KR20040061696A - Method for controlling tip shape of GaN nanorods - Google Patents

Method for controlling tip shape of GaN nanorods Download PDF

Info

Publication number
KR20040061696A
KR20040061696A KR1020020087983A KR20020087983A KR20040061696A KR 20040061696 A KR20040061696 A KR 20040061696A KR 1020020087983 A KR1020020087983 A KR 1020020087983A KR 20020087983 A KR20020087983 A KR 20020087983A KR 20040061696 A KR20040061696 A KR 20040061696A
Authority
KR
South Korea
Prior art keywords
gan
tip
gas
tip shape
nano rod
Prior art date
Application number
KR1020020087983A
Other languages
Korean (ko)
Inventor
김화목
강태원
Original Assignee
김화목
강태원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김화목, 강태원 filed Critical 김화목
Priority to KR1020020087983A priority Critical patent/KR20040061696A/en
Publication of KR20040061696A publication Critical patent/KR20040061696A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer

Abstract

PURPOSE: A method of controlling the tip shape of a GaN nano rod in a hydride vapor phase epitaxial growth(HVPE) method is provided to obtain a desired tip shape of a nano rod. Various nano rods having various tip shapes can be advantageously used for different applications, for instance a nano rod with a sharp tip is suitably used for a field emission display(FED), and a nano rod with a blunt tip is suitably used in nano element fabrication. CONSTITUTION: The tip shape of the GaN nano rod(120), wherein the nano rod is formed on a substrate(10) by reacting GaClx gas and NH3 gas, is controlled by selecting a reaction temperature in the range of 400-600 deg.C depending on the desired shape of the tip. The reaction is conducted for 30 minutes to 10 hours, and the GaClx gas is prepared by reacting Ga metal and HCl gas at 600-900 deg.C.

Description

GaN 나노막대의 팁 형상 제어방법 {Method for controlling tip shape of GaN nanorods}Method for controlling tip shape of GaN nanorods

본 발명은 GaN 나노막대의 팁 형상 제어방법에 관한 것으로서, 특히 GaN 나노막대를 성장시키되 그 성장과정에서 저절로 팁이 소정의 형상을 갖도록 하는 GaN 나노막대의 팁 형상 제어방법에 관한 것이다.The present invention relates to a method of controlling the tip shape of a GaN nanorod, and more particularly, to a method of controlling the tip shape of a GaN nanorod to grow a GaN nanorod while allowing the tip to have a predetermined shape by itself.

GaN은 부르자이트(Wurzite) 구조를 가지는 질화물 반도체로서 상온에서 가시광선의 청색 파장대에 해당하는 3.4 eV의 직접천이형 밴드갭을 가질 뿐만 아니라 InN 및 AlN와 전율고용체를 이루어 금지대폭의 조정이 가능하며 전율고용체의 전 조성 범위 내에서 직접천이형 반도체의 특성을 나타내기 때문에 청색표시 및 발광소자재료로서 가장 각광 받고 있다. 또한, 에너지 밴드 갭이 크기 때문에 다른 반도체를 이용한 소자보다 고온에서 안정한 동작을 기대할 수 있어 FET 등 트랜지스터로의 응용도 활발히 되고 있다. 또 GaAs와 달리 비소(As)를 주성분으로 함유하지 않기 때문에 환경친화적이다.GaN is a nitride semiconductor with a Wurzite structure, and has a direct transition bandgap of 3.4 eV corresponding to the blue wavelength band of visible light at room temperature. It is most popular as a blue display and light emitting device material because it exhibits the characteristics of the direct transition type semiconductor within the entire composition range of the electroluminescent solid solution. In addition, since the energy band gap is large, stable operation at high temperature can be expected compared to devices using other semiconductors, and applications to transistors such as FETs have been actively promoted. Unlike GaAs, it is environmentally friendly because it does not contain arsenic (As) as its main component.

GaN을 박막(thin film)으로 성장시키는 방법에 대해서는 연구가 어느 정도 진행되고 있으나, 나노막대(nanorod) 형태로 성장시키는 방법에 대해서는 연구가 초기 단계이다. GaN 나노막대는 잠재적인 유용성 때문에 그 형성을 위해서 많은 노력이 이루어지고 있다.There is some research on how to grow GaN into a thin film, but research on the method of growing into a nanorod form is at an early stage. Because of its potential usefulness, much effort has been made to form GaN nanorods.

