KR20040106835A - Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same - Google Patents

Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same Download PDF

Info

Publication number
KR20040106835A
KR20040106835A KR1020030037692A KR20030037692A KR20040106835A KR 20040106835 A KR20040106835 A KR 20040106835A KR 1020030037692 A KR1020030037692 A KR 1020030037692A KR 20030037692 A KR20030037692 A KR 20030037692A KR 20040106835 A KR20040106835 A KR 20040106835A
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium
polymer electrolyte
solid polymer
room temperature
Prior art date
Application number
KR1020030037692A
Other languages
Korean (ko)
Inventor
이상원
안효준
류호석
안주현
김기원
이재영
정상식
이덕준
정병수
최영진
김진규
Original Assignee
대한민국 (경상대학교 총장)
이상원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 (경상대학교 총장), 이상원 filed Critical 대한민국 (경상대학교 총장)
Priority to KR1020030037692A priority Critical patent/KR20040106835A/en
Publication of KR20040106835A publication Critical patent/KR20040106835A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: Provided are a solid polymer electrolyte which can be used at a room temperature by adding a carbon filler and can be discharged when used in a lithium polymer sulfur battery, and a lithium polymer sulfur battery containing the electrolyte. CONSTITUTION: The solid polymer electrolyte comprises a slurry comprising a common polyethylene oxide; 1-50 wt% of a carbon filler selected from the group consisting of acetylene black, super-P, graphite and polypropylene; a common lithium salt; and an organic solvent, and has an ion conductivity of 10¬-3 S/cm at a room temperature. Preferably the solid polymer electrolyte is treated by repeating the heating and cooling processes at 800-120 deg.C for 10-14 hours.

Description

이온 전도도가 개선된 고체 고분자 전해질 및 이를 이용한 리튬폴리머 유황전지{Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same}Solid electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same

본 발명은 이온 전도도가 개선된 고체 고분자 전해질 및 이를 이용한 리튬폴리머 유황전지에 관한 것이다. 더욱 상세하게는 탄소 필러의 첨가에 의해 상온 부근의 온도에서 사용하기에 적합하도록 이온전도도가 향상된 고온용 고체 고분자 전해질과 음극 및 양극과 상기 전해질을 포함하는 리튬폴리머 유황전지에 관한 것이다.The present invention relates to a solid polymer electrolyte having improved ion conductivity and a lithium polymer sulfur battery using the same. More particularly, the present invention relates to a high-temperature solid polymer electrolyte having an improved ion conductivity and a negative electrode, a positive electrode, and a lithium polymer sulfur battery including the electrolyte so as to be suitable for use at a temperature near room temperature by addition of a carbon filler.

보통 폴리에틸렌옥사이드의 고체 고분자 전해질의 경우 고온용 전지의 전해질로 사용되고 있다. 폴리에틸렌옥사이드(PEO)는 녹는점이 66℃에서 68℃이므로 이것으로 전해질을 만들 경우에는 전지의 작동 온도가 녹는점 이상이 되어야 한다. 그리고 폴리에틸렌옥사이드로만 제조된 필름은 그 이온전도도가 상당히 낮아서 상온에서는 전해질로서의 역할이 힘들다. 그리고 필러를 첨가한 경우 고온에서의 이온전도도 개선보다 상온에서의 이온전도도가 개선된다고 한 바가 있다.Usually, a solid polymer electrolyte of polyethylene oxide is used as an electrolyte of a high temperature battery. Since the polyethylene oxide (PEO) has a melting point of 66 ° C to 68 ° C, when the electrolyte is made from this, the operating temperature of the cell must be higher than the melting point. In addition, the film made of only polyethylene oxide has a very low ion conductivity, which makes it difficult to function as an electrolyte at room temperature. In addition, when the filler is added, the ion conductivity at room temperature is improved rather than the ion conductivity at high temperature.

