다.Therefore, according to the present invention, fine powder can be easily obtained within a short time significantly without requiring a long time step of mixing, drying, calcining and pulverizing in the process of preparing powder compared with the conventional manufacturing method. In addition, in the case of the YAG-based phosphor synthesis in the present method, even in the conventional method using a flux such as BaF 2 heat treatment at 1500 ℃ or more, in the present invention can be produced at 1000 ℃ and uniform 1 ㎛ or less Powders of size can be prepared.

도 1은 종래의 고상법으로 제조된 YAG 분말의 주사전자현미경(SEM) 사진이다.  1 is a scanning electron microscope (SEM) photograph of a YAG powder prepared by a conventional solid phase method.

도 2는 본 발명에 의한 형광체 분말을 제조하는 방법에 관한 순서도이다.  2 is a flowchart illustrating a method of manufacturing the phosphor powder according to the present invention.

도 3은 본 발명에 따른 형광체 분말의 열처리 온도에 따른 X선 회절결과를 나타낸 그래프이다.  Figure 3 is a graph showing the X-ray diffraction results according to the heat treatment temperature of the phosphor powder according to the present invention.

도 4는 본 발명에 따른 형광체 분말의 주사전자현미경(SEM) 사진이다.  4 is a scanning electron microscope (SEM) photograph of the phosphor powder according to the present invention.

도 5는 본 발명에 따른 형광체 분말의 금속염 수용액 농도에 따른 X선 회절결과를 나타낸 그래프이다.  5 is a graph showing the X-ray diffraction results according to the metal salt aqueous solution concentration of the phosphor powder according to the present invention.

Claims (3)

LED용 형광체 분말의 제조방법에 있어서, In the manufacturing method of the phosphor powder for LED, 이트륨(Y), 알루미늄(Al), 가돌리움(Gd), 갈륨(Ga), 터비움(Tb), 프라세오디뮴(Pr)및 세륨(Ce)의 금속염수용액을 고분자물에 함침하는 공정;  Impregnating the polymer material with a metal salt solution of yttrium (Y), aluminum (Al), gadolium (Gd), gallium (Ga), turbium (Tb), praseodymium (Pr), and cerium (Ce); 상기 금속염수용액이 함침된 고분자물을 건조한 후, 1000∼1200℃로 가열하고 냉각하는 공정 및After drying the polymer material impregnated with the metal salt solution, heating and cooling to 1000 ~ 1200 ℃ and 상기 냉각된 금속함침 고분자물을 분쇄하여 일반식 (Y1-x-yGdxMy)3 (Al1-zGaz)5O12 (M은 Ce, Tb, Pr 중에서 1종이상이고, 0<x≤0.5, 0<y≤0.5, 0.005≤z≤0.1)로 표시되는 형광체분말을 얻는 것을 특징으로 하는 LED용 형광체 분말의 제조방법.The cooled metal-impregnated polymer is pulverized to general formula (Y 1-xy Gd x M y ) 3 (Al 1-z Ga z ) 5 O 12 (M is at least one of Ce, Tb, Pr, and 0 <x A method for producing a phosphor powder for an LED, comprising obtaining a phosphor powder represented by ≤ 0.5, 0 <y ≤ 0.5, and 0.005 ≤ z ≤ 0.1). 제1항에 있어서, The method of claim 1, 상기 고분자물은 레이온, 아세테이트, 셀룰로오즈, 목재, 펄프 및 셀로판등으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 LED용 형광체 분말의 제조방법.The polymer is a method for producing a phosphor powder for LEDs, characterized in that any one selected from the group consisting of rayon, acetate, cellulose, wood, pulp and cellophane. 제 1 항에 있어서,  The method of claim 1, 상기 분쇄공정에서 형광체분말의 입도가 60 ~ 1000 nm, 비표면적이 1.3 ~ 22 m2/g 되도록 분쇄한 것을 특징으로 하는 LED용 형광체 분말의 제조방법.The method of manufacturing a phosphor powder for the LED, characterized in that the pulverized powder in the pulverization step 60 ~ 1000 nm, the specific surface area 1.3 ~ 22 m 2 / g.
KR1020030094676A 2003-12-22 2003-12-22 Process of producing fluorescent powders for LED KR100563363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030094676A KR100563363B1 (en) 2003-12-22 2003-12-22 Process of producing fluorescent powders for LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030094676A KR100563363B1 (en) 2003-12-22 2003-12-22 Process of producing fluorescent powders for LED