Ni, Co, Fe 같은 전이금속 나노입자(transition metal nanoparticles)를 촉매로 사용하거나 카본 나노튜브를 탬플릿(templet)으로 사용한 불규칙형 GaN 나노막대(irregular type GaN nanorod)의 형성은 보고된 바 있으나, 고밀도로 규칙적으로 배열되는 GaN 나노막대의 형성방법은 아직까지 보고된 바 없다. 그리고, 응용분야에 따라서는 GaN 나노막대의 팁 형상이 매우 중요한데, 원하는 팁 형상을 쉽게얻을 수 있는 방법에 대해서도 아직 보고된 바 없다.Formation of irregular type GaN nanorods using transition metal nanoparticles such as Ni, Co, Fe as catalysts or carbon nanotubes as a template has been reported, but high density The method of forming GaN nanorods regularly arranged with has not been reported. In addition, the tip shape of the GaN nanorod is very important depending on the application field, and there is no report on how to easily obtain a desired tip shape.

따라서, 본 발명이 이루고자 하는 기술적 과제는, HVPE법을 이용하여 고밀도로 규칙적으로 배열된 GaN 나노막대들을 얻되 GaN 나노막대의 팁을 원하는 형상으로 만들 수 있는 GaN 나노막대의 팁 형상 제어방법을 제공하는 데 있다.Accordingly, a technical object of the present invention is to provide a method of controlling tip shape of a GaN nanorod, which can obtain GaN nanorods regularly arranged at a high density using HVPE, but can make the tip of the GaN nanorod into a desired shape. There is.

도 1은 본 발명에 따른 GaN 나노막대의 형성방법을 설명하기 위한 단면도;1 is a cross-sectional view illustrating a method of forming a GaN nanorod according to the present invention;

도 2는 GaN 박막이 형성되는 과정을 설명하기 위한 단면도;2 is a cross-sectional view for explaining a process of forming a GaN thin film;

도 3은 GaN 나노막대의 성장메카니즘을 실제로 보여주는 SEM 사진;3 is a SEM photograph showing the growth mechanism of the GaN nanorods;

도 4는 도 3c에 대한 XRD 그래프;4 is an XRD graph for FIG. 3C;

도 5는 1 시간 동안 GaN 나노막대를 성장시킬 경우에 성장온도에 따른 GaN 나노막대의 성장결과를 보여주는 SEM 사진이다.5 is a SEM photograph showing the growth result of the GaN nanorods according to the growth temperature when the GaN nanorods are grown for 1 hour.

< 도면의 주요 부분에 대한 참조번호의 설명 ><Description of Reference Numbers for Main Parts of Drawings>

10: 기판 20: GaN 박막10: substrate 20: GaN thin film

120: GaN 나노막대 20a, 120a: GaN 씨앗층120: GaN nanorod 20a, 120a: GaN seed layer

상기 기술적 과제를 달성하기 위한 본 발명에 따른 GaN 나노막대의 팁 형상 제어방법은, GaClx기체와 NH3기체를 반응시켜 기판 상에 GaN 나노막대를 형성하되 상기 반응을 400 내지 600 ℃의 온도범위에서 소정의 온도를 택하여 진행시킴으로써 상기 반응온도의 제어를 통하여 상기 GaN 나노막대의 팁 형상을 제어하는 것을 특징으로 한다.In the tip shape control method of the GaN nanorod according to the present invention for achieving the above technical problem, while forming a GaN nanorod on the substrate by reacting the GaCl x gas and NH 3 gas, the reaction is performed in the temperature range of 400 to 600 ℃ By selecting a predetermined temperature in advance to control the tip shape of the GaN nanorods by controlling the reaction temperature.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

도 1은 본 발명에 따른 GaN 나노막대의 형성방법을 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a method of forming a GaN nanorod according to the present invention.

