KR20050056288A - 아크릴아미드계 단량체 및 이를 이용하여 제조된온도감응성 아크릴아미드계 중합체 - Google Patents

아크릴아미드계 단량체 및 이를 이용하여 제조된온도감응성 아크릴아미드계 중합체 Download PDF

Info

Publication number
KR20050056288A
KR20050056288A KR1020030089214A KR20030089214A KR20050056288A KR 20050056288 A KR20050056288 A KR 20050056288A KR 1020030089214 A KR1020030089214 A KR 1020030089214A KR 20030089214 A KR20030089214 A KR 20030089214A KR 20050056288 A KR20050056288 A KR 20050056288A
Authority
KR
South Korea
Prior art keywords
acrylamide
monomer
dodecyl
phenylcarbamoyl
phenyl
Prior art date
Application number
KR1020030089214A
Other languages
English (en)
Other versions
KR100541748B1 (ko
Inventor
한양규
이은아
금소현
김한수
조병규
김성철
Original Assignee
주식회사 엘지화학
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 한국과학기술원 filed Critical 주식회사 엘지화학
Priority to KR1020030089214A priority Critical patent/KR100541748B1/ko
Publication of KR20050056288A publication Critical patent/KR20050056288A/ko
Application granted granted Critical
Publication of KR100541748B1 publication Critical patent/KR100541748B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/53Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/55Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체에 관한 것으로, 분자간 수소결합을 일으키는 아미드(amide) 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹을 갖는 아크릴아미드계 단량체를 이용하여 가교제나 계면활성제 없이 단순한 라디칼 중합반응으로 제조된 아크릴아미드 중합체는 방향족 유기용매에서 온도에 따라 졸-겔 상전이 현상을 나타내어, 독성이 강한 벤젠, 톨루엔 등의 용매를 강이나 바다 또는 폐수로부터 선택적으로 분리, 제거할 수 있는 효과가 있다.

