KR20040076147A - Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused - Google Patents

Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused Download PDF

Info

Publication number
KR20040076147A
KR20040076147A KR1020030011496A KR20030011496A KR20040076147A KR 20040076147 A KR20040076147 A KR 20040076147A KR 1020030011496 A KR1020030011496 A KR 1020030011496A KR 20030011496 A KR20030011496 A KR 20030011496A KR 20040076147 A KR20040076147 A KR 20040076147A
Authority
KR
South Korea
Prior art keywords
ionization
gas
subject
high voltage
faraday cup
Prior art date
Application number
KR1020030011496A
Other languages
Korean (ko)
Inventor
박성한
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020030011496A priority Critical patent/KR20040076147A/en
Publication of KR20040076147A publication Critical patent/KR20040076147A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8868Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample elemental analysis, e.g. isotope dilution analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/626Specific applications or type of materials radioactive material
    • G01N2223/6265Specific applications or type of materials radioactive material sample with radioactive tracer, tag, label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/636Specific applications or type of materials fluid sample with radioactive sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/205Assays involving biological materials from specific organisms or of a specific nature from bacteria from Campylobacter (G)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE: A breadth test for diagnosing the presence of Helicobacter pylori in a subject using a diagnostic reagent such as 13C-labelled compounds as an isotope is provided. It enables various diagnoses with a direct method at low cost and uses 13C-labelled compounds as a relatively stable isotope, thereby to need no security administration such as separate radiation administration. CONSTITUTION: The method of diagnosing Helicobacter pylori is performed as follows. First, a safe and effective amount of 13C-labelled compounds is administered to a subject. Second, CO2 of the exhaled breaths of the subject is introduced into an ionic mobility detector to collect it into a Faraday cup in ion current. Finally, the signal of the obtained current is analyzed. The apparatus for diagnosing the presence of Helicobacter pylori comprises: an external protection case(21); a housing(24) for ionization of CO2 gas introduced through a breath inlet(22); an ionizing means(25) for ionization of CO2 gas; a gas discharge hole(26); a drift area(27) for analyzing ion formed in a reaction area; a shutter grid(28); a deterring electrode plate(29); a Faraday cup(30) for collecting an ion; and a high voltage connector(32).

Description

동위원소 13C 표지화합물의 호기검사방법 및 장치{Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused}Method for Detection of 13C-Indicated Compound Using Urea Breath Test and The Device thereused}

본 발명은 호흡기에서 샘플을 포집하여 측정할 수 있는 각종질환의 효과적인 검사방법 및 검사장치에 관한 기술로서 동위원소인13C를 표지한 화합물 즉, 진단시약을 섭취한 후 반응을 알기 위해 특별히 고안된 호기유입구를 입에 물고 호기배출 가스를 검출기 내부로 직접 유입시켜 이상 유무를 분석하는 것이다.The present invention relates to an effective test method and test device for various diseases that can collect and measure samples in the respiratory system, and is specifically designed to know the reaction after ingesting a compound labeled with an isotope, 13 C, that is, a diagnostic reagent. The inlet is put in the mouth and the aeration gas is flowed directly into the detector to analyze the abnormality.

본 발명을 통해 위장관 질환 등에 영향을 끼치는 헬리코박터 파이로리(Helicobacter pylori, 이하 H. pylori라 함)의 검사를 비롯한 호기분석을 통해 신체대사활동의 이상유무 및 세균 감염여부 등을 간단하게 판단할 수 있을 것으로 보인다. 특히 H. pylori는 나선형 몸통과 4~8개의 편모를 가지고 있는 그람음성세균으로서 위장에 감염되어 위염, 위궤양, 위암 등의 질환과 십이지장, 췌장에도 영향을 끼치는 원인균으로 전세계 50% 이상이 보균자로서 검사기술의 개발 가치가 크다고 본다.Through the present invention, it is possible to easily determine the abnormality of the body metabolism activity and bacterial infection through aerobic analysis, including a test of Helicobacter pylori (H. pylori) affecting gastrointestinal diseases, etc. see. In particular, H. pylori is a Gram-negative bacterium with a spiral torso and 4 to 8 flagella, which causes gastroenteritis, gastric ulcer and gastric cancer, and affects the duodenum and pancreas. I think the development value of technology is great.

H. pylori 진단은 여러 가지 방법이 있지만 그 중 피검자에게 불쾌감을 유발하지 않으면서 민감도와 특이도가 우수하며, 제균 후 치료의 판정등에 가장 뛰어난 신뢰성이 있는점 등으로 최근 사용자가 급증하고 있는 요소호기검사(Urea Breath Test, 이하 UBT라 함)가 보편화 되고 있으며, 본 발명 또한 이 방법에 해당된다.H. pylori can be diagnosed in many ways, but among these factors, urea exhalation has been increasing rapidly by users due to its excellent sensitivity and specificity without causing discomfort to the subjects, and the most reliable reliability of treatment after disinfection. The test (Urea Breath Test, hereinafter UBT) is becoming common, and the present invention also corresponds to this method.