고체 고분자 전해질의 제조는 자기교반에 의해 슬러리를 제조하는 방식과 볼밀링에 의해 제조하는 방식이 있다. 이에 관해서는 신준호[국내특허제 381,527호, "볼밀링법으로 리튬폴리머 전지용 고분자 전해질을 제조하는 방법] 등의 연구에서는 고체 고분자 전해질의 슬러리의 제조시 볼밀링을 사용함으로써 전해질의 특성을 향상시켰다고 소개한 바 있다.The solid polymer electrolyte may be prepared by a method of preparing a slurry by magnetic stirring or by a method of ball milling. In this regard, studies such as Shin Joon-ho (Domestic Patent No. 381,527, "Method for Producing Polymer Electrolyte for Li-Polymer Battery by Ball Milling Method") showed that the characteristics of the electrolyte were improved by using ball milling during the preparation of the slurry of the solid polymer electrolyte. I've done it.

상온에서 사용이 가능한 고체 고분자 전해질의 조건으로는 상온에서의 이온전도성이 있어야 한다. 상온에서 사용이 가능한 전해질로는 액체 전해질 또는 상온형 겔 전해질이 있으나 이와 같은 경우 액체 전해질의 누액이나 겔 전해질이 인체에 유해한 유기 용매로 이루어져 있기 때문에 인체나 환경에 유해할 수가 있다. 그러나, 폴리에틸렌옥사이드 같은 경우에는 고체 상태이므로 이러한 누액 등에 의한 인체의 유해함은 없다.Solid polymer electrolytes that can be used at room temperature should have ion conductivity at room temperature. The electrolyte that can be used at room temperature is a liquid electrolyte or a room temperature gel electrolyte, but in this case, since the liquid electrolyte leakage or gel electrolyte is composed of organic solvents harmful to the human body, it may be harmful to the human body or the environment. However, in the case of polyethylene oxide, since there is no solid state, there is no harm to the human body due to such leakage.

보통 폴리에틸렌옥사이드 등의 고체 고분자 등은 이온의 전도 특성이 자체적으로는 그리 크지가 않다. 이러한 점을 개선하기 위해 리튬염을 첨가하여 리튬이온의 전도성을 향상시킨 바도 있고, 리튬염 외에 필러를 첨가하여 전해질의 이온전도성을 개선시키고자 한 예도 있다.In general, solid polymers such as polyethylene oxide, etc., the conductivity of the ions is not large by itself. In order to improve this point, the lithium salt may be added to improve the conductivity of lithium ions. In addition, the filler may be added to the lithium salt to improve the ion conductivity of the electrolyte.

본 발명의 기술적 과제는 폴리에틸렌옥사이드 고체 고분자 전해질의 이온 전도도를 개선시켜 상온에서 충분히 사용 가능하도록 함으로써 이를 활용하여 리튬폴리머 유황전지 시스템에서 방전이 가능하도록 하는데 있다.The technical problem of the present invention is to improve the ionic conductivity of the polyethylene oxide solid polymer electrolyte so that it can be sufficiently used at room temperature to utilize it to enable discharge in a lithium polymer sulfur battery system.

이에 본 발명은 고체 고분자 전해질의 이용 온도를 상온으로 낮추고 상온 부근에서 방전이 가능하도록 하기 위해 탄소 필러를 첨가한 고체 고분자 전해질과 이를 포함하는 리튬폴리머 유황전지를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a solid polymer electrolyte in which a carbon filler is added and a lithium polymer sulfur battery including the same in order to lower the use temperature of the solid polymer electrolyte to room temperature and enable discharge at or near room temperature.

도 1은 본 발명에 따른 탄소필러가 첨가된 고체 전해질의 상온 부근에서의 방전 특성을 도시한 그래프이다.1 is a graph showing discharge characteristics in the vicinity of room temperature of a solid electrolyte to which a carbon filler according to the present invention is added.