Description

아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체{Acrylamides Monomer and Thermoresponsive Acrylamides Polymer Prepared by Using Same}
본 발명은 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도 감응성 아크릴아미드계 중합체에 관한 것이다. 더욱 상세하게는 본 발명에 따른 아크릴아미드 단량체가 분자간 수소결합을 일으키는 아미드 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹을 갖고 있어서, 이를 이용하여 제조된 아크릴아미드계 중합체가 방향족 유기용매에서 온도에 따라 졸-겔 상전이(sol-gel phase transition)를 나타냄에 따라, 독성이 강한 벤젠, 톨루엔 등의 용매를 강이나 바다 또는 폐수로부터 선택적으로 분리, 제거할 수 있는 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체에 관한 것이다.
   자극감응성(stimulus responsive) 고분자란 외부의 신호자극에 민감하게 감응하여 기질 자체에 변화를 일으키는 고분자를 말한다.  외부 자극원으로는 전기장, 자기장, 전류, 온도, 광 등과 같은 물리적 자극과, pH, 이온, 화학종 등과 같은 화학적 자극이 있다. 외부 자극에 대한 응답으로는 고분자 수용액 상에서의 상전이(phase transition), 물에 팽윤된 고분자 겔인 히드로겔(hydrogel)에서의 부피변화 또는 광학성질의 변화들이 있다. 이러한 자극감응성 고분자들은 약물전달시스템(drug delivery system, DDS), 센서, 분리재료, 인공근육 등과 같은 생체재료 분야에 널리 응용되고 있다(K. Dusek, Advances in Polymers Science: Responsive Gels, Vol. 109 & 110, Springer, Berlin (1993); Langer et al., Science, 249, 1527-1533(1990); Jeong et al., Nature, 388, 860-862(1997); Siegel et al., Macromolecules, 21, 3253 (1998); Rollason et al, Biomaterials, 14, 153 (1993)).
     한편, 온도를 자극원으로 하는 온도감응성 고분자는 특정 온도 이하에서는 높은 용해도(졸 상태)를 나타내다가 특정 온도 이상에서는 낮은 용해도(겔 상태)를 보인다. 즉, 이러한 졸-겔 상분리가 일어나는 온도를 저임계용해온도(low critical solution temperature, LCST)라 한다. 반면에, 특정 온도 이하에서는 낮은 용해도를 보이다가 특정 온도 이상에서는 높은 용해도를 나타내는 온도를 고임계용해온도(upper critical solution temperature, UCST)라 한다 (H. Fail, Y.H. Bae, Y. Feijen, and S. W. Kim, Macromolecules, 25, 5528 (1992)).
전자의 LCST를 나타내는 고분자로서는 N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM) 호모 및 공중합체 (Chen et al., Nature, 373, 49-52(1995)), 소수성인 폴리(프로필렌 옥시드) 블록과 친수성인 폴리(에틸렌 옥시드) 블록으로 구성된 블록공중합체 (Almgren et al., Colloid Polym. Sci., 273, 2-15 (1995)), 생분해성인 폴리(에틸렌 옥시드) 블록과 폴리(L-젖산) 블록으로 구성된 블록공중합체 (Jeong et al., Macromolecules, 32, 7064-7069 (1999); 대한민국 공개특허공보 2001-0022707) 등이 잘 알려져 왔다. 이러한 LCST형 온도감응성 고분자들은 수용액 상에서 온도 변화에 따라 매우 큰 용해도 차이를 나타내고, 이에 따라 좁은 온도 범위 내에서 급격한 상전이 현상을 가역적으로 보인다. 이는 NIPAM 호모 또는 공중합체 사슬에 포함된 아미드 결합과 물 사이에 분자간 수소결합을 형성하여 특정온도 이하에서 물에 대한 용해도가 매우 큰 졸 상태가 되고, 온도가 올라감에 따라 이들 분자간 수소결합이 점점 깨지면서 용해도가 낮아지고 결국 특정 온도 이상에서 수소결합이 완전히 깨져 고분자 사슬 안에 녹아 있던 물 분자가 완전히 고분자 사슬 밖으로 빠져 나오면서 겔 상태가 되는 것이다.
일반적으로 LCST 거동을 보이는 온도민감성 고분자는 친수성기와 소수성기의 조성비에 따라 상전이 온도가 변한다. 즉, 친수성기의 조성을 증가시키면 상전이온도가 올라가고, 소수성기의 조성을 증가시키면 반대로 상전이온도가 내려간다. 또한 고분자 수용액에 물과 섞이는 메탄올이나 에탄올을 혼합한 공용매, 염, 계면활성제, 산성 공단량체들을 첨가하여 LSCT의 온도를 다양하게 조절할 수 있다 (Aoki et al., Polymer J. 28, 8987-9, 1996; Otake et al., Macromolecules, 23, 283-289 (1990); Shi et al, Colloids & Surfaces A: Physicochem. Eng. Aspects, 175, 41-49 (2000); Ringsdorf et al., Macromolecules, 24, 1678 (1991)).
반면에 고온에서 물에 대한 용해도가 높아지는 UCST가 나타나는 온도감응성 고분자의 예로는 폴리(아크릴산)과, N,N-디메틸아크릴아미드와 부틸메타 아크릴레이트의 공중합체의 상호침투 고분자 망상구조(interpenetrating polymer network)가 보고된 바 있으나, 그 예가 아주 적다.
한편, 지금까지 언급한 온도감응성 고분자들은 벤젠이나 톨루엔 같은 소수성 유기용매에는 전혀 용해되지 않고 단지 수용액 속에서만 용해되어 저임계용액온도 또는 고임계용액온도가 나타날 뿐이다. 따라서 이들 온도감응성 고분자들은 수용액 속에서 일어나는 졸-겔 상전이 현상을 이용하는 약물전달체, 센서, 또는 인공근육과 같은 생체재료로의 용도에 제한되고 있다.
그러나, 최근 산업의 발달로 유기용제 및 석유의 사용량이 급속히 증가함에 따라 유기용매들의 유출과 더불어 기름을 운송하는 유조선의 해양 사고로 인하여 강과 해양의 오염은 물론 환경 생태계의 파괴가 심각하다. 따라서, 수질개선 및 환경보호를 위하여 유출된 유기용제나 원유와 같은 기름 등을 물로부터 선택적으로 흡수, 분리할 수 있는 흡유성 재료의 개발이 절실히 요구된다. 따라서, 광범위하게 유출된 유기 용매나 기름을 제거하기 위해서 물로부터 유기용매나 기름만을 선택적으로 흡수, 분리할 수 있는 새로운 흡유성 고분자 신소재에 대한 원천기술의 연구가 진행되어 미국특허 제3,668,118호, 미국특허 제3,812,973호, 일본 특개소50-15882호, 일본특개소50-59486호 및 일본 특개소50-94092호에 각각 보고되었다.
이외에, 대한민국 특허 출원 제2001-79360호는 벤젠, 톨루엔, 클로로포름, n-옥탄과 같은 유기용매나 기름에 대한 흡유배율이 높고 흡유속도가 빠르며 외부의 압력에 대한 가압보수력이 우수할 뿐만 아니라 입자가 균일하며 다공성인 새로운 구조의 흡유성 고분자를 게재하고 있다. 그러나, 이러한 흡유성 고분자는 단순한 라디칼 중합반응이 아닌 가교제와 계면활성제 존재 하에서 에멀젼중합 또는 현탁중합에 의하여 제조된 아크릴아미드계 중합체이다.
이에 본 발명자들은 특정 구조를 갖는 아크릴아미드계 단량체를 이용하여 제조한 호모중합체 및 스티렌, NIPAM 등의 비닐계 단량체와의 라디칼 공중합반응에서 얻어진 공중합체가 벤젠, 톨루엔 등의 방향족 유기용매에서 고임계용액온도 현상을 나타냄을 발견하여 본 발명을 완성하기에 이르렀다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 방향족 유기용매에서 온도에 따라 졸-겔 상전이(sol-gel phase transition) 현상을 나타내어, 독성이 강한 벤젠, 톨루엔 등의 용매를 강이나 바다 또는 폐수로부터 선택적으로 분리, 제거할 수 있는 구조를 갖는 아크릴아미드계 단량체 및 이를 이용하여 가교제나 계면활성제 없이 단순한 라디칼 중합반응으로 제조된 온도감응성 아크릴아미드계 중합체를 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 분자간 수소결합을 일으키는 아미드(amide) 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹을 갖는 하기 화학식 1의 아크릴아미드계 단량체를 제공한다.
[화학식 1]
상기 식에서,
R은 H 또는 CH3이고,
R'은 Z, ,, 또는 인데, Z는 ortho-, meta-, 또는 이고, 여기서 R"는 소수성 장쇄 알킬 그룹으로서 이며, 여기서 m은 10에서 20 사이의 정수이며, Y는 이며,
여기서 n은 1에서 10까지의 정수이며, X는 방향족 그룹으로서 o-페닐렌(ortho-phenylene), m-페닐렌(meta-phenylene), p-페닐렌(para-phenylene), o-나프탈렌(ortho-naphthalene), m-나프탈렌(meta-naphthalene) 또는 안트라센(anthracene) 그룹이다.
상기 화학식 1의 아크릴아미드계 단량체는 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드 (N-[4-(3-(4-dodecyl-phenylcarbamoyl)-propyl)phenyl] acrylamide, NDPA); (N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드 (N-[5-(4-dodecyl-phenylcarbamoyl)-pentyl]acrylamide, DPPA); N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드(N-[3-{(4-dodecyl-phenylcarbamoyl)-methylene-carbamoyl}propyl-4-phenyl] acrylamide, DMCPA); 또는 N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드(N-[3-{(4-dodecyl-phenylcarbamoyl)-pentamethylene-carbamoyl}propyl-4-phenyl] acrylamide, DPMCPA); 일 수 있다.
또한, 본 발명은 상술한 바와 같은 아크릴아미드계 단량체 단독 또는 아크릴아미드계 단량체와 비닐계 단량체의 혼합물로부터 제조됨을 특징으로 하는 아크릴이미드계 중합체를 제공한다.
상기 아크릴아미드계 단량체는 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드; (N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드;
N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드; 또는 N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드; 일 수 있다.
상기 비닐계 단량체는 스티렌, N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM), N,N-디메틸아크릴아미드(N,N-dimethylacrylamide), N,N-에틸메틸아크릴아미드(N,N-ethylmethylacrylamide) 또는 메틸메타크릴레이트(methylmethacrylate)일 수 있다.