UBT법은 요소표지 동위원소의 종류에 따라13C UBT와14C UBT로 나누어지며사용비율은 6:4 정도로13C UBT가 우세를 보이고 있으며 그 이유는14C UBT의 경우 저렴한 검사장비에도 불구하고 표지 동위원소인14C가 방사성동위원소로 방사선안전관리 측면에서 법적규제를 받고 있기 때문이다. 그러나13C UBT는 검사장비가 고가이므로 선진국을 제외하고는 보편화되지 못하고 있다. 따라서 상기 문제점들에 대한 개선방법으로13C UBT에 대해 중저가의 검사장비를 개발하려는 연구가 활발히 진행되고 있다.UBT law elements labeled isotope 13 C UBT, depending on the type of element and 14 is divided into C UBT use ratio is 6: shows a 4, so 13 C UBT is dominant, and that's why, despite the case of 14 C UBT affordable testing equipment This is because the label isotope, 14 C, is a radioisotope and is legally regulated in terms of radiation safety management. However, 13 C UBT is not common except in developed countries because of the high cost of inspection equipment. Therefore, researches to develop a low-cost inspection equipment for 13 C UBT as a way to improve the above problems are actively underway.

또한 상기 UBT 방법을 응용한 것으로13C를 표지한 요소 대신에 각종검사 즉, 유당분해효소의 결핍검사, 췌장의 소화효소 분비능력검사, 간세포의 대사기능검사, 쓸개즙의 장관순환검사, 이자효소의 지방분해능 및 흡수장애 검사, 음식물의 위내 운동성 측정 등 여러 분야의 검사에 필요한 반응물질에13C를 표지하여 호기 분석하는 방법이 최근 연구되고 있으므로 이와 관련된 효과적이며 안전한 호기검사장치의 개발 필요성이 대두되고 있다.In addition, the UBT method was applied, and instead of the 13 C-labeled elements, various tests such as lactose deficiency test, pancreatic digestive secretion test, hepatocyte metabolic function test, bile duct intestinal circulation test, and enzyme Recently, there have been researches on exhalation analysis by labeling 13C to reactants required for various fields such as lipolysis and malabsorption test and measuring the gastric motility of foods. have.

13C UBT 방법의 종래기술은 가스크로마토그래프/매스스펙트로미터를 이용한 검사기술로서 주요 구성은 호기로 배출한 CO2를 포집하는 튜브와 시료처리장치 그리고 측정장치 본체로서, 측정장치는 시료를 성분별로 분리하는 가스크로마토그래프와 측정대상물을 이온화하는 이온화장치(Ion Source), 이온의 질량에 따라 분리시키는 분석장치(Mass Analyzer), 그리고 분리된 이온을 검출하는검출장치(Detector)로 구성되어 있다.The conventional technology of 13 C UBT method is the inspection technology using gas chromatograph / mass spectrometer. The main composition is a tube, a sample processing device, and a measuring device body which collects CO 2 discharged by exhalation, and the measuring device is a It consists of a gas chromatograph to be separated, an ionizer to ionize a measurement object (Ion Source), a mass analyzer to separate according to the mass of ions, and a detector to detect the separated ions.

사용방법은 날숨을 통해13C-Urea 복용 전후의 CO2가스를 각각의 포집튜브에 채취하고, 시료처리장치로 포집튜브 내의 시료를 가스크로마토그래프에 주입하여 CO2를 분리한다. 가스크로마토그래프를 거쳐 분리된 CO2는 이온화장치 내에서 전자 충격에 의해 전자를 잃고 양이온이 되며, 이 양이온에 수 kV 정도의 강한 전기장을 걸게 되면 이온은 전기장 속에서 가속되어 일정한 속도를 갖게 되고, 마그네틱 섹터 내에서 자기장에 의해 분리된다. 따라서 각 분리된 이온의 도착지점에 검출기를 설치하여 이온의 흐름으로부터 발생하는 전류를 동시에 측정하여 비교하면 CO2의 동위원소 비를 얻을 수 있어13CO212CO2의 비율로 H.pylori 존재여부를 분석하는 것으로서, 정량분석에 가장 접합한 방법이지만 측정장치가 너무 고가이므로 현재 보편화되지 못하고 있다.The method of use is to collect CO 2 gas before and after taking 13 C-Urea through each exhalation tube to each collection tube, and inject the sample in the collection tube into the gas chromatograph with a sample processing device to separate CO 2 . The CO 2 separated through the gas chromatograph loses electrons and becomes positive ions by the impact of electrons in the ionizer. When a strong electric field of several kV is applied to these cations, ions are accelerated in the electric field and have a constant velocity. It is separated by a magnetic field within the magnetic sector. Therefore, when each of the installed detector on the end points of the separated ion comparing current generated from the flow of ions at the same time to measure the presence of H.pylori in the ratio CO 2 can be obtained, the ratio of isotope 13 CO 2 and 12 CO 2 As to analyzing whether or not, the method most bonded to quantitative analysis, but because the measuring device is too expensive, it is not popularized at present.