에피층(epilayer)을 성장시키는 방법으로는 크게 VPE (Vapor PhaseEpitaxial growth), LPE (Liquid Phase Epitaxial growth), 및 SPE (Solid Phase Epitaxial growth)를 들 수 있다. 여기서, VPE는 반응가스를 기판위로 흘리면서 열에 의한 분해와 반응을 통해 기판위에 결정을 성장시키는 것으로서 반응가스의 원료형태에 따라 수소화물 VPE (hydride VPE, HVPE), 할로겐화물 VPE (halide VPE), 유기금속 VPE (metal organic VPE, MOVPE) 등으로 분류할 수 있다. 본 발명은 이 중에서 HVPE (hydride VPE)방법을 사용한다.Methods of growing an epilayer include a large phase phase epitaxial growth (VPE), a liquid phase epitaxial growth (LPE), and a solid phase epitaxial growth (SPE). Here, VPE is the growth of crystals on the substrate through decomposition and reaction by heat while flowing the reaction gas on the substrate, depending on the raw material of the reaction gas, hydride VPE (hydride VPE, HVPE), halide VPE (halide VPE), organic Metal organic VPE (MOVPE). The present invention uses the HVPE (hydride VPE) method.

구체적으로, 기판(10)을 HVPE 반응기 안으로 장입시킨 후에 상기 반응기 안으로 GaClx기체와 NH3기체를 흘려보내고 기판(10)의 온도를 400 내지 600 ℃ 로 유지한다. 그러면, GaClx 기체와 NH3기체가 서로 반응하여 GaN 씨앗층(120a)이 형성된 다음에 참조번호 120b 및 120c의 형태를 거쳐 이들이 주로 위로 성장하여 GaN 나노막대(120)가 기판(10) 상에 저절로 형성된다Specifically, after the substrate 10 is charged into the HVPE reactor, GaCl x gas and NH 3 gas are flowed into the reactor and the temperature of the substrate 10 is maintained at 400 to 600 ° C. Then, the GaClx gas and the NH3 gas react with each other to form a GaN seed layer 120a, and then grow mainly through the shapes 120b and 120c, so that the GaN nanorod 120 is formed on the substrate 10 by itself. do

기판(10)으로는 사파이어(sapphire)나 실리콘 기판 등을 사용할 수 있으며 그 종류에 의해 GaN 나노막대(120)의 형성이 특별히 제약을 받는 것은 아니다. 그리고, 기판(10) 표면에 촉매(catalyst)나 템플릿(templet) 층의 존재여부에도 GaN 나노막대(120)의 형성에 상관없다.As the substrate 10, a sapphire, a silicon substrate, or the like may be used, and the formation of the GaN nanorod 120 is not particularly limited by the type thereof. The presence of a catalyst or template layer on the surface of the substrate 10 may be used regardless of the formation of the GaN nanorod 120.

GaN 나노막대(120)의 성장시간은 30분 내지 10 시간 정도가 좋다. 상기 GaClx 기체는 예컨대 Ga 금속과 HCl 기체를 600 내지 900 ℃의 온도범위에서 서로 반응시킴으로서 얻을 수 있다.The growth time of the GaN nanorods 120 may be about 30 minutes to about 10 hours. The GaClx gas may be obtained by, for example, reacting Ga metal and HCl gas with each other at a temperature in the range of 600 to 900 ° C.

만약, 약 1050 ℃ 정도의 고온에서 GaN을 성장시키면 도 2에 도시된 바와 같이 GaN 씨앗층(20a)이 형성된 다음에 이들이 어느 정도 위로 자라기 전에 참조번호 20b, 20c로 표시한 바와 같이 순식간에 옆으로도 성장하여 GaN박막(20)이 형성되어 버린다. 이러한 과정은 매우 순식간에 이루어지기 때문에 GaN이 나노막대 형태가 되도록 시간으로 제어하는 것은 사실상 불가능하다.If GaN is grown at a high temperature of about 1050 ° C., a GaN seed layer 20a is formed as shown in FIG. 2, and then immediately sideways as indicated by reference numerals 20b and 20c before they grow to some extent. As a result, the GaN thin film 20 is formed. This process is so instantaneous that it is virtually impossible to control GaN to nanorods in time.