또한, 본 발명은 (가) 화학식 1의 아크릴아미드계 단량체 단독 또는 아크릴아미드계 단량체와 비닐계 단량체의 혼합물을 유기용매에 용해하는 단계; (나) 상기 용해한 단량체와 라디칼 개시제를 앰플에 투입되는 단계; (다) 상기 앰플 내의 용액에 존재하는 산소를 동결-해동(freeze-thawing) 방법에 의해 진공펌프로 완전히 제거하는 단계; (라) 상기 산소를 완전히 제거한 앰플을 밀봉하는 단계; 및 (마) 상기 밀봉한 앰플을 가열함으로써 라디칼 중합시키는 단계; 를 포함하여 이루어짐을 특징으로 하는 아크릴아미드계 중합체의 제조방법을 제공한다.
상기 (가) 단계에서 단량체는 화학식 1의 아크릴아미드계 단량체 단독이거나, 화학식 1의 아크릴아미드계 단량체와 비닐계 단량체의 혼합물로서 아크릴아미드의 함량이 혼합물 전체에서 10중량% 이상인 경우, THF, 벤젠, 톨루엔 및 자일렌으로 이루어진 군으로부터 선택된 유기용매를 단량체 전체에 대하여 20 내지 80중량%로 사용할 수 있다.
상기 (나) 단계에서 라디칼 개시제는 아조비스이소브티로니트릴(azobisisobutyronitrile, AIBN), 벤조일 퍼옥시드(benzoyl peroxide, BPO), 또는 2,2'-아조비스-(2,4-디메틸발러로니트릴) 2,2'-azobis-(2,4-dimethylvaleronitrile)일 수 있다.
상기 (나) 단계에서 라디칼 개시제는 단량체 전체에 대하여 0.001 내지 2.0중량%로 사용할 수 있다.
상기 (마) 단계에서 라디칼 중합은 60 내지 100℃에서 8 내지 48시간 동안 수행될 수 있다.
상기 아크릴아미드계 중합체의 수평균분자량은 3,000 내지 150,000일 수 있다.
상기 아크릴아미드계 중합체는 벤젠 또는 톨루엔 중 어느 하나의 방향족 유기용매에서 졸-겔 상전이 현상을 나타낸다.
이하, 본 발명에 대하여 상세히 설명하면 다음과 같다.
본 발명은 온도변화에 따라 졸-겔 상전이(sol-gel phase transition) 현상을 나타냄으로써 독성이 강한 벤젠, 톨루엔 등의 방향족 유기용매를 선택적으로 분리할 수 있는 온도감응성 중합체를 제조하기 위한 단량체가 그 구조내에 분자간 수소결합을 일으키는 아미드(amide) 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹을 가짐에 특징이 있다.
즉, 본 발명은 분자간 수소결합을 일으키는 아미드 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹을 갖는 하기 화학식 1의 아크릴아미드계 단량체를 제공한다.
[화학식 1]
상기 식에서,
R은 H 또는 CH3이고,
R'은 Z, , , 또는 인데, Z는 ortho-, meta- 또는 이고, 여기서 R"는 소수성 장쇄 알킬 그룹으로서 이며, 여기서 m은 10에서 20 사이의 정수이며, Y는 이며, 여기서 n은 1에서 10까지의 정수이며, X는 방향족 그룹으로서 o-페닐렌, m-페닐렌, p-페닐렌, o-나프탈렌, m-나프탈렌, 또는 안트란센 그룹이다.
본 발명에서 아크릴아미드계 중합체의 단량체로서 화학식 1과 같은 구조를 갖는 아크릴아미드계 화합물을 채택하는 이유를 간략히 설명하면 아래와 같다.
화학식 1의 아크릴아미드계 화합물을 단량체로 하여 제조된 아크릴아미드계 중합체는 그 구조내에 아미드 그룹, 벤젠 그룹 및 비극성 지방족 알킬 그룹을 동시에 포함하고 있는데, 고온에서는 아미드 그룹의 분자간 수소결합이 약해지고, 구조 내에 존재하는 벤젠 그룹과 방향족 용매 구조 내에 존재하는 벤젠 그룹 사이의 상호작용(π-interaction)으로 방향족 용매에서의 용해도가 증가하여 졸 상태가 되고, 저온에서는 아미드 그룹의 분자간 수소결합이 형성되고, 구조 내에 존재하는 벤젠 그룹과 방향족 용매 구조 내에 존재하는 벤젠 그룹 사이의 상호작용이 약해지면서 방향족 용매에서의 용해도가 감소되어 겔 상태가 된다. 이와 같이 특정 온도에 따라 졸-겔 전이 현상을 보이는 아크릴아미드계 중합체를 이용하여 물에 혼합된 벤젠, 톨루엔 등의 방향족 유기용매를 선택적으로 분리, 제거할 수 있게 되는 것이다.
화학식 1의 구조를 갖는 아크릴아미드계 단량체의 구체적인 예로는 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드; (N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드; N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드; N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드; 등을 들 수 있다.
이러한 아크릴아미드계 단량체들은 각각 다양한 방법에 의하여 합성될 수 있으며, 바람직한 합성 방법으로는 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드인 경우 실시예 1, (N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드의 경우 실시예 2, N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드의 경우 실시예 3, N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드의 경우 실시예 4에 의한 방법을 들 수 있다. 이 중에서 실시예 4에 의한 N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드는 하기 반응식에서 알 수 있는 바와 같이, 첫번째 아미드화 단계, 두번째 탈카르복시(decarboxylation)화 단계, 세번째 아미드화 단계에 의하여 합성된다.
[반응식]
본 발명에서 화학식 1의 구조를 갖는 아크릴아미드계 단량체는 단독으로 또는 비닐계 단량체와 혼합되어 온도감응성 아크릴아미드계 중합체를 제조하는 데 사용된다.
상기 아크릴아미드계 단량체로는 앞서 예시한 바와 같이 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드, N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드, N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드, N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드 등을 들 수 있다.
또한, 상기 비닐계 단량체는 중합체를 제조하는 데 사용될 수 있는 것이면, 특별히 한정되지 않지만, 스티렌, N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM), N,N-디메틸아크릴아미드(N,N-dimethylacrylamide), N,N-에틸메틸아크릴아미드(N,N-ethylmethylacrylamide), 메틸메타크릴레이트(methylmethacrylate) 등이 바람직하다.
본 발명의 온도감응성 아크릴아미드계 중합체는 상기 아크릴아미드계 단량체 단독으로부터 제조된 호모중합체 또는 2종 이상 혼합된 혼합물로부터 제조된 공중합체일 수 있다. 또한, 상기 아크릴아미드계 단량체들로부터 선택된 1종 이상과 상기 비닐계 단량체들로부터 선택된 1종 이상으로부터 제조된 공중합체일 수 있다. 바람직하게는 아크릴아미드계 단량체와 스티렌 또는 N-이소프로필아크릴아미드와의 혼합물로부터 제조된 아크릴아미드계 공중합체가 바람직하다.
본 발명의 온도감응성 아크릴아미드계 중합체는 화학식 1의 아크릴아미드계 단량체 단독 또는 화학식 1의 아크릴아미드계 단량체와 비닐계 단량체의 혼합물을 유기용매에 녹인 후 라디칼 개시제와 함께 앰플에 투입하고, 용액 내에 존재하는 산소를 동결-해동(freeze-thawing) 방법에 의해 진공 펌프로 완전히 제거한 후 앰플를 밀봉하고, 일정 시간 동안 가열하여 라디칼 중합반응을 수행함으로써 제조된다. 상기 중합방법은 가교제나 계면활성제 없이 수행된다.
제조된 온도감응성 아크릴아미드계 중합체는 통상적인 후처리 과정에 의하여 여과, 건조, 정제될 수 있다. 예를들어, 제조된 온도감응성 아크릴아미드계 중합체를 메탄올 용매 하에서 침전, 여과, 건조시킨 후 용매에 다시 녹이고 메탄올에 재침전시켜 순수한 중합체를 얻는다.
상기 온도감응성 아크릴아미드계 중합체의 제조에서 단량체가 아크릴아미드계 단량체 단독이거나, 아크릴아미드계 단량체와 비닐계 단량체의 혼합물로서 아크릴아미드의 함량이 혼합물 전체에서 10중량% 이상인 경우에는 용해도의 향상을 위하여 테트라하이드로퓨란(Tetrahydrofuran, THF), 벤젠, 톨루엔, 자일렌 등의 유기용매에 녹여서 사용하는 것이 바람직하다. 이러한 경우 THF, 벤젠, 톨루엔 및 자일렌으로 이루어진 군으로부터 선택된 유기용매를 단량체 전체에 대하여 20 내지 80중량%로 조절하여 사용하는 것이 바람직하다. 더욱 바람직하게는 20 내지 50중량%이다.
상기 온도감응성 아크릴아미드계 중합체의 제조에서는 가교제나 계면활성제를 사용하지 않고 단순한 라디칼 중합에 의한다. 라디칼 중합을 위한 개시제로는 통상적인 라디칼 중합 개시제는 모두 사용가능하며, 당업자에게는 이를 용이하게 구입하여 사용할 수 있을 정도로 공지된 것이다. 바람직하게는 아조비스이소브티로니트릴(azobisisobutyronitrile, AIBN), 벤조일 퍼옥시드(benzoyl peroxide, BPO), 2,2'-아조비스-(2,4-디메틸발러로니트릴) 2,2'-azobis-(2,4-dimethylvaleronitrile) 등이다. 상기 라디칼 개시제는 단량체 전체에 대하여 0.001 내지 2.0중량%로 사용되는 것이 바람직하다.
상기 온도감응성 아크릴아미드계 중합체의 제조는 60 내지 100℃의 중합온도에서 8 내지 48시간 동안 중합되는 것이 바람직하다.
상기와 같은 방법에 의하여 제조된 온도감응성 아크릴아미드계 중합체의 수평균분자량(Mn)은 3,000 내지 150,000이다. 더욱 바람직하게는 3,000내지 120,000이다. 벤젠, 톨루엔 등의 방향족 용매 내에서 뚜렷한 졸-겔 상전이 거동을 보이기 위한 온도감응성 아크릴아미드계 중합체의 수평균분자량은 8,000 이상이어야 한다.
상기와 같은 중합체의 분자량 및 분자량분포는 중합시 사용되는 라디칼 개시제와 단량체의 몰비, 용매에 대한 단량체의 농도, 중합온도, 중합시간 등에 의하여 조절될 수 있는데, 라디칼 개시제의 단량체에 대한 몰비로 조절하는 것이 보다 용이하다.
또한, 본 발명에 따라 제조된 온도감응성 아크릴아미드계 중합체는 벤젠, 톨루엔 등의 방향족 유기용매에서 졸-겔 상전이를 일으키는데, 상기 졸-겔 상전이 현상은 70 내지 -20oC의 온도 범위에서 일어나는 것이 방향족 용매를 선택적으로 분리하는데 바람직하다.
상기와 같은 중합체의 상전이 온도는 결정성 아크릴아미드의 분자구조, 공중합체의 조성비, 중합체 용액의 농도, 중합체의 분자량, 분자량 분포 등에 의하여 조절될 수 있는데, 아크릴아미드 단량체의 분자구조 및 생성된 중합체 용액의 농도로 조절하는 것이 보다 용이하다.
본 발명에 따른 아크릴아미드계 단량체를 이용하여 제조된 아크릴아미드계 중합체는 강이나 바다에 유출된 벤젠, 톨루엔 등과 같은 방향족 유기용매를 물로부터 선택적으로 분리하는데 적합한 구조를 갖는 온도감응성 고분자이다. 본 발명의 아크릴아미드계 중합체를 보다 바람직하게 온도감응성 고분자로서 이용하기 위해서는 아크릴아미드계 중합체의 농도가 낮은 용액에서 졸-겔 상전이 현상이 일어나야 한다. 5% 중합체의 벤젠 용액이 상온에서 졸-겔 상전이가 일어난다면 중합체 1g 당 20g의 벤젠을 물로부터 선택적으로 분리할 수 있다는 의미이다.
이하, 하기의 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범위가 실시예에 한정되는 것은 아니다.