본 발명은 고체 고분자인 폴리에틸렌옥사이드에 아세틸렌블랙, 슈퍼-P, 그라파이트, 폴리프로필렌으로 이루어진 그룹으로부터 선택된 필러를 0 내지 50중량% 이외에 통상의 리튬염 및 유기용매가 혼합된 슬러리로 이루어진 상온에서 10-3S/cm의 이온 전도도를 갖는 리튬폴리머 유황전지용 고체 고분자 전해질인 것을 특징으로 한다.The present invention at room temperature, consisting of a polymer of an acetylene black, Super -P, graphite, poly conventional lithium salt and a mixed organic solvent in addition to the slurry 0 to 50% by weight of a filler selected from the group consisting of propylene to polyethylene oxide 10 - It is characterized in that the solid polymer electrolyte for lithium polymer sulfur battery having an ion conductivity of 3 S / cm.

또한, 본 발명은 음극, 양극 그리고 상기와 같이 구성된 상온에서 사용 가능한 고체 고분자 전해질을 포함하는 리튬폴리머 유황전지인 것을 특징으로 한다.In addition, the present invention is characterized in that the lithium polymer sulfur battery comprising a negative electrode, a positive electrode and a solid polymer electrolyte usable at room temperature configured as described above.

본 발명의 고체 고분자 전해질에서 고분자 물질로는 폴리에틸렌옥사이드를 사용하는 것이 바람직하고, 리튬염으로는 고체 고분자 전해질의 이온 전도성을 높이기 위하여, 리튬트리플루오로메탄설포네이트(LiCF3SO3), 리튬헥사플로르포소페이트(LiPF6), 리튬테트라플로르보레이트(LiBF4), 리튬퍼클로레이트(LiClO4) 및 리튬트리플루오로메탄설포네이트이미드(LiTFSI)로 이루어진 군으로부터 적어도 하나 이상을 선택하여 사용하는 것이 바람직하되 이중에서 특히 리튬트리플루오로메탄설포네이트(LiCF3SO3)가 가장 바람직하다.In the solid polymer electrolyte of the present invention, it is preferable to use polyethylene oxide as the polymer material, and lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and lithium hexa to increase the ionic conductivity of the solid polymer electrolyte as the lithium salt. It is preferable to use at least one selected from the group consisting of fluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ) and lithium trifluoromethanesulfonateimide (LiTFSI) Most preferred among these is lithiumtrifluoromethanesulfonate (LiCF 3 SO 3 ).

본 발명에서, 탄소 필러로서는 아세틸렌블랙, 슈퍼-P(Super-P), 그라파이트 (graphite) 및 폴리프로필렌(PPY)으로 이루어진 군으로부터 적어도 하나를 선택하여 사용하는 것이 바람직하다. 여기서 필러의 사용량은 0 내지 50중량%로 하는 것이 바람직하다. 필러를 첨가함에 있어서, 그 적정범위 보다 많은 양을 첨가할 경우에는 필러 입자로 인해 이온의 이동에 방해요인이 되어 이온전도에 좋지 못하게 된다.In the present invention, it is preferable to use at least one selected from the group consisting of acetylene black, super-P, graphite and polypropylene (PPY) as the carbon filler. It is preferable that the usage-amount of a filler is 0 to 50 weight% here. In the case of adding the filler, in the case of adding more than the proper range, the filler particles may interfere with the movement of ions, which is not good for ion conduction.

본 발명에서 고분자를 녹이는 물질인 유기용매로는 아세트로니트릴, 아세토니트릴, 아세톤 및 테트라히드로퓨란(THF)으로 이루어진 군으로부터 적어도 하나를 선택하여 사용하는 것이 바람직하다.In the present invention, it is preferable to use at least one selected from the group consisting of acetonitrile, acetonitrile, acetone, and tetrahydrofuran (THF) as the organic solvent that dissolves the polymer.