도 3은 GaN 나노막대의 성장메카니즘을 실제로 보여주는 SEM 사진으로서, GaN 나노막대가 480 ℃에서 시간의 경과에 따라 사파이어 기판 상에 형성되는 과정을 보여준다. 도면에 있어서, 10분인 경우의 스케일 바(scale bar) 크기는 100 nm이고, 20분의 경우는 200 nm이며, 1시간의 경우는 500 nm이다. 1시간 성장 시켰을 때, 나노막대는 직경이 80~120 nm 정도되며 매우 균일하게 분포하고 있음을 알 수 있다.FIG. 3 is a SEM photograph showing the growth mechanism of the GaN nanorods, showing how the GaN nanorods are formed on the sapphire substrate over time at 480 ° C. In the figure, the scale bar size is 10 nm for 10 minutes, 200 nm for 20 minutes, and 500 nm for 1 hour. When grown for 1 hour, the nanorods are about 80-120 nm in diameter and are distributed very uniformly.

도 4는 도 3c에 대한 XRD 그래프이다. (0002) 및 (0004) 피크는 부르자이트(Wurzite) 구조의 GaN 피크이며, 이 피크로 인해 GaN 나노막대가 c-축방향으로 제대로 우선배향(preferentially oriented) 되었음을 알 수 있다.4 is an XRD graph for FIG. 3C. The (0002) and (0004) peaks are GaN peaks of the Wurzite structure, which shows that the GaN nanorods are properly preferentially oriented in the c-axis direction.

도 5는 1 시간 동안 GaN 나노막대를 성장시킬 경우에 성장온도에 따른 GaN 나노막대의 성장결과를 보여주는 SEM 사진이다. 도 5를 참조하면, 성장온도가 낮을수록 GaN 나노막대의 직경이 감소하고 밀도는 증가함을 볼 수 있다. 또한, 성장온도에 따라 팁의 형상이 달라짐을 볼 수 있는데 성장온도가 낮을수록 팁이 다소 뾰족한 형상을 하고 있음을 볼 수 있다.5 is a SEM photograph showing the growth result of the GaN nanorods according to the growth temperature when the GaN nanorods are grown for 1 hour. Referring to FIG. 5, as the growth temperature is lowered, the diameter of the GaN nanorods decreases and the density increases. In addition, it can be seen that the shape of the tip is changed depending on the growth temperature, the lower the growth temperature can be seen that the tip has a slightly pointed shape.

상술한 바와 같이 본 발명에 의하면, HVPE법을 이용하여 GaN을 400 내지 600 ℃의 저온에서 형성함으로써 GaN 나노막대를 형성시킬 수 있다. 이 때, GaN 나노막대의 팁 형상은 성장온도에 따라 변하기 때문에 400 내지 600 ℃의 온도범위에서 소정의 온도를 택하여 성장을 진행시키면 원하는 형상의 팁이 GaN 나노막대의 성장과정에서 저절로 얻어지게 된다.As described above, according to the present invention, GaN nanorods can be formed by forming GaN at a low temperature of 400 to 600 ° C using HVPE method. At this time, since the tip shape of the GaN nanorod changes according to the growth temperature, if the growth is performed by selecting a predetermined temperature in the temperature range of 400 to 600 ° C., the tip of the desired shape is obtained by itself during the growth of the GaN nanorod. .

팁 모양이 뽀쪽한 경우에는 전계 방출형 디스플레이용 등으로의 응용에 바람직하며, 팁 모양이 평평한 경우에는 나노 소자 제작에 응용이 가능하다.If the tip shape is thick, it is preferable for applications such as field emission displays, and if the tip shape is flat, it is possible to apply to nanodevice fabrication.

본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

Claims (3)

GaClx기체와 NH3기체를 반응시켜 기판 상에 GaN 나노막대를 형성하되 상기 반응을 400 내지 600 ℃의 온도범위에서 소정의 온도를 택하여 진행시킴으로써 상기 반응온도의 제어를 통하여 상기 GaN 나노막대의 팁 형상을 제어하는 것을 특징으로 하는 GaN 나노막대의 팁 형상 제어방법.A GaN nanorod is formed on a substrate by reacting GaCl x gas with NH 3 gas, but the reaction is performed by selecting a predetermined temperature in a temperature range of 400 to 600 ° C., thereby controlling the reaction temperature. Tip shape control method of the GaN nanorods, characterized in that for controlling the tip shape. 제1항에 있어서, 상기 반응은 30분 내지 10 시간 동안 이루어지는 것을 특징으로 하는 GaN 나노막대의 팁 형상 제어방법.The method of claim 1, wherein the reaction is performed for 30 minutes to 10 hours. 제1항에 있어서, 상기 GaClx기체는 Ga 금속과 HCl 기체가 600 내지 900 ℃에서 서로 반응하여 형성되는 것을 특징으로 하는 GaN 나노막대의 팁 형상 제어방법.The method of claim 1, wherein the GaCl x gas is formed by reacting Ga metal and HCl gas at 600 to 900 ° C. with each other.
KR1020020087983A 2002-12-31 2002-12-31 Method for controlling tip shape of GaN nanorods KR20040061696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020087983A KR20040061696A (en) 2002-12-31 2002-12-31 Method for controlling tip shape of GaN nanorods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020087983A KR20040061696A (en) 2002-12-31 2002-12-31 Method for controlling tip shape of GaN nanorods