실시예 1 내지 4: 화학식 1의 구조를 갖는 아크릴아미드계 단량체의 합성
[실시예 1]
N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드(N-[4-(3-(4-dodecyl-phenylcarbamoyl)-propyl)phenyl] acrylamide, NDPA)의 합성
4-(4-아미노페닐)부티릭 에시드(4-(4-aminophenyl)butyric acid) 1 g과 용매인 메틸렌 클로라이드(methylenen chloride, MC) 15mL를 50mL 3-구 둥근 플라스크에 투입하고, 질소분위기 하에서 클로로트리메틸실란 (chlorotrimethylsilane) 0.96mL을 가한 후 2시간 동안 환류시키면서 반응시켰다. 반응시킨 후 온도를 내려 0℃에서 테트라에틸아민(tetraethylamine, TEA) 1.18mL를 10분 동안 적하시켰고, MC 5mL에 아크릴로일 클로라이드(acryloyl chloride, AC) 0.46mL를 녹인 용액을 적하깔대기를 통하여 20분 동안 떨어뜨린 후 0℃에서 30분 동안 반응시키고 다시 상온에서 2시간 동안 반응시켰다. 반응시킨 후 용매인 MC를 제거하고 2M NaOH 용액 50mL를 넣고 3시간 동안 교반시킨 후, 2M HCl 용액으로 산성화시켰다. 산성화시킨 용액을 에틸 아세테이트(ethyl acetate, EA) 30mL와 함께 분별깔대기에 넣고 흔들어준 다음 EA 층을 분리하여 증발기로 용매를 제거한 후 건조시켜 4-(4-아크릴로일아미노페닐)부티릭 에시드(4-(4-acryloylaminophenyl)butyric acid, APB)를 고체상으로 얻었다. 이 때 수율은 80%이었고 m.p.는 107℃이었다.
고체 APB 1g을 THF 30mL에 녹인 후 질소분위기 하에서 100mL 3-구 둥근 플라스크에 투입하고, 4-도데실아닐린(4-dodecylaniline) 1.20g과 촉매인 디메틸아미노피리딘(dimethylaminopyridine, DMAP)을 APB에 대하여 0.2당량으로 넣은 후 0℃에서 10분 동안 반응시켰다. 반응시킨 후, 1-에틸-3-(3'-디메틸 아미노프로필)-카보디이미드(1-ethyl-3-(3'-dimethyl aminopropyl)-carbodiimide, EDC) 0.90g를 가하고, 0℃에서 1시간 동안 반응시킨 후, 실온에서 18시간 동안 반응시켰다. 반응을 완료한 용액을 증류수 150mL에 적하시키고 여과하여 반응하지 않은 EDC, DMAP, EDC urea salt, DMF를 제거하여 얻은 물질에 5% NaHCO3 100mL를 넣고 1시간 동안 교반시키고 여과하여 반응하지 않은 APB를 제거하여 고체를 얻었다. 얻은 고체에 n-헥산 80mL를 가해 1시간 동안 교반, 여과하여 반응하지 않은 4-도데실아닐린을 제거하여 고체를 얻었다. 최종적으로 얻은 고체를 진공오븐에서 24시간 동안 건조시켜 순수한 고체인 NDPA 단량체를 얻었다. 이때 수율은 88%이었고, m.p.는 177 ℃이었다. 합성된 NDPA를 클로로포름으로 2번 재결정하여 정제하였다.
합성된 NDPA의 구조는 수소핵자기공명(1H-NMR) 스펙트럼으로 확인하였으며, 그 결과는 다음과 같다.
1H-NMR(DMSO-d6): d, δ10.06(s, 1H); j, δ9.76(s, 1H); k, δ7.57(m, 2H); e, δ7.45(d, 2H); f, δ7.14(d, 2H); l, δ7.04(d, 2H); c, δ6.39(s, 1H); a, δ6.24(s, 1H); b, δ5.74(s, 1H); g, δ2.56 (t, 2H); m, δ2.25(t, 2H); h, δ1.85(m, 2H); i, δ1.51(m, 2H); n, δ1.09(m, 20H); o, δ0.85(t, 3H).
[실시예 2]
N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드(N-[5-(4-dodecyl-phenylcarbamoyl)-pentyl]acrylamide, DPPA)의 합성
6-아미노헥사노익 에시드(6-Aminohexanoic acid) 2.62g과 NaOH 0.8g을 100mL 3-구 둥근 플라스크에 투입한 후, 0℃에서 3차 증류수 15mL를 가하여 용해시켰다. 용해시킨 후 MC 2mL에 AC 1.7mL를 녹인 용액을 주사기로 90분 동안 떨어뜨린 후, 용액의 pH를 조절하는데, 약산성을 띄면 NaOH 수용액으로 pH를 조절하여 최종적인 용액의 pH가 7.5 내지 7.8이 되도록 하였다. pH를 조절한 후 실온에서 9시간 동안 교반하면서 반응시켰다. 반응시킨 용액에 EA 200mL를 가한 후 분별깔때기에 넣고 흔들어준 다음 수용액 층을 분리하여 반응하지 않은 6-아민헥사노익 에시드와 AC를 제거하였다. 또한, EA 유기층에 용해된 미량의 물을 제거하기 위하여 마그네슘 설페이트 무수물(magnesium sulfate anhydrous)을 넣고 30분 동안 교반하고, 여과시킨 후 EA 용매를 증발시켰다. 그리고, 반응 중 생성되는 아크릴릭 에시드(acrylic acid)를 에틸에테르 100mL를 가하여 3시간 동안 교반하고 여과한 후 제거하여 고체를 얻었다. 얻은 고체를 건조시켜 순수한 6-아크릴로일 아미노헥사노익 에시드(6-acryloyl aminohexanoic acid)를 얻었다. 이때 수율은 45%이었고, m.p.는 78℃이었다.
건조시킨 6-아크릴로일 아미노헥사노익 에시드 0.5g를 DMF 15mL에 녹여 질소 분위기 하에서 100mL 3-구 둥근 플라스크에 넣고 4-도데실아닐린(4-dodecylaniline) 0.71g과 촉매인 DMAP 0.2g을 넣었다. 얼음 중탕을 설치하고, 반응 플라스크에 수분 제거제인 EDC 0.75g을 가한 후 0℃에서 2시간, 실온에서 24시간 동안 반응시켰다. 반응을 완료한 용액을 증류수 200mL에 적하시키고 3시간 동안 교반한 후 여과하여 반응하지 않은 DMAP, EDC, EDC urea salt, DMF를 제거하여 얻은 물질에 5% NaHCO₃수용액 150mL를 가하여 2시간 동안 교반한 후 여과시켜 반응하지 않은 6-아크릴로일 아미노헥사노익 에시드(6-acryloyl aminohexanoic acid)를 제거하여 고체를 얻었다. 얻은 고체에 n-헥산 150mL를 가하여 1시간 동안 교반한 후 여과시켜 반응하지 않은 4-도데실아닐린이 용해된 n-헥산용액을 제거하였다. 여과 후 얻은 고체를 진공 오븐에서 24시간 이상 건조시켜 순수한 DPPA를 얻었다. 수율은 85%이었고, m.p.는 140℃이었다. 합성된 DPPA를 메탄올로 2번 재결정하여 정제하였다.
합성된 DPPA의 구조는 수소핵자기공명(1H-NMR) 스펙트럼으로 확인하였으며, 그 결과는 다음과 같다.
1H-NMR(CDCl3): i, δ7.39(d, 2H); j, δ7.09(d, 2H); b, δ6.24(d, 1H); c, δ6.07(m, 1H); h, δ5.70(s, 1H); a, δ5.62(d, 1H); e, δ3.34(t, 2H); k, δ2.57(t, 2H); g, δ2.35(t, 2H); e, δ1.75~1.42(m, 8H); l, δ1.24(m, 20H); m, δ0.88(t, 3H).
[실시예 3]
N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드(N-[3-{(4-dodecyl-phenylcarbamoyl)-methylene-carbamoyl}propyl-4-phenyl] acrylamide, DMCPA)의 합성
t-부톡시카르보닐-글리신(t-butoxycarbonyl-glycine, t-Boc-glycine) 0.2g(1.142mmol)과 4-도데실아닐린(0.299 g)을 100mL 3-구 둥근 플라스크에 투입하고, THF 30mL을 가하여 0℃에서 질소분위기 하에 용해시킨 후 촉매인 DMAP 0.02g을 넣고 10분 동안 교반시킨 후 수분제거제인 EDC 0.2g을 넣고 1시간 동안 교반한 후 상온에서 18시간 동안 교반하면서 반응시켰다. 반응을 완료한 용액을 증류수 150mL에 적하시킨 후 1시간 동안 교반하고 여과시켜 DMAP과 EDC, EDC urea salt, THF를 제거하여 얻은 물질에 5% NaHCO3 수용액 100 mL를 가하여 1시간 동안 교반한 후 여과하여 반응하지 않은 t-Boc-glycine을 제거하여 고체를 얻었다. 얻어진 고체에 n-헥산을 가하여 1시간 동안 교반한 후 여과시켜 반응하지 않은 4-도데실아닐린을 제거하여 고체를 얻었다. 최종적으로 얻은 고체를 진공 오븐에서 24시간 동안 건조시켜 순수한 고체인 [(4-도데실페닐-카바모일)-메틸]-카바믹 에시드 t-부틸 에스터([(4-dodecylphenyl-carbamoyl)-methyl]-carbamic acid tert-butyl ester, DCMCABE)를 얻었다. 이 때 수율은 73%이었다.
합성된 DCMCABE 0.16 g(0.396 mmol)와 MC 5mL을 1-구 둥근 플라스크에 투입한 후 40℃에서 용해시키고, 상온으로 식혀 트리플르오로아세틱 에시드(trifluoroacetic acid) 0.54mL를 가한 후 상온에서 2시간 동안 교반시켰다. 교반시킨 후 용매를 모두 증발시켜 남은 고체에 에틸에테르 20mL를 넣고 30분 동안 교반시킨 후 여과시켜 반응하지 않은 DCMCABE을 제거하여 고체를 얻었다. 얻은 고체를 건조해 순수한 [(4-도데실페닐-카바모일)-메틸]-카바믹 에시드([(4-dodecylphenyl-carbamoyl)-methyl]-carbamic acid (DCMCA)를 얻었다. 이 때 수율은 95%이었다.
합성된 DCMCA 0.15g(0.47mmol)과 APB 0.11g, 0.47mmol을 100mL 3-구 둥근 플라스크에 투입하고 THF 30mL을 가한 후 수분제거제인 EDC 0.1g을 넣고 1시간 동안 교반하고, 상온에서 18시간 동안 교반시켜 반응을 완료하였다. 반응을 완료한 용액을 증류수 100mL에 적하시킨 후 1시간 동안 교반하고 여과시켜 DMAP, EDC, EDC urea salt, THF를 제거하여 얻은 물질에 5% NaHCO3 수용액 100mL를 가해 1시간 동안 교반한 후 여과하여 반응하지 않은 APB를 제거하여 고체를 얻었다. 얻은 고체에 에탄올 20ml을 가하여 1시간 동안 교반한 후 여과시켜 반응하지 않은 DCMCA을 제거하고 고체를 얻었다. 얻은 고체를 진공 오븐에서 24시간 동안 건조하여 순수한 DMCPA 단량체를 얻었다. 이 때 수율은 34%이었다.
합성된 DMCPA의 구조는 수소핵자기공명 (H-NMR) 스펙트럼으로 확인하였으며, 그 결과는 다음과 같다.
1H-NMR(DMSO-d6): d, δ10.04(s, 1H); l, δ9.84(s, 1H); j, δ8.13 (t, 1H); e, δ7.55(d, 2H); m, δ7.44(d, 2H); f,n, δ7.07(d, 4H); c, δ6.40(m, 1H); a, δ6.21(d, 1H); b, δ5.71(d, 1H); k, δ3.83(d, 2H); o, δ2.44(t, 2H); g, δ2.17(t, 2H); I, δ1.79(t, 2H); h, δ1.52(t, 2H); p, δ1.23(m, 20H); q ,δ0.85(t, 3H).
[실시예 4]
N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드(N-[3-{(4-dodecyl-phenylcarbamoyl)-pentamethylene-carbamoyl}propyl-4-phenyl] acrylamide, DPMCPA)의 합성