본 발명에서, 필러의 분산에는 초음파기를 사용하는 것이 바람직하다. 그 이외 고분자와 리튬염 및 탄소와 유기용매를 섞은 슬러리의 제조에는 볼밀링, 자기교반기, 에트리터를 이용하여 충분히 교반하는 것이 좋다.In the present invention, it is preferable to use an ultrasonic wave for dispersing the filler. In addition, in the preparation of a slurry in which a polymer, a lithium salt, and a carbon and an organic solvent are mixed, it is preferable to sufficiently stir using a ball mill, a magnetic stirrer, and an etchant.

리튬폴리머 유황전지는 양극, 음극 및 본 발명에 따른 고체 고분자 전해질로 이루어지되 양극 및 음극은 이 기술 분야의 통상의 지식을 가진 자에 의하여 용이하게 제조될 수 있다. 본 발명에서 음극은 리튬 금속, 리튬 합금 등으로 구성될 수 있으며, 양극은 유황 전극으로 유황, 탄소, 고분자, 리튬염 등을 용매에 넣고, 교반 및 유리판 위에 도포한 다음 건조하여 필름 형상으로 제조하여 사용할 수 있다.Lithium polymer sulfur battery is composed of a positive electrode, a negative electrode and a solid polymer electrolyte according to the present invention, the positive electrode and the negative electrode can be easily manufactured by those skilled in the art. In the present invention, the negative electrode may be composed of lithium metal, lithium alloy, etc., the positive electrode is a sulfur electrode, sulfur, carbon, polymer, lithium salt, etc. in a solvent, stirred and coated on a glass plate and dried to produce a film shape Can be used.

특히, 본 발명에 따른 고체 고분자 전해질은 800 내지 120℃에서 10 내지 14시간 동안의 열처리와 냉각과정이 반복 처리하여서 사용하는 것이 바람직하다.In particular, the solid polymer electrolyte according to the present invention is preferably used after repeated heat treatment and cooling process for 10 to 14 hours at 800 to 120 ℃.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예 1 : PEO 전해질의 제조와 이온전도도의 측정Example 1 Preparation of PEO Electrolyte and Measurement of Ion Conductivity

탄소(아세틸렌 블랙, <1㎛, 15중량% vs PEO) , 아세트로니트릴(ACN) 40cc를 삼각 플라스크에 넣고 2시간 동안 초음파기로 분산을 하고 이 용액에 폴리에틸렌옥사이드(PEO) 0.86g, 리튬테트라플로르보레이트(LiBF4) 0.043g(5중량% vs PEO), 아세트로니트릴(ACN) 24cc를 넣고 볼 밀링을 8시간을 하여 슬러리를 제조하였다. 이때, 볼과 혼합물의 비는 400 : 1로 하였다.40 cc of carbon (acetylene black, <1 μm, 15 wt% vs PEO) and acetonitrile (ACN) were placed in a Erlenmeyer flask and dispersed for 2 hours in an ultrasonic wave, and 0.86 g of polyethylene oxide (PEO) in this solution, lithium tetrafluor 0.043 g of borate (LiBF 4 ) (5 wt% vs PEO) and 24 cc of acetonitrile (ACN) were added thereto, and a slurry was prepared by performing ball milling for 8 hours. At this time, the ratio of the ball and the mixture was set to 400: 1.

볼 밀링한 후 글래스 캐스팅한 고분자 전해질을 건조 상온에서 5일간 실험실에서 건조시켰다. 이렇게 제조된 전해질은 55℃의 진공오븐에서 24시간에서 건조시켰다.The glass-molded polymer electrolyte after ball milling was dried in a laboratory at room temperature for 5 days. The electrolyte thus prepared was dried in a vacuum oven at 55 ° C. for 24 hours.