또한 상기 종래 기술 외에 시료에 적외선을 비추어서 쌍극자 모멘트가 변화하는 분자골격의 진동과 회전에 대응하는 에너지의 흡수를 측정하는 분석법인 적외선흡수분광법(Infrared Spectroscopy)이 최근 새로이 개발되고 있다. 하지만 이 방법은 장치가격을 기존 가스크로마토그래프/매스스펙트로미터 보다 1/3 수준으로 낮출 수 있지만 적외선 스펙트럼의 복잡성, 흡수 띠들의 좁은 폭, 약한 광원세기, 검출기의 낮은 감지능 등으로 정확한 정량이 불가능하여 정량분석에는 문제점이 있다.In addition, the Infrared Spectroscopy (Infrared Spectroscopy), which is an analysis method for measuring the absorption of energy corresponding to vibration and rotation of a molecular skeleton in which a dipole moment is changed by illuminating infrared rays on a sample, has recently been newly developed. This method, however, can reduce the cost of the device by one-third of that of conventional gas chromatographs / mass spectrometers, but cannot be accurately quantified due to the complexity of the infrared spectrum, the narrow width of the absorption bands, the weak light intensity and the low sensitivity of the detector. There is a problem in quantitative analysis.

본 발명은13C UBT법의 가장 큰 문제점인 고가의 측정장치로 인해 종합병원을 제외하고는 보편화되지 못하는 문제를 해소하기 위한 것으로, 측정장치의 가격을 중,소형의 의원급 병원에서도 부담없이 취급할 수 있는 저가의 측정장치를 개발하는 것이며, 아울러 검출 정확도 면에서도 종래 기술의 측정장치 보다 뒤떨어지지 않는 효과적인13C 호기검사 측정장치를 개발함을 목적으로 한다.The present invention is to solve the problem that can not be universalized except the general hospital due to the expensive measuring device which is the biggest problem of the 13 C UBT method, the price of the measuring device can be handled casually in small and medium-sized clinics. The present invention aims to develop an inexpensive measuring device capable of low cost, and to develop an effective 13 C breath test measuring device that does not lag behind conventional measuring devices in terms of detection accuracy.

본 발명의 검사절차는 우선12C를13C 동위원소로 치환한 표지화합물을 경구 투여한 후 호기 배출까지의 과정은 기존의13C UBT법과 동일하다. 즉, H. pylori 검사의 예를 보면13C가 표지된 요소(Urea)를 경구 투여하면 위 내의 H. pylori가 분비하는 우레아제와 가수분해하여13CO2가 발생되어 호기를 통해 배출하며, 반면에 H. pylori 비 보균자의 경우는 우레아제가 분비되지 않으므로 경구 투여된 요소는 거의 대부분 소화기로 흡수된 후 배설되어 호기에13CO2가 발생되지 않는다.In the test procedure of the present invention, the procedure until oral administration of the labeling compound substituted with 12 C to 13 C isotopes is the same as that of the existing 13 C UBT method. In other words, in the example of H. pylori test, oral administration of 13 C-labeled urea (Urea) hydrolyzes with the urease secreted by H. pylori in the stomach, and 13 CO 2 is generated and released through exhalation. In non-H. Pylori carriers, urease is not secreted, so most of the orally administered urea is absorbed by the digestive organs and excreted so that 13 CO 2 is not generated during expiration.

따라서 H.pylori 보균자는 정상인보다 많은 양의13CO2가 배출되고, 이를12CO2와의 비율을 측정하여 H. pylori 보균 여부를 판단하는 것으로 호기 배출 이후절차 및 측정방법이 종래방법과 유사하지만 약간의 차이를 보인다.Therefore, H. pylori carriers emit 13 CO 2 more than normal people and measure the ratio of 12 CO 2 to H. pylori carriers. Seems the difference.

본 발명의 호기 배출과정 이후의 절차는 특별히 고안된 호기유입구를 입에 물고 일정량의 CO2가스를 불어주어 이온이동도감지기용 센서장치 내부로 주입되며, CO2가스는 장치 내부에서 이온화 되어 이동관을 통과할 때13C와12C의 동위원소 질량 차에 따른 운동속도가 달라지고, 이에 따른 각각의 이온 도달시간 차이에 대한 신호를 분석함으로써 H.pylori균 등의 보균 여부를 판단하는 것이다.The procedure after the exhalation process of the present invention is injected into the sensor device for ion mobility detector by blowing a predetermined amount of the inlet inlet to the mouth and blowing a certain amount of CO 2 gas, CO 2 gas is ionized inside the device and passes through the moving tube When the movement speed is changed according to the isotopic mass difference of 13 C and 12 C, and the signal for each difference in the time of ion arrival is analyzed to determine the carriers such as H. pylori bacteria.