6-(부톡시카르보닐-아미노)카프록익 에시드(6-(botoxycarbonyl-amino)caproic acid, 6-(Boc-amino)caproic acid) 0.5g(2.16mmol)과 4-도데실아닐린(0.622 g)을 100mL 3-구 둥근 플라스크에 투입하고 THF 50ml을 가하여 0℃에서 질소분위기하에 용해시킨 후 촉매인 DMAP 0.05g을 넣고 10분 동안 교반시켰다. 교반시킨 후 수분제거제인 EDC 0.5g을 넣고 다시 1시간 동안 교반한 후 상온에서 18시간 동안 반응시켰다. 반응을 완료한 용액을 증류수 2000mL에 적하시킨 후 1시간 동안 교반하고 여과시켜 DMAP과 EDC, EDC urea salt, THF를 제거하여 얻은 물질에 5% NaHCO3 수용액 150mL를 가하여 1시간 동안 교반한 후 여과하여 반응하지 않은 6-(Boc-amino)caproic acid를 제거하여 고체를 얻었다. 얻은 고체에 n-헥산을 가하여 1시간 동안 교반한 후 여과시켜 반응하지 않은 4-도데실아닐린을 제거하여 고체를 얻었다. 얻은 고체를 진공 오븐에서 24시간 동안 건조하여 순수한 [5-(4-도데실페닐-카바모일)-펜틸]-카바믹 에시드 t-부틸 에스터 ([5-(4-dodecylphenyl-carbamoyl)-pentyl]-carbamic acid t-butyl ester, DCPCABE를 얻었다. 이 때 수율은 75%이었다.
합성된 DCPCABE 0.747g(1.373mmol)을 MC 9mL에 가한 후 1-구 둥근 플라스크에 투입하고, 40℃에서 용해시킨 후 온도를 상온으로 내렸다. 그리고, 반응 플라스크 용액에 트리플루오로아세틱 에시드(trifluoroacetic acid) 1.4mL를 가한 다음 상온에서 2시간 교반시킨 후 용매를 증발시켰다. 남은 고체에 에틸에테르 30mL를 넣고 30분 교반시킨 후 여과시켜 반응하지 않은 을 DCPCABE를 제거하였다. 얻어진 고체를 건조해 순수한 [5-(4-dodecylphenyl-carbamoyl)-pentyl]-carbamic acid (DCPCA)를 얻었다. 이 때 수율은 97%이었다.
얻은 DCPCA 0.5g(1.335mmol)과 APB 0.313g(1.335mmol)을 100mL 3-구 둥근 플라스크에 투입한 후 THF 30mL와 수분제거제인 EDC 0.3g을 넣고 1시간 동안 교반한 후 상온에서 18시간 동안 반응시켰다. 반응을 완료한 용액을 증류수 150mL에 적하시킨 후 1시간 동안 교반하고 여과시켜 DMAP, EDC, EDC urea salt, THF를 제거하여 얻은 물질에 5% NaHCO3 수용액 150 mL를 가하여 1시간 동안 교반한 후 여과하여 반응하지 않은 APB를 제거하여 고체를 얻었다. 얻은 고체에 에탄올 20mL을 가하여 1시간 동안 교반한 후 여과시켜 반응하지 않은 DCPCA를 제거하여 고체를 얻었다. 얻은 고체를 진공 오븐에서 24시간 동안 건조하여 순수한 DPMCPA 단량체를 얻었다. 이때 수율은 54%이었다.
합성된 DPMCPA의 구조는 수소핵자기공명 (H-NMR) 스펙트럼으로 확인하였으며, 그 결과는 다음과 같다.
1H-NMR(DMSO-d6): d, δ10.04(s, 1H); n, δ9.73(s, 1H); j, δ7.74 (t, 1H); e, δ7.54(d, 2H); o, δ7.44(d, 2H); f,p, δ7.09(d, 4H); c, δ6.40(m, 1H); a, δ6.21(d, 1H); b, δ5.71(d, 1H); m, δ3.02(t, 2H); g, q, δ2.48(t, 4H); k, δ2.26(t, 2H); i, δ2.04 (t, 2H); h, δ 1.65(m, 2H); l,δ1.51(t,8H); r, δ1.39(m,20H); s, δ0.85(t,3H)
실시예 5 내지 9: 실시예 1의 NDPA 아크릴아미드계 단량체를 이용한 아크릴아미드계 중합체의 제조
[실시예 5]
실시예 1에서 합성한 아크릴아미드계 단량체 NDPA 1.0g과 라디칼 개시제인 벤조일 퍼옥시드(benzoyl peroxide, BPO)를 단량체에 대하여 0.5wt%으로 용매인 THF 10mL와 함께 20mL 앰플에 넣고, 동결-해동(freeze-thawing) 방법으로 용액 내에 존재하는 산소를 제거한 후, 앰플을 밀봉하고 80℃의 오븐에서 48시간 동안 라디칼 중합반응을 수행하였다. 중합 후 반응용액을 추출용매인 메탄올 200mL에 침전시킨 후, 감압 여과하고 건조시켜 흰색의 NDPA 호모중합체를 제조하였다. 제조된 중합체의 중합전환율은 70%이었다.
[실시예 6 내지 9]
단량체로 실시예 1에서 합성한 NDPA와 N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM)을 하기 표 1에 제시된 바와 같은 반응 몰비로 사용하고, 추출 용매로 n-헥산을 사용한 것을 제외하고는 실시예 5와 동일하게 수행하여, NDPA- NIPAM의 공중합체를 제조하였다.
실시예 10 내지 14: 실시예 2의 DPPA 아크릴아미드계 단량체를 이용한 아크릴아미드계 중합체의 제조
[실시예 10]
실시예 2에서 합성한 아크릴아미드계 단량체 DPPA 0.2g과 라디칼 개시제인 BPO를 단량체에 대하여 1.5wt%으로 용매인 벤젠 10mL와 함께 20 mL 앰플에 넣고 동결-해동 방법으로 용액 내에 존재하는 산소를 제거한 후, 앰플을 밀봉하고 80℃의 오븐에서 72시간 동안 라디칼 중합반응을 수행하였다. 중합 후 반응용액을 추출용매인 메탄올 200mL에 침전시킨 후, 감압 여과하여 흰색 고체를 얻었다. 얻은 고체에 메탄올 150mL를 가한 후 45℃에서 1시간 동안 교반시키고, 여과시켜 반응하지 않은 고체의 DPPA 단량체를 제거하였다. 얻어진 흰색 고체를 진공 오븐에서 하루 이상 보관하여 용매를 건조시켜 흰색의 DPPA 호모중합체를 제조하였다. 제조된 중합체의 중합전환률은 70%이었다.
[실시예 11]
실시예 2에서 합성한 DPPA와 NIPAM의 단량체 혼합물을 준비하여 단량체에 대하여 1.0wt%인 BPO, 벤젠 15mL와 함께 앰플에 넣고 동결-해동 방법으로 용액 내에 존재하는 산소를 제거한 후, 앰플을 밀봉하고 80℃의 오븐에서 48시간 동안 라디칼 공중합반응을 수행하였다. 중합 후 반응용액을 200mL의 n-헥산에 희석시켜 잔존하는 단량체와 개시제를 제거한 후 여과, 건조시켜 흰색의 DPPA-NIPAM의 공중합체를 제조하였다. 제조된 중합체의 중합전환률은 75%이었다.
[실시예 11 내지 14]
단량체로 실시예 2에서 합성한 DPPA와 NIPAM을 하기 표 2에 제시된 바와 같은 반응 몰비로 사용한 것을 제외하고는 실시예 11과 동일하게 수행하여, DPPA-NDPA의 공중합체를 제조하였다.
비교예 1 내지 2: N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM) 단량체만을 이용한 아크릴아미드계 중합체의 제조
[비교예 1]
아크릴아미드계 단량체로 NIPAM 만을 사용하고, 라디칼 개시제로 단량체에 대하여 0.5wt%, 반응 용매로 벤젠을 사용한 것을 제외하고는 실시예 5와 동일하게 수행하여, NIPAM 호모중합체를 제조하였다.
[비교예 2]
아크릴아미드계 단량체로 NIPAM 만을 사용하고, 라디칼 개시제로 단량체에 대하여 1.0wt%, 반응 용매로 벤젠을 사용한 것을 제외하고는 실시예 5와 동일하게 수행하여, NIPAM 호모중합체를 제조하였다.
실시예 및 비교예에 의하여 제조된 중합체들에 대한 졸-겔 상전이 온도의 측정
실시예 5 내지 14 및 비교예 1 내지 2에 의하여 제조된 아크릴아미드계 중합체를 벤젠과 톨루엔에 용해시켜 하기 표 1 및 2에 제시된 바와 같이 여러 농도의 고분자 용액을 준비하였다. 준비한 고분자 용액을 바이알(vial)에 넣고 용매의 끓는 온도 이하, 어는 온도 이상의 온도 범위로 조절하여 중합체들에 대한 졸-겔 상전이 온도를 측정하였다. 졸-겔 상전이 온도는 틸팅 방법(tilting method: Jeong et al., Nature, 388(28), 860-862 (1997))을 적용하여 졸 상태와 겔 상태를 관찰하였는데, 바이알을 기울여 내부 고분자 용액이 전혀 흐르지 않는 100% 겔 상태의 온도를 공중합체의 상전이 온도로 하였다. 이러한 졸 상태와 겔 상태는 도 5a와 도 5b를 통하여 확인할 수 있는데, 도 5a는 실시예 5에서 제조한 NDPA 호모중합체의 5% 벤젠 용액의 졸 상태를 보여주는 사진이고, 도 5b는 20oC에서 상전이 현상에 의해 형성된 겔 상태를 꺼꾸로 놓았을 때 중합체의 용액이 흐르지 않는 것을 보여 주는 사진이다.
상술한 바와 같은 방법에 의하여 측정된 졸-겔 상전이 온도는 표 1 및 2에 나타내었다.
또한, 단량체 조성을 달리하여 제조된 실시예 5 내지 9의 아크릴아미드계 중합체에 대한 벤젠 용매에서의 농도에 따른 졸-겔 상전이 온도를 도 1에 도시하였고, 단량체 조성을 달리하여 제조된 실시예 5 내지 9의 아크릴아미드계 중합체에 대한 톨루엔 용매에서의 농도에 따른 졸-겔 상전이 온도를 도 2에 도시하였으며, 단량체 조성을 달리하여 제조된 실시예 10 내지 14의 아크릴아미드계 중합체에 대한 벤젠 용매에서의 농도에 따른 졸-겔 상전이 온도를 도 3에 도시하였고, 단량체 조성을 달리하여 제조된 실시예 10 내지 14의 아크릴아미드계 중합체에 대한 톨루엔 용매에서의 농도에 따른 졸-겔 상전이 온도를 도 4에 도시하였다.
상기 표 1 및 2에 나타낸 바와 같이 본 발명에 따라 화학식 1의 아크릴아미드계 단량체를 이용하여 제조된 실시예 5 내지 14의 아크릴아미드계 중합체는 중합체를 형성하는 단량체들의 조성비, 용매의 종류, 용매에서의 중합체 농도에 따라 다른 졸-겔 상전이 온도를 가짐을 알 수 있다. 따라서, 본 발명의 아크릴아미드계 중합체를 이용하고, 중합체의 농도를 조절하여 벤젠, 톨루엔 등의 방향족 화합물을 선택적으로 분리할 수 있다.
종래의 아크릴아미드계 중합체의 단량체인 N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM)를 이용하여 제조된 비교예 1 및 2의 아크릴아미드계 중합체는 졸-겔 상전이의 거동을 보이지 않았다.
이상에서, 설명한 바와 같이, 본 발명에 의한 아크릴아미드 단량체는 그 구조내에 분자간 수소결합을 일으키는 아미드 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹를 가지고 있어서, 이를 이용하여 가교제나 계면활성제 없이 단순한 라디칼 중합반응으로 제조된 아크릴아미드 중합체는 방향족 유기용매에서 졸-겔 상전이 현상을 나타내어, 독성이 강한 벤젠, 톨루엔 등의 용매를 강이나 바다 또는 폐수로부터 선택적으로 분리, 제거할 수 있는 효과가 있을 뿐만 아니라, 의료용 고분자, 중금속이온 감지 센서 재료 등으로도 응용될 수 있는 유용한 발명이다.
상기에서 본 발명은 기재된 구체예를 중심으로 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
도 1은 본 발명의 실시예에 따라 제조된 아크릴아미드계 중합체의 벤젠(benzene) 용매에서의 농도에 따른 졸-겔 상전이 온도(sol-gel phase transition temperature)를 나타낸 그래프이다.
도 2는 본 발명의 실시예에 따라 제조된 아크릴아미드계 중합체의 톨루엔(toluene) 용매에서의 농도에 따른 졸-겔 상전이 온도를 나타낸 그래프이다.
도 3은 본 발명의 다른 실시예에 따라 제조된 아크릴아미드계 중합체의 벤젠 용매에서의 농도에 따른 졸-겔 상전이 온도를 나타낸 그래프이다.
도 4는 본 발명의 다른 실시예에 따라 제조된 아크릴아미드계 중합체의 톨루엔 용매에서의 농도에 따른 졸-겔 상전이 온도를 나타낸 그래프이다.
도 5a는 본 발명의 실시예에 따라 제조된 아크릴아미드계 호모중합체의 5% 벤젠 용액의 졸 상태를 나타내는 사진이다.
도 5b는 본 발명의 실시예에 따라 제조된 아크릴아미드계 호모중합체의 5% 벤젠 용액의 겔 상태를 나타내는 사진이다.