이로부터 제조된 슬러리에 대해 온도차에 따른 이온 전도도를 측정한 결과를 다음 표 1에 나타내었다. 이온 전도도의 측정방법은 전해질만을 Swage Rock Cell에 넣고, 조립한 후 온도 간의 간격은 10℃, 각 간격간의 측정은 충분한 온도 전도를 위해 1시간 동안 가열하여 이온 전도도를 측정하였다. 셀 조립과 전해질의 보관은 아르곤 가스 분위기의 글로브 박스에서 하였다. 측정 시작 온도는 30℃이고, 측정 종료 온도는 100℃이었다.The results of measuring the ion conductivity according to the temperature difference for the slurry prepared therefrom are shown in Table 1 below. In the method of measuring ion conductivity, only electrolyte was placed in a Swage Rock Cell, and after assembly, the interval between temperatures was 10 ° C., and the measurement between each interval was measured for 1 hour for sufficient temperature conductivity. Cell assembly and electrolyte storage were carried out in a glove box under argon gas atmosphere. Measurement start temperature was 30 degreeC, and measurement end temperature was 100 degreeC.

비교예 1Comparative Example 1

상기 실시예 1에서 도전제인 탄소를 혼합하지 않는 것 이외에는 상기 실시예 1과 동일하게 실시하여 슬러리를 제조하였다. 이로부터 제조된 슬러리에 대해 온도차에 따른 이온 전도도를 측정한 결과를 다음 표 1에 나타내었다.A slurry was prepared in the same manner as in Example 1 except that carbon, which is a conductive agent, was not mixed in Example 1. The results of measuring the ion conductivity according to the temperature difference for the slurry prepared therefrom are shown in Table 1 below.

측정 온도(℃)Measurement temperature (℃) 실시예 1(10-3S/cm)Example 1 (10 -3 S / cm) 비교예 1(10-6S/m)Comparative Example 1 (10 -6 S / m) 3030 0.700.70 4.424.42 4040 0.710.71 4.104.10 5050 0.730.73 2.912.91 6060 0.710.71 2.312.31 7070 0.900.90 227.54227.54 8080 0.960.96 293.43293.43 9090 1.021.02 358.44358.44 100100 1.111.11 --

상기 표 1에 나타낸 바와 같이 탄소를 첨가한 전해질(실시예 1)이 탄소를 첨가하지 않은 전해질(비교예 1)에 비해 훨씬 높은 이온 전도도를 나타내었음을 알 수 있다.As shown in Table 1, it can be seen that the electrolyte added with carbon (Example 1) showed much higher ionic conductivity than the electrolyte without carbon added (Comparative Example 1).

실시예 2Example 2

상기 실시예 1에서 슬러리의 제조시 볼밀링을 하는 대신에 자기교반에 의해 혼합하는 것 이외에는 상기 실시예 1과 동일하게 하여 고체 전해질을 제조하였다. 이로부터 제조된 고체 전해질의 이온 전도도를 실시예 1의 방법으로 측정한 결과를 다음 표 2에 나타내었다.A solid electrolyte was prepared in the same manner as in Example 1 except for mixing by magnetic stirring instead of ball milling in preparing the slurry in Example 1. The ionic conductivity of the solid electrolyte prepared therefrom was measured by the method of Example 1, and the results are shown in Table 2 below.

측정 온도(℃)Measurement temperature (℃) 실시예 1(10-3S/cm)Example 1 (10 -3 S / cm) 비교예 2(10-3S/cm)Comparative Example 2 (10 -3 S / cm) 3030 0.700.70 0.290.29 4040 0.710.71 0.510.51 5050 0.730.73 0.860.86 6060 0.710.71 1.541.54 7070 0.900.90 1.721.72 8080 0.960.96 1.761.76 9090 1.021.02 1.551.55 100100 1.111.11 2.522.52

상기 표 2에 의하면 탄소를 함유하고 볼밀링으로 고체 전해질을 제조한 실시예 1이 탄소를 함유하고 자기교반에 의해 고체 전해질을 제조한 비교예 2보다 이온 전도도가 훨씬 향상됨을 알 수 있다. 볼밀링으로 제조된 고체전해질의 경우 자기교반의 경우보다 녹는점 이하에서의 이온전도성이 더 좋게 된다.According to Table 2, it can be seen that Example 1, which contains carbon and manufactured a solid electrolyte by ball milling, has a much improved ion conductivity than Comparative Example 2, which contains carbon and prepared a solid electrolyte by magnetic stirring. In the case of the solid electrolyte prepared by ball milling, the ion conductivity at the melting point or less is better than that of the magnetic stirring.