종래 방법은 포집기구로 시료를 먼저 포집한 후 주입장치 등을 사용하여 측정장치에 주입하는 간접측정 방식이지만, 본 발명은 측정장치인 이온이동도감지기 내부에 호기를 바로 불어 넣는 직접 측정방식이므로 검사절차의 간소화로 별도의 숙련된 분석요원이 필요 없으며 검사시간을 단축할 수 있는 장점이 있으며, 무엇보다 중요한 것은 측정장치의 가격이 종래 기술의 장치인 가스크로마토그래프/매스스펙트로미터와 비교하여 1/10 정도로 대폭 낮출 수 있어 기술적, 경제적 가치가 크다고 볼 수 있다.The conventional method is an indirect measuring method in which a sample is first collected by a collecting device and then injected into a measuring device using an injection device, but the present invention is a direct measuring method of directly injecting exhalation into an ion mobility detector, which is a measuring device. Simplified, no need for an experienced analytical staff and shorten the inspection time. Most importantly, the cost of the measuring device is 1/10 of that of the gas chromatograph / mass spectrometer. It can be considerably lowered, which means that the technical and economic value is great.

도 1은 종래 전형적인 이온이동도감지기용 센서장치를 나타내는 사시도.1 is a perspective view showing a conventional typical ion mobility sensor device for sensors.

도 2는 도 1의 종단면도.2 is a longitudinal cross-sectional view of FIG.

도 3은 본 발명 검출장치의 바람직한 일실시예의 단면도.3 is a cross-sectional view of a preferred embodiment of the detection device of the present invention.

도 4는 도 3의 사시도이다.4 is a perspective view of FIG. 3.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

21: 외부보호 케이스 22: 호기유입구21: outer protective case 22: air inlet

23: 호기유입구 보호덮개 24: 이온하우징23: inlet cover 24: ion housing

25: 이온화수단(방전전극) 26: 배출구25 ionization means (discharge electrode) 26 outlet

27: 드리프트영역 28: 셔터그리드27: drift area 28: shutter grid

29: 지연전극판 30: 파라데이컵29: delayed electrode plate 30: Faraday Cup

31: 연결 와이어 32: 고전압 커넥터31: connection wire 32: high voltage connector

33: 외부호스 34: 환기구멍33: outer hose 34: ventilation hole

본 발명은 (a) 피검자에게 동위원소인13C가 표지된 화합물을 경구 투여하는 단계; (b) 피검자가 배출하는 CO2가 직접 이온이동도감지기 내부에 주입되어 이온화하여 파라데이컵에 이온전류로 수집되는 단계; 및 (c) 단계 b의 결과로부터 얻어지는 전류의 신호를 분석하는 단계를 포함하여13C 동위원소 표지화합물의 호기검사 방법을 포함한다.The present invention provides a method for treating a subject, comprising the steps of (a) orally administering an isotope 13 C labeled compound to a subject; (b) CO 2 discharged by the subject is directly injected into the ion mobility detector, ionized, and collected as ion current in a Faraday cup; And (c) including the step of analyzing the signal of the current obtained from the result of step b 13 C isotope and the element comprises a breath test method of the labeled compound.

이하 본 발명의 내용을 보다 상세히 설명하기로 한다.Hereinafter, the content of the present invention will be described in more detail.

동위원소인13C로 표지된 화합물을 피검자에게 경구 투여한 후 호기 배출시키는 과정은 기존의13C UBT법과 동일하다. 즉 UBT 검사의 경우13C로 표지된 요소(Urea)를 경구 투여하면 위내에 H.pylori가 분비하는 우레아제에 의해 이를 가수분해하여13CO2가 발생되며, 반면 비보균자인 경우에는 우레아제가 분비되지 않아 경구 투여된 요소는 거의 대부분 소화기로 흡수된 후 배설되어 호기에13CO2를 발생시키지 않는 원리가 이용된다.The oral administration of the isotope 13 C-labeled compound to the subject is followed by aerobic excretion as in the conventional 13 C UBT method. In the case of UBT test, oral administration of 13 C-labeled urea (Urea) hydrolyzes it by the urease secreted by H. pylori in the stomach, and 13 CO 2 is generated, whereas non-carriers do not secrete urease. Therefore, the principle that orally administered urea is mostly absorbed by the digestive organs and then excreted to produce 13 CO 2 in expiration.

단계 b는 기존 기술과 대비되는 본 발명의 특징적 부분을 구성하며, 이의 구현을 위해서는 기존에 유기물질이나 공기중 오염물질을 탐지 및 분석하기 위해 사용하던 통상적인 이온이동도감지기가 응용될 수 있다.Step b constitutes a characteristic part of the present invention as compared to the existing technology, and the conventional ion mobility detector used for detecting and analyzing organic or air pollutants may be applied to the implementation thereof.