Claims (12)

  1. 분자간 수소결합을 일으키는 아미드(amide) 그룹, 벤젠 그룹 및 소수성 장쇄 알킬 그룹을 갖는 하기 화학식 1의 아크릴아미드계 단량체:
    [화학식 1]
    상기 식에서,
    R은 H 또는 CH3이고,
    R'은 Z, , , 또는 인데, Z는 ortho-, meta-, 또는 이고, 여기서 R"는 소수성 장쇄 알킬 그룹으로서 이며, 여기서 m은 10에서 20 사이의 정수이며, Y는 이며, 여기서 n은 10에서 10까지의 정수이며, X는 방향족 그룹으로서 o-페닐렌(ortho-phenylene), m-페닐렌(meta-phenylene), p-페닐렌(para-phenylene), o-나프탈렌(ortho-naphthalene), m-나프탈렌(meta-naphthalene), 또는 안트라센(anthracene) 그룹이다.
  2. 제1항에 있어서,
    상기 화학식 1의 아크릴아미드계 단량체가 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드 (N-[4-(3-(4-dodecyl-phenylcarbamoyl)-propyl)phenyl] acrylamide, NDPA); (N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드 (N-[5-(4-dodecyl-phenylcarbamoyl)-pentyl]acrylamide, DPPA); N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드(N-[3-{(4-dodecyl-phenylcarbamoyl)-methylene-carbamoyl}propyl-4-phenyl] acrylamide, DMCPA); 또는 N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드(N-[3-{(4-dodecyl-phenylcarbamoyl)-pentamethylene-carbamoyl}propyl-4-phenyl] acrylamide, DPMCPA)임을 특징으로 하는 아크릴아미드계 단량체.
  3. 제1항의 아크릴아미드계 단량체 단독 또는 상기 아크릴아미드계 단량체와 비닐계 단량체의 혼합물로부터 제조됨을 특징으로 하는 아크릴이미드계 중합체.
  4. 제3항에 있어서.
    상기 아크릴아미드계 단량체가 N-[4-(3-(4-도데실-페닐카르바모일)-프로필)페닐]아크릴아미드; (N-[5-(4-도데실-페닐카르바모일)-페닐]아크릴아미드; N-[3-{(4-도데실-페닐카르바모일)-메틸렌-카르바모일}프로필-4-페닐]아크릴아미드; 또는 N-[3-{(4-도데실-페닐카르바모일)-펜타메틸렌-카르바모일}프로필-4-페닐]아크릴아미드; 임을 특징으로 하는 아크릴아미드계 중합체.
  5. 제3항에 있어서,
    상기 비닐계 단량체가 스티렌, N-이소프로필아크릴아미드(N-isopropyl acrylamide, NIPAM), N,N-디메틸아크릴아미드(N,N-dimethylacrylamide), N,N-에틸메틸아크릴아미드(N,N-ethylmethylacrylamide) 또는 메틸메타크릴레이트(methylmethacrylate) 임을 특징으로 하는 아크릴아미드계 중합체.
  6. (가) 제1항의 아크릴아미드계 단량체 단독 또는 제1항의 아크릴아미드계 단량체와 비닐계 단량체의 혼합물을 유기용매에 용해하는 단계;
    (나) 상기 용해한 단량체와 라디칼 개시제를 앰플에 투입하는 단계;
    (다) 상기 앰플 내의 용액에 존재하는 산소를 동결-해동(freeze-thawing) 방법에 의해 진공펌프로 완전히 제거하는 단계;
    (라) 상기 산소를 완전히 제거한 앰플을 밀봉하는 단계; 및
    (마) 상기 밀봉한 앰플을 가열함으로써 라디칼 중합시키는 단계;
    를 포함하여 이루어짐을 특징으로 하는 아크릴아미드계 중합체의 제조방법.
  7. 제6항에 있어서,
    상기 (가) 단계에서 단량체가 제1항의 아크릴아미드계 단량체 단독이거나, 제1항의 아크릴아미드계 단량체와 비닐계 단량체의 혼합물로서 아크릴아미드의 함량이 혼합물 전체에서 10중량% 이상인 경우, THF, 벤젠, 톨루엔 및 자일렌으로 이루어진 군으로부터 선택된 유기용매를 단량체 전체에 대하여 20 내지 80중량%로 사용함을 특징으로 하는 아크릴아미드계 중합체의 제조 방법.
  8. 제6항에 있어서,
    상기 (나) 단계에서 라디칼 개시제가 아조비스이소브티로니트릴(azobisisobutyronitrile, AIBN), 벤조일 퍼옥시드(benzoyl peroxide, BPO), 또는 2,2'-아조비스-(2,4-디메틸발러로니트릴) 2,2'-azobis-(2,4-dimethylvaleronitrile)임을 특징으로 하는 아크릴아미드계 중합체의 제조방법.
  9. 제6항에 있어서,
    상기 (나) 단계에서 라디칼 개시제를 단량체 전체에 대하여 0.001 내지 2.0중량%로 사용함을 특징으로 하는 아크릴아미드계 중합체의 제조방법.
  10. 제6항에 있어서,
    상기 (마)단계에서 라디칼 중합이 60 내지 100℃에서 8 내지 48시간 동안 수행됨을 특징으로 아크릴아미드계 중합체의 제조방법.
  11. 제6항에 있어서,
    상기 아크릴아미드계 중합체의 수평균분자량이 3,000 내지 150,000임을 특징으로 하는 아크릴아미드계 중합체의 제조방법.
  12. 제6항에 있어서,
    상기 아크릴아미드계 중합체가 벤젠 또는 톨루엔 중 어느 하나의 방향족 유기용매에서 졸-겔 상전이 현상을 나타냄을 특징으로 하는 아크릴아미드계 중합체의 제조방법.
KR1020030089214A 2003-12-10 2003-12-10 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체 KR100541748B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030089214A KR100541748B1 (ko) 2003-12-10 2003-12-10 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030089214A KR100541748B1 (ko) 2003-12-10 2003-12-10 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체