실시예 3Example 3

상기 실시예 1에서 제조된 고체 전해질을 100℃의 오븐에서 12시간 동안 가열한 후 전해질을 냉각시켰다. 이 전해질을 이용하여 리튬/유황전지를 구성하고 50℃에서 방전실험을 실시하였다. 상기 전지에 대한 방전 실험 결과를 도 1에 나타낸 바와 같이 방전이 일어났다.The solid electrolyte prepared in Example 1 was heated in an oven at 100 ° C. for 12 hours to cool the electrolyte. Using this electrolyte, a lithium / sulfur battery was constructed and a discharge test was conducted at 50 ° C. As shown in FIG. 1, the discharge test result of the discharge occurred.

비교예 2Comparative Example 2

상기 비교예 2에서 제조된 고체 전해질을 열처리 없이 리튬/유황전지를 구성하고 50℃에서 방전실험을 실시하였다. 상기 전지에 대한 방전 실험 결과 방전이 되지 않았다.The solid electrolyte prepared in Comparative Example 2 constituted a lithium / sulfur battery without heat treatment, and a discharge test was performed at 50 ° C. As a result of the discharge test on the battery, no discharge occurred.

열처리의 실시로 인해 상온에서의 이온전도도에 개선이 되게 되는데 이러한 경우 볼밀링과 자기교반으로 제조된 각 고체전해질 간에 상온에서의 이온전도도의 차이는 표 2에서 나타낸 바와 같이 크게 줄어들게 된다.Due to the heat treatment, the ionic conductivity at room temperature is improved. In this case, the difference in ionic conductivity at room temperature between each solid electrolyte prepared by ball milling and magnetic stirring is greatly reduced as shown in Table 2.

본 발명은 볼밀링을 하고 탄소 필러를 첨가하여 제조된 전해질을 열처리를 함으로써 상온에서 사용이 가능한 고체상의 전해질이 되며, 이렇게 제조된 전해질은 리튬폴리머 유황전지를 구성할 경우 방전이 가능한 효과가 있다.The present invention is a solid electrolyte that can be used at room temperature by heat-treating the electrolyte prepared by ball milling and the addition of a carbon filler, the electrolyte thus produced has the effect that can be discharged when configuring a lithium polymer sulfur battery.

Claims (3)

리튬폴리머 유황전지용 고체 고분자 전해질에 있어서, 고체 고분자인 통상의 폴리에틸렌옥사이드에 아세틸렌블랙, 슈퍼-P, 그라파이트, 폴리프로필렌으로 이루어진 그룹으로부터 선택된 탄소 필러 1 내지 50중량%와 통상의 리튬염 및 유기용매가 혼합된 슬러리로 이루어진 상온에서 10-3S/cm의 이온 전도도를 갖는 것을 특징으로 하는 이온 전도도가 개선된 고체 고분자 전해질.In a solid polymer electrolyte for a lithium polymer sulfur battery, 1 to 50% by weight of carbon filler selected from the group consisting of acetylene black, super-P, graphite, and polypropylene, and a conventional lithium salt and an organic solvent Solid polymer electrolyte with improved ionic conductivity, characterized in that having an ionic conductivity of 10 -3 S / cm at room temperature consisting of a mixed slurry. 제 1항에 따른 고체 고분자 전해질과 음극 및 양극으로 구성되어진 상온에서 사용이 가능한 리튬폴리머 유황전지.Lithium polymer sulfur battery that can be used at room temperature consisting of a solid polymer electrolyte according to claim 1 and a negative electrode and a positive electrode. 제 2항에 있어서, 상기 고체 고분자 전해질은 800 내지 120℃에서 10 내지 14시간 동안의 열처리와 냉각과정이 반복 처리된 것을 특징으로 하는 리튬폴리머 유황전지.The lithium polymer sulfur battery according to claim 2, wherein the solid polymer electrolyte is repeatedly treated by heat treatment and cooling for 10 to 14 hours at 800 to 120 ° C.
KR1020030037692A 2003-06-11 2003-06-11 Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same KR20040106835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030037692A KR20040106835A (en) 2003-06-11 2003-06-11 Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030037692A KR20040106835A (en) 2003-06-11 2003-06-11 Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same