전형적인 이온이동도감지기는 도 1과 도 2에서 볼 수 있는 바와 같이 실린더 형태로 된 센서장치(10)로서, 펌프(11)로부터 공기와 시료가스가 유입되어 시료가스를 이온화하고 배출구(12a)로 배출되도록 형성된 반응영역(12)과, 이 반응영역(12)으로 유입된 공기를 안내하는 드리프트영역(13)과, 상기 반응영역(12)내에 설치된 방전전극(14)과, 이 방전전극(14)에 의해 생성된 이온을 앞쪽으로 추출하도록 드리프트영역(13)의 소정위치에 설치된 셔터그리드(15)와, 이 셔터그리드(15)의 앞쪽으로 설치됨과 더불어 단자(16a)가 상부로 돌출된 다수개의 지연전극판(16)으로 이루어져 도시되지 않은 이온분석기에 내장되어 있다.A typical ion mobility detector is a sensor device 10 in the form of a cylinder, as shown in FIGS. 1 and 2, in which air and sample gas are introduced from a pump 11 to ionize the sample gas and to the outlet 12a. A reaction zone 12 formed to be discharged, a drift zone 13 for guiding air introduced into the reaction zone 12, a discharge electrode 14 provided in the reaction zone 12, and the discharge electrode 14 Shutter grid 15 provided at a predetermined position of the drift region 13 so as to extract ions generated by the &lt; RTI ID = 0.0 &gt; forward &lt; / RTI &gt; and the front side of the shutter grid 15, and a plurality of terminals 16a protruding upwards. It consists of two delayed electrode plate 16 is built in the ion analyzer not shown.

따라서 상기 펌프(11)의 작동에 의해 유입된 공기와 시료가스는 반응영역(12) 내의 방전전극(14)에서 이온이 생성됨과 더불어 일부는 배출구(12a)로 배출된다. 또 상기 방전전극(14)에서 생성된 이온은 드리프트영역(13)을 통해 셔터그리드(15)에서 추출되고, 상기 지연전극판(16)을 통하여 파라데이컵(17)으로 이온전류를 수집하고 이 전류를 분석하는 것으로 되어 있다.Accordingly, the air and the sample gas introduced by the operation of the pump 11 generate ions at the discharge electrode 14 in the reaction region 12, and some of them are discharged to the outlet 12a. In addition, ions generated in the discharge electrode 14 are extracted from the shutter grid 15 through the drift region 13, and ion currents are collected into the Faraday cup 17 through the delay electrode plate 16. It is supposed to analyze the current.

즉, 상기 방전전극(14)에서 생성된 화합물질의 이온이 셔터그리드(15)의 전기장에 의해 가속되어 드리프트영역(13) 내에서 이동하게 되고, 이때 이온의 질량차이에 따라 드리프트영역(13) 내에서의 운동속도는 달라지게 되므로 이에 따른 각각의 이온은 파라데이컵(17)에 도달하는 시간이 달라지게 되고 이 차이에 대한 신호를 분석함으로써 화학물질의 성분을 분석할 수 있게 된다.That is, the compound ions generated in the discharge electrode 14 are accelerated by the electric field of the shutter grid 15 to move in the drift region 13, and at this time, in the drift region 13 according to the mass difference of the ions. Since the kinetic speed at is different, the time for each ion to reach the Faraday Cup 17 is different, and the component of the chemical can be analyzed by analyzing a signal for this difference.

도 3과 도 4는 상기 기존 이온이동도감지기를 응용한 본 발명 검출장치의 바람직한 일실시예로서 직접식 호기검사장치가 도시되어 있다.3 and 4 illustrate a direct breath test apparatus as a preferred embodiment of the detection apparatus of the present invention applying the conventional ion mobility sensor.

검출장치는 고전압 와이어와 이온이동도감지기용 센서장치를 보호하기 위한 외부보호 케이스(21); 호기로 배출되는 CO2가스를 직접 입에 물고 주입시키는 호기유입구(22); 호기유입구(22)를 통해 유입된 CO2가스를 이온화시키는 반응영역인 이온화하우징(24); 상기 이온화하우징에 유입된 CO2가스를 이온화하는 이온화 수단(25); 가스 배출구(26); 상기 반응영역에서 생성된 이온을 분석하는 드리프트영역; 이온화 수단(25)에 의해 생성된 이온을 전방으로 추출하도록 드리프트영역(27)의 소정위치에 설치된 셔터그리드(28); 드리프트 영역내의 셔터그리드 후방에 위치하는 다수개의 지연전극판(29); 지연전극판을 거쳐 도달한 이온을 수집하는 파라데이컵(30); 방전전극(25)에 고전압을 공급하는 연결 와이어(31); 및 고전압 커넥터(32)를 포함한다.The detection device includes: an outer protective case 21 for protecting the high voltage wire and the ion mobility sensor device; An exhalation inlet 22 for directly injecting CO 2 gas discharged into the exhalation into the mouth; An ionization housing 24 which is a reaction zone for ionizing the CO 2 gas introduced through the inhalation inlet 22; Ionization means (25) for ionizing the CO 2 gas introduced into the ionization housing; Gas outlet 26; A drift region for analyzing ions generated in the reaction region; A shutter grid 28 provided at a predetermined position of the drift region 27 to extract ions generated by the ionization means 25 to the front; A plurality of delay electrode plates 29 positioned behind the shutter grid in the drift region; Faraday cup 30 for collecting the ions reached through the delay electrode plate; A connection wire 31 for supplying a high voltage to the discharge electrode 25; And a high voltage connector 32.