Publications (2)

Publication Number Publication Date
KR20050056288A true KR20050056288A (ko) 2005-06-16
KR100541748B1 KR100541748B1 (ko) 2006-01-11

Family

ID=37250906

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030089214A KR100541748B1 (ko) 2003-12-10 2003-12-10 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체

Country Status (1)

Country Link
KR (1) KR100541748B1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111133B1 (ko) * 2010-10-29 2012-02-15 한양대학교 산학협력단 기체 저장 재료 및 기체 저장 방법
US8128794B2 (en) 2007-05-16 2012-03-06 Korea Atomic Energy Research Institute Water pollution sensor for detecting heavy metal and method of manufacturing the same
KR101142514B1 (ko) * 2010-10-29 2012-05-07 한양대학교 산학협력단 다공성 전기방사섬유 및 이의 제조 방법
WO2012177021A2 (en) * 2011-06-24 2012-12-27 Lg Chem, Ltd. Polymeric fluorescent material
CN103189135A (zh) * 2010-10-29 2013-07-03 Lg化学株式会社 挥发性有机化合物的吸附剂以及使用该吸附剂的吸附方法
CN103237822A (zh) * 2010-10-29 2013-08-07 Lg化学株式会社 新型基于丙烯酰胺的介孔聚合物及其制备方法
US20130260126A1 (en) * 2011-06-24 2013-10-03 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Polymeric fluorescent material
US20130266790A1 (en) * 2011-06-24 2013-10-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang Univeristy Polymeric water repellent material
CN103443141A (zh) * 2011-03-18 2013-12-11 Lg化学株式会社 聚合物支载试剂以及使用该聚合物支载试剂还原芳族硝基化合物的方法
CN104718154A (zh) * 2012-10-19 2015-06-17 株式会社Lg化学 形成金属纳米线或金属纳米网的方法
US9447239B2 (en) 2012-03-19 2016-09-20 Samsung Electronics Co., Ltd. Thermosensitive copolymers, forward osmosis water treatment devices including the same, and methods of producing and using the same
US9493588B2 (en) 2011-04-22 2016-11-15 Lg Chem, Ltd. Diblock copolymer, preparation method thereof, and method of forming nano pattern using the same
US9492789B2 (en) 2012-01-17 2016-11-15 Samsung Electronics Co., Ltd. Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944779B1 (ko) 2007-05-16 2010-02-26 한국원자력연구원 중금속 감지용 수질 센서 및 이의 제조 방법