Publications (1)

Publication Number Publication Date
KR20040106835A true KR20040106835A (en) 2004-12-18

Family

ID=37381150

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030037692A KR20040106835A (en) 2003-06-11 2003-06-11 Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same

Country Status (1)

Country Link
KR (1) KR20040106835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489815A (en) * 2016-01-15 2016-04-13 中南大学 Interlayer used for all-solid-state lithium sulfur battery and all-solid-state lithium sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489815A (en) * 2016-01-15 2016-04-13 中南大学 Interlayer used for all-solid-state lithium sulfur battery and all-solid-state lithium sulfur battery

Similar Documents

Publication Publication Date Title
Nair et al. Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries
KR100250855B1 (en) A hybrid polymeric electrolyte, a method of making the same and a lithium battery with the same
JP6298239B2 (en) Anode for lithium ion battery cell, method for producing the same, and battery incorporating the same
JP4280339B2 (en) Solid electrolyte molded body, electrode molded body, and electrochemical element
JP6282037B2 (en) Lithium ion battery cell cathode, manufacturing process thereof and battery incorporating the same
Kim et al. Dual-function ethyl 4, 4, 4-trifluorobutyrate additive for high-performance Ni-rich cathodes and stable graphite anodes
KR20190074484A (en) A sulfide-based solid electrolyte for all-solid battery having a crystal structure of argyrodite derived from single substance and preparing method thereof
Wang et al. Bifunctional LiI additive for poly (ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry
Aziam et al. Solid-state electrolytes for beyond lithium-ion batteries: A review
KR20200075250A (en) A sulfide-based solid electrolyte doped with alkali earth metal and a preparing method thereof
CN105428700A (en) Compound polymer electrolyte material, preparation method thereof, electrolyte membrane and all-solid-state lithium secondary battery
US5114809A (en) All solid-state lithium secondary battery
CN108242563A (en) A kind of high voltage withstanding alkyl tin groups, alkyl silane groups lithium battery polymer dielectric, preparation method and its application in solid lithium battery
CN109638350A (en) The stable succinonitrile base solid electrolyte of a kind of pair of lithium, preparation method and applications
JP2012178256A (en) Ion conductor material, solid electrolyte layer, electrode active material layer, and all-solid battery
KR102315177B1 (en) Hybrid Electrolyte comprising Lithium Phosphates and Polymer For Li Batteries Operable At Room Temperatures And Li Batteries comprising The Same
CN111293351A (en) Sulfide-based solid electrolyte for all-solid-state battery negative electrode and method for producing same
US20220115634A1 (en) Process for the degradation of a poly(alkene carbonate), uses for preparing a lithium-ion battery electrode and the sintering of ceramics
KR20200070720A (en) A sulfide-based solid electrolyte with improving electronic conductivity and preparing method thereof
KR20040106835A (en) Polymer electrolyte with improved ionic conductivity and lithium polymer sulphur battery using the same
KR20220035188A (en) Solid Polymer Electrolyte Comprising Polyalkylene Carbonate
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage
KR102253763B1 (en) Manufacturing method of solid-state composite electrolyte membrane for secondary battery having compact structure
CN115224358B (en) Polymer-based solid electrolyte, lithium ion battery and preparation method of polymer-based solid electrolyte
US10991977B2 (en) Method of manufacturing high-ion conductive sulfide-based solid electrolyte using dissolution-precipitation and composition used therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application