상기에서 이온화 수단은 방전 전극, 또는 이온화원으로 방사성물질인63Ni,241Am 등을 포함한다.In the above, the ionization means includes a discharge electrode or 63 Ni, 241 Am, or the like, which is a radioactive material as an ionization source.

상기 장치구성 중 바람직하게는 호기유입구(22)의 오염을 방지하기 위한 보호덮게(23)가 추가로 구비되는 것이 좋다. 상기 보호덮게는 바람직하게는 1회용인 것으로 한다.Preferably, a protective cover 23 is further provided to prevent contamination of the air inlet 22 of the device configuration. The protective covering is preferably one-time use.

또한 상기 장치구성 중 파라데이컵(30)과 고전압 커넥터(32)를 보호하기 위한 외부호스(33)가 더 구비되는 것이 좋다.In addition, the external hose 33 for protecting the Faraday cup 30 and the high-voltage connector 32 of the device configuration may be further provided.

또한 바람직하게는 배출구(26)에서 배출되는 가스를 외부로 수월하게 방출되도록 하기위해 외부보호 케이스(21)에 환기구멍(34)을 뚫어주는 것이 좋다.In addition, it is preferable to drill the ventilation holes 34 in the outer protective case 21 so that the gas discharged from the outlet 26 is easily discharged to the outside.

상기 구성의 본 발명 장치에 의한 검출과정을 설명하면 다음과 같다. 본 발명에서는 기존13C UBT법에서 채택하고 있는 포집기구를 이용한 CO2가스의 포집 및 시료주입 등의 전처리 과정이 생략되고, 곧바로 호기유입구(22)를 입에 물고 호기 배출 CO2가스를 이온이동도감지기용 센서장치 내부로 유입시킨다.The detection process by the apparatus of the present invention having the above configuration will be described below. In the present invention, the pretreatment process such as capturing and injecting CO 2 gas using a collecting mechanism adopted by the existing 13 C UBT method is omitted, and the exhalation exhaust CO 2 gas is ionized immediately by holding the exhalation inlet 22 in the mouth. It flows into the sensor device for the detector.

CO2가스가 이온이동도감지기용 센서장치의 이온화하우징(24)에 유입되면 이온화 수단으로 예를 들어 방전전극(25)의 전자 충격에 의한 전자를 잃고 양이온이 되며, 그 외 가스는 배출구(26)로 배출된다. 이때 이온을 생성하는 이온화 수단은 방전 전극 대신에 이온화원으로 방사성물질인63Ni,241Am 등을 사용할 수도 있다.When the CO 2 gas enters the ionization housing 24 of the sensor device for ion mobility sensor, the ionization means loses electrons due to the electron impact of the discharge electrode 25, for example, and becomes a cation, and the other gas is discharged. To be discharged. In this case, the ionization means for generating ions may use 63 Ni, 241 Am, or the like, as the ionization source, instead of the discharge electrode.

생성된 양이온은 드리프트영역(27)으로 이동하게 되며, 즉 각 이온은 셔터그리드(28)의 전기장에 의해 가속되어 이동하게 되고 다수의 지연전극판(29)을 통과하면서 이에 따른 각각의 이온은 파라데이컵(30)에 도달하는 시간이 달라지게 되고 이 차이에 대한 신호를 외부에 연결된 분석장치로 분석함으로서 성분을 알 수 있게 된다. 즉 CO2의 동위원소 비를 알 수 있으므로 호기로 유입된13CO212CO2의 비율로 H.pylori 존재여부를 분석하는 것이다.The generated cations move to the drift region 27, that is, each ion is accelerated and moved by the electric field of the shutter grid 28 and passes through the plurality of retardation electrode plates 29. The time to reach the day cup 30 will be different and the components can be known by analyzing the signal for this difference with an externally connected analyzer. In other words, the isotope ratio of CO 2 can be known, and the presence of H. pylori is analyzed by the ratio of 13 CO 2 and 12 CO 2 introduced into the expiratory air.