Publications (2)

Publication Number Publication Date
KR20050063286A true KR20050063286A (en) 2005-06-28
KR100563363B1 KR100563363B1 (en) 2006-03-22

Family

ID=37255154

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030094676A KR100563363B1 (en) 2003-12-22 2003-12-22 Process of producing fluorescent powders for LED

Country Status (1)

Country Link
KR (1) KR100563363B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530671B1 (en) * 2008-01-29 2015-06-23 삼성전기 주식회사 Method for preparing oxide nano phosphors
CN105008487A (en) * 2013-04-12 2015-10-28 日立金属株式会社 Fluorescent material, scintillator and radiation conversion panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530671B1 (en) * 2008-01-29 2015-06-23 삼성전기 주식회사 Method for preparing oxide nano phosphors
CN105008487A (en) * 2013-04-12 2015-10-28 日立金属株式会社 Fluorescent material, scintillator and radiation conversion panel

Also Published As

Publication number Publication date
KR100563363B1 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
KR100816693B1 (en) Phosphor and light emission appliance using phosphor
US7074346B2 (en) Sialon-based oxynitride phosphor, process for its production, and use thereof
KR101265030B1 (en) LI-CONTAINING α-SIALON FLUORESCENT SUBSTANCE AND METHOD FOR MANUFACTURING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
EP2607449B1 (en) Preparation of yttrium-cerium-aluminum garnet phosphor
Meidan et al. Enhanced photoluminescence property of sulfate ions modified YAG: Ce3+ phosphor by co-precipitation method
Guo et al. Pechini sol-gel synthesis of La2CaB8O16: Eu3+ red phosphor and its photoluminescence spectral properties
EP2607448B1 (en) Yttrium-Cerium-Aluminum garnet phosphor and light-emitting device
CN111410958B (en) Method for preparing red fluorescent powder by using LiF as fluxing agent
KR101547734B1 (en) Method for fabricating of YAG : Ce phosphor powder by polymer solution route and alumina seed application
CN112625683A (en) Germanate type red fluorescent powder and preparation method thereof
KR100563363B1 (en) Process of producing fluorescent powders for LED
CN1277900C (en) Process for preparing aluminate fluorescent powder by coprecipitation method
KR100537725B1 (en) Ce3+ - doped yellow emitting phosphor of a3b2c3o12 structure
KR101331410B1 (en) Beta-Sialon Phosphor Powder Aided by Oxide Additives And Manufacturing Methods Therof
CN113150782B (en) Preparation method of rare earth ion doped orthorhombic indium acid gadolinium-calcium-titanium ore fluorescent powder
CN108841381A (en) A kind of synthetic method of kaliophilite fluorescent material
CN114921244B (en) Spindle rod-shaped MgAl 2 O 4 :Tb 3+ Fluorescent powder and preparation method thereof
KR101244187B1 (en) Method of fabricating YAG : Ce Phosphor powder
US20140175968A1 (en) Yttrium-cerium-aluminum garnet phosphor and light-emitting device
KR20150120734A (en) Acidic nitride-based fluorescent material and white light emitting apparatus using same
CN116064033A (en) Non-agglomerated nitride red fluorescent powder and preparation method thereof
Pan et al. Synthesis and Characterization of Sr3MgSi2O8: Eu2+, Dy3+ Phosphor Prepared by a Chemical Solution Method
Yang et al. Preparation of SrAl2O4: Eu, Dy phosphor by nano-coating process and its optical properties
CN117757468A (en) Small-particle-size high-brightness rare earth ion europium-activated aluminate fluorescent powder and preparation method and application thereof
KR100533921B1 (en) Preparation method of phosphor and yellow emitting phosphor thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130315

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140306

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150306

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170313

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 14