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128794B2 (en) 2007-05-16 2012-03-06 Korea Atomic Energy Research Institute Water pollution sensor for detecting heavy metal and method of manufacturing the same
US8911537B2 (en) 2010-10-29 2014-12-16 Lg Chem, Ltd. Adsorbent of volatile organic compounds and adsorption method using thereof
WO2012057445A3 (en) * 2010-10-29 2012-06-14 Lg Chem, Ltd. Gas storage material and method for gas storage
KR101142514B1 (ko) * 2010-10-29 2012-05-07 한양대학교 산학협력단 다공성 전기방사섬유 및 이의 제조 방법
KR101111133B1 (ko) * 2010-10-29 2012-02-15 한양대학교 산학협력단 기체 저장 재료 및 기체 저장 방법
US9353236B2 (en) 2010-10-29 2016-05-31 Lg Chem, Ltd. Acrylamide-based mesoporous polymer and preparation method thereof
CN103189135B (zh) * 2010-10-29 2015-01-14 Lg化学株式会社 挥发性有机化合物的吸附剂以及使用该吸附剂的吸附方法
CN103189135A (zh) * 2010-10-29 2013-07-03 Lg化学株式会社 挥发性有机化合物的吸附剂以及使用该吸附剂的吸附方法
CN103189134A (zh) * 2010-10-29 2013-07-03 Lg化学株式会社 储气材料和储气方法
CN103237822A (zh) * 2010-10-29 2013-08-07 Lg化学株式会社 新型基于丙烯酰胺的介孔聚合物及其制备方法
US20130216830A1 (en) * 2010-10-29 2013-08-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University Porous electrospun fiber and preparation method thereof
US20130216472A1 (en) * 2010-10-29 2013-08-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Gas storage material and method for gas storage
US20130245145A1 (en) * 2010-10-29 2013-09-19 IUCF-HYU ( Industry-University Cooperation Foundation Hanyang Unversity) Novel acrylamide-based mesoporous polymer and preparation method thereof
US9322115B2 (en) * 2010-10-29 2016-04-26 Lg Chem, Ltd. Porous electrospun fiber and preparation method thereof
US9109063B2 (en) 2010-10-29 2015-08-18 Lg Chem, Ltd. Acrylamide-based mesoporous polymer and preparation method thereof
US9051181B2 (en) 2010-10-29 2015-06-09 Lg Chem, Ltd. Gas storage material and method for gas storage
CN103189134B (zh) * 2010-10-29 2015-03-25 Lg化学株式会社 储气材料和储气方法
WO2012057445A2 (en) * 2010-10-29 2012-05-03 Lg Chem, Ltd. Gas storage material and method for gas storage
US9169200B2 (en) 2011-03-18 2015-10-27 Lg Chem, Ltd. Polymer supported reagents and methods or reducing aromatic nitro compounds by using the same
CN103443141B (zh) * 2011-03-18 2016-06-01 Lg化学株式会社 聚合物支载试剂以及使用该聚合物支载试剂还原芳族硝基化合物的方法
CN103443141A (zh) * 2011-03-18 2013-12-11 Lg化学株式会社 聚合物支载试剂以及使用该聚合物支载试剂还原芳族硝基化合物的方法
US9493588B2 (en) 2011-04-22 2016-11-15 Lg Chem, Ltd. Diblock copolymer, preparation method thereof, and method of forming nano pattern using the same
US20130260126A1 (en) * 2011-06-24 2013-10-03 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Polymeric fluorescent material
US20130266790A1 (en) * 2011-06-24 2013-10-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang Univeristy Polymeric water repellent material
US9175116B2 (en) * 2011-06-24 2015-11-03 Lg Chem, Ltd. Polymeric water repellent material
US9281481B2 (en) 2011-06-24 2016-03-08 Lg Chem Ltd. Polymeric fluorescent material
WO2012177021A2 (en) * 2011-06-24 2012-12-27 Lg Chem, Ltd. Polymeric fluorescent material
WO2012177021A3 (en) * 2011-06-24 2013-04-11 Lg Chem, Ltd. Polymeric fluorescent material
CN103619948A (zh) * 2011-06-24 2014-03-05 Lg化学株式会社 聚合物防水材料
CN103619948B (zh) * 2011-06-24 2016-07-13 Lg化学株式会社 聚合物防水材料
KR101429742B1 (ko) * 2011-06-24 2014-08-13 주식회사 엘지화학 고분자 형광체
US9492789B2 (en) 2012-01-17 2016-11-15 Samsung Electronics Co., Ltd. Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment
US9447239B2 (en) 2012-03-19 2016-09-20 Samsung Electronics Co., Ltd. Thermosensitive copolymers, forward osmosis water treatment devices including the same, and methods of producing and using the same
CN104718154A (zh) * 2012-10-19 2015-06-17 株式会社Lg化学 形成金属纳米线或金属纳米网的方法
CN104718154B (zh) * 2012-10-19 2016-08-24 株式会社Lg化学 形成金属纳米线或金属纳米网的方法
US9957363B2 (en) 2012-10-19 2018-05-01 Lg Chem, Ltd. Method for forming metal nanowire or metal nanomesh

Also Published As

Publication number Publication date
KR100541748B1 (ko) 2006-01-11

Similar Documents

Publication Publication Date Title
KR100541748B1 (ko) 아크릴아미드계 단량체 및 이를 이용하여 제조된 온도감응성 아크릴아미드계 중합체
Ning et al. Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST
KR101763010B1 (ko) 블록 공중합체
Suwa et al. Synthesis and functionalities of poly (N‐vinylalkylamide). IV. Synthesis and free radical polymerization of N‐vinylisobutyramide and thermosensitive properties of the polymer
Huang et al. Micellization and gelatinization in aqueous media of pH-and thermo-responsive amphiphilic ABC (PMMA 82-b-PDMAEMA 150-b-PNIPAM 65) triblock copolymer synthesized by consecutive RAFT polymerization
Huang et al. Novel acid‐labile, Thermoresponsive poly (methacrylamide) s with pendent Ortho Ester moieties
CN103189135A (zh) 挥发性有机化合物的吸附剂以及使用该吸附剂的吸附方法
JP2017515931A (ja) 光によるアクリレートの制御ラジカル重合の調節
Pan et al. Dual thermo‐and pH‐sensitive network‐grafted hydrogels formed by macrocrosslinker as drug delivery system
Luo et al. Multi-responsive polymethacrylamide homopolymers derived from tertiary amine-modified L-alanine
Liu et al. Controlled polymerization of 2‐(diethylamino) ethyl methacrylate and its block copolymer with N‐isopropylacrylamide by RAFT polymerization
Yang et al. Highly efficient adsorbent for organic dyes based on a temperature‐and pH‐responsive multiblock polymer
Abdelaty Trends in the phase separation temperature optimization of a functional and thermo-pH responsive terpolymer of poly (N-isopropylacrylamide-co-N-(2-(dimethylamino) ethyl) acrylamide-co-vanillin acrylate)
CN110283272B (zh) 一种含苯环二元共聚物的应用方法
JP2007262388A (ja) 熱応答性重合体及びその製造方法
Ali Synthesis and solution properties of a quaternary ammonium polyelectrolyte and its corresponding polyampholyte
JP6737439B2 (ja) 汚泥脱水剤及び汚泥脱水方法
Bai et al. Temperature and pH dual-responsive behavior of polyhedral oligomeric silsesquioxane-based star-block copolymer with poly (acrylic acid-block-N-isopropylacrylamide) as arms
Cai et al. Phase transition of aqueous solutions of poly (N, N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetric and spectrophotometric methods
JP2643403B2 (ja) ポリ(n―アシルアルキレンイミン)系共重合体及びその用途
EP1688440A1 (en) Novel hyperbranched polymer
Dhara et al. Interpenetrating Networks of Poly (N‐isopropyl‐acrylamide) with Anionic and Cationic Polymers
CN109053955B (zh) 一种基于砜的水溶性兼温度响应性荧光聚合物及其制备方法
Lu et al. Inverse thermally reversible gelation-based hydrogels: synthesis and characterization of N-isopropylacrylamide copolymers containing deoxycholic acid in the side chain
CA1338834C (en) Polymeric surfactants

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141017

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 15