본 발명에 의하면 H.pylori균에 대한 감염여부를 비롯한 호기분석을 통한 각종검사를 직접방식에 의해 손쉽게 진단할 수 있으며, 검사장비의 가격은 같은 방식의 종래기술의 장비와 비교하여 제작단가가 아주 저렴하여 소규모 병원에서도 경제적 부담 없이 구입 가능하고, 진단시약으로 비교적 안정동위원소인13C를 표지한 화합물을 사용하므로 별도의 방사선 등 안전관리 문제가 필요없는 장점이 있다.According to the present invention, it is easy to diagnose various tests through aerobic analysis, including whether or not to infect the H. pylori bacteria by a direct method, and the price of the test equipment is very high compared to the conventional equipment of the same method. It is inexpensive and can be purchased at a small hospital without any economic burden, and since it uses a compound labeled 13 C, which is a relatively stable isotope, as a diagnostic reagent, there is no need for safety management such as separate radiation.

Claims (7)

(a) 피검자에게 동위원소인13C가 표지된 화합물을 경구 투여하는 단계; (b) 피검자가 배출하는 CO2가 직접 이온이동도감지기 내부에 주입되어 이온화하여 파라데이컵에 이온전류로 수집되는 단계; 및 (c) 단계 b의 결과로부터 얻어지는 전류의 신호를 분석하는 단계를 포함하는13C 동위원소 표지화합물의 호기검사 방법(a) orally administering to the subject an isotope 13 C labeled compound; (b) CO 2 discharged by the subject is directly injected into the ion mobility detector, ionized, and collected as ion current in a Faraday cup; And (c) a breath test method of the 13 C labeled compound of step b comprises a step of analyzing the signal obtained from the result of the current 고전압 와이어와 이온이동도감지기용 센서장치를 보호하기 위한 외부보호 케이스(21); 호기로 배출되는 CO2가스를 직접 입에 물고 주입시키는 호기유입구(22); 호기유입구(22)를 통해 유입된 CO2가스를 이온화시키는 반응영역인 이온화하우징(24); 상기 이온화하우징에 유입된 CO2가스를 이온화하는 이온화 수단(25); 가스 배출구(26); 상기 반응영역에서 생성된 이온을 분석하는 드리프트영역; 이온화 수단(25)에 의해 생성된 이온을 전방으로 추출하도록 드리프트영역(27)의 소정위치에 설치된 셔터그리드(28); 드리프트 영역내의 셔터그리드 후방에 위치하는 다수개의 지연전극판(29); 지연전극판을 거쳐 도달한 이온을 수집하는 파라데이컵(30); 방전전극(25)에 고전압을 공급하는 연결 와이어(31); 및 고전압 커넥터(32)를 포함하는13C 동위원소 표지화합물의 호기검사장치An outer protective case 21 for protecting the high voltage wire and the ion mobility sensor device; An exhalation inlet 22 for directly injecting CO 2 gas discharged into the exhalation into the mouth; An ionization housing 24 which is a reaction zone for ionizing the CO 2 gas introduced through the inhalation inlet 22; Ionization means (25) for ionizing the CO 2 gas introduced into the ionization housing; Gas outlet 26; A drift region for analyzing ions generated in the reaction region; A shutter grid 28 provided at a predetermined position of the drift region 27 to extract ions generated by the ionization means 25 to the front; A plurality of delay electrode plates 29 positioned behind the shutter grid in the drift region; Faraday cup 30 for collecting the ions reached through the delay electrode plate; A connection wire 31 for supplying a high voltage to the discharge electrode 25; And 13 C isotopic labeling apparatus for high-strength labeled compound comprising a high voltage connector (32) 제 2항에 있어서,The method of claim 2, 이온화 수단은 방전 전극인 장치Device in which the ionization means is a discharge electrode 제 2항에 있어서,The method of claim 2, 이온화 수단은 이온화원으로 방사성물질인63Ni,241Am 인 장치Ionization means is an ionization device that is a radioactive material of 63 Ni, 241 Am 제 2항에 있어서,The method of claim 2, 호기유입구(22)의 오염을 방지하기 위한 보호덮게(23)이 추가로 구비된 장치Apparatus further provided with a protective cover (23) to prevent contamination of the air inlet (22) 제 2항에 있어서,The method of claim 2, 파라데이컵(30)과 고전압 커넥터(32)를 보호하는 외부호스(33)가 더 구비된 장치The apparatus is further provided with an external hose 33 for protecting the Faraday cup 30 and the high voltage connector 32. 제 2항에 있어서,The method of claim 2, 배출구(26)에서 배출되는 가스를 외부로 수월하게 방출되도록 하기 위해 외부보호 케이스(21)에 환기구멍(34)이 천공되어진 장치A device in which the ventilation hole 34 is drilled in the outer protective case 21 so that the gas discharged from the outlet 26 can be easily discharged to the outside.
KR1020030011496A 2003-02-24 2003-02-24 Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused KR20040076147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030011496A KR20040076147A (en) 2003-02-24 2003-02-24 Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030011496A KR20040076147A (en) 2003-02-24 2003-02-24 Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused

Publications (1)

Publication Number Publication Date
KR20040076147A true KR20040076147A (en) 2004-08-31

Family

ID=37362136

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030011496A KR20040076147A (en) 2003-02-24 2003-02-24 Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused

Country Status (1)

Country Link
KR (1) KR20040076147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692959B1 (en) * 2005-02-28 2007-03-14 주식회사 엔바이로코리아 Method for Urea Breath Test Using Liquid Scintillation Counter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378499A (en) * 1981-03-31 1983-03-29 The Bendix Corporation Chemical conversion for ion mobility detectors using surface interactions
US4839143A (en) * 1985-02-15 1989-06-13 Allied-Signal Inc. Selective ionization of gas constituents using electrolytic reactions
WO1994028941A1 (en) * 1993-06-11 1994-12-22 Metabolic Solutions, Inc. Liver function breath test using aromatic amino acids
JPH10101583A (en) * 1996-09-25 1998-04-21 Tokyo Gas Co Ltd Diabetes diagnostic agent
US6067989A (en) * 1997-02-26 2000-05-30 Oridion Medical, Ltd. Breath test for the diagnosis of Helicobacter pylori infection in the gastrointestinal tract
EP1178307A1 (en) * 2000-08-02 2002-02-06 Ion Track Instruments, Inc. Ion mobility spectrometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378499A (en) * 1981-03-31 1983-03-29 The Bendix Corporation Chemical conversion for ion mobility detectors using surface interactions
US4839143A (en) * 1985-02-15 1989-06-13 Allied-Signal Inc. Selective ionization of gas constituents using electrolytic reactions
WO1994028941A1 (en) * 1993-06-11 1994-12-22 Metabolic Solutions, Inc. Liver function breath test using aromatic amino acids
JPH10101583A (en) * 1996-09-25 1998-04-21 Tokyo Gas Co Ltd Diabetes diagnostic agent
US6067989A (en) * 1997-02-26 2000-05-30 Oridion Medical, Ltd. Breath test for the diagnosis of Helicobacter pylori infection in the gastrointestinal tract
EP1178307A1 (en) * 2000-08-02 2002-02-06 Ion Track Instruments, Inc. Ion mobility spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692959B1 (en) * 2005-02-28 2007-03-14 주식회사 엔바이로코리아 Method for Urea Breath Test Using Liquid Scintillation Counter

Similar Documents

Publication Publication Date Title
US6794645B2 (en) Proton-transfer-reaction/ion-mobility-spectrometer and method of using the same
Španěl et al. Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath
US6067989A (en) Breath test for the diagnosis of Helicobacter pylori infection in the gastrointestinal tract
Patterson et al. Measurement of very low stable isotope enrichments by gas chromatography/mass spectrometry: application to measurement of muscle protein synthesis
US7897400B2 (en) Non-invasive rapid diagnostic test for M. tuberculosis infection
CN104198718B (en) Hepatopathy label, its assay method, the method for inspection of device and pharmaceuticals
Zhan et al. Recent developments of proton‐transfer reaction mass spectrometry (PTR‐MS) and its applications in medical research
CN106198702B (en) A kind of method of drugs in quick detection saliva
Skarping et al. Biological monitoring of isocyanates and related amines: III. Test chamber exposure of humans to toluene diisocyanate
CN106841367A (en) A kind of Ion transfer spectrum detection method of time resolution Dynamic Thermal parsing
CN104111284A (en) Method for rapidly sensitively detecting sodium valproate in blood
Oertel et al. Continuous real-time breath analysis in ruminants: effect of eructation on exhaled VOC profiles
DE69838812D1 (en) BEST TEST ANALYSIS DEVICE
CN106137204A (en) Utilize the method that vacuum ultraviolet ionized mass spectrograph carries out lung cancer early screening
CN111638282A (en) Portable detection equipment and detection method for rapid screening of liver diseases
US7750291B2 (en) Mass spectrometric method and mass spectrometer for analyzing a vaporized sample
KR20040076147A (en) Method for Detection of 13C- Indicated Compound Using Urea Breath Test and The Device thereused
CN106501048A (en) A kind of preparation facilitiess of Diagnosis of Helicobacter pylori Infection detection sample and the preparation method of detection sample
Boatto et al. Determination of phenol and o-cresol by GC/MS in a fatal poisoning case
Skarping et al. 4, 4′-methylenedianiline in hydrolysed serum and urine from a worker exposed to thermal degradation products of methylene diphenyl diisocyanate elastomers
Huang et al. Exhaled breath analysis of non-volatile drugs: towards clinical applications
US20080275355A1 (en) Method For Diagnosing An Infectioin Condition
Zhao et al. [Retracted] The Effect of Tedlar Bags on the Composition of Exhaled Human Breath Samples
Kasho et al. Feasibility of analysing [13C] urea breath tests for Helicobacter pylori by gas chromatography‐mass spectrometry in the selected ion monitoring mode
EP1420691A1 (en) Device at quantitative analysis of respiratory gases

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application