Publications (1)

Publication Number Publication Date
KR20040061696A true KR20040061696A (en) 2004-07-07

Family

ID=37353205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020087983A KR20040061696A (en) 2002-12-31 2002-12-31 Method for controlling tip shape of GaN nanorods

Country Status (1)

Country Link
KR (1) KR20040061696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1896636A2 (en) * 2005-06-29 2008-03-12 University of Houston, Office of Technology Transfer Nanorod arrays formed by ion beam implantation
KR100844722B1 (en) * 2006-03-07 2008-07-07 엘지전자 주식회사 Growth method of nanocone and Fabricating method of light emitting diode using the same
CN103456602A (en) * 2013-03-18 2013-12-18 深圳信息职业技术学院 Method for preparing non-polar surface gallium nitride nanometer cone material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1896636A2 (en) * 2005-06-29 2008-03-12 University of Houston, Office of Technology Transfer Nanorod arrays formed by ion beam implantation
JP2009500275A (en) * 2005-06-29 2009-01-08 ユニバーシティ オブ ヒューストン Nanorod array fabricated by ion beam irradiation
EP1896636A4 (en) * 2005-06-29 2010-03-24 Univ Houston Office Of Technol Nanorod arrays formed by ion beam implantation
KR100844722B1 (en) * 2006-03-07 2008-07-07 엘지전자 주식회사 Growth method of nanocone and Fabricating method of light emitting diode using the same
US7714337B2 (en) 2006-03-07 2010-05-11 Lg Electronics Inc. Light emitting device and method of manufacturing the same
US8598607B2 (en) 2006-03-07 2013-12-03 Lg Electronics Inc. Light emitting device and method of manufacturing the same
US8643035B2 (en) 2006-03-07 2014-02-04 Lg Electronics Inc. Light emitting device and method of manufacturing the same
US8912556B2 (en) 2006-03-07 2014-12-16 Lg Electronics Inc. Light emitting device and method of manufacturing the same
US9343624B2 (en) 2006-03-07 2016-05-17 Lg Electronics Inc. Light emitting device and method of manufacturing the same
CN103456602A (en) * 2013-03-18 2013-12-18 深圳信息职业技术学院 Method for preparing non-polar surface gallium nitride nanometer cone material

Similar Documents

Publication Publication Date Title
Chen et al. Recent progress in group III-nitride nanostructures: From materials to applications
KR100646696B1 (en) Nitride semiconductor device and method for manufacturing the same
Jiang et al. ZnS nanowires with wurtzite polytype modulated structure
Kente et al. Gallium nitride nanostructures: Synthesis, characterization and applications
Le et al. Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis
KR20050081034A (en) Heterojunction structure of nitride semiconductor and nano-devices or their array comprising same
US20210202236A1 (en) Forming a planar surface of a iii-nitride material
KR100785525B1 (en) Heterostructure of luminescence zno nano-wire comprising zns quantum dot and method for fabricating the same
CN108604538A (en) Method for producing compound GaN nano-pillars and the light emitting structure made of this method
KR100659897B1 (en) Method of manufacturing substrate having nano rod structure
Suo et al. Synthetic strategies and applications of GaN nanowires
Wu et al. Recent progress in III-nitride nanosheets: properties, materials and applications
CN102828250A (en) Growing method for GaN nanowire
Kumar et al. Growth, properties, and applications of β-Ga2O3 nanostructures
KR20040061696A (en) Method for controlling tip shape of GaN nanorods
CN100378255C (en) Growth control method for A-plane and M-plane GaN film material
CN111415857A (en) Nitridation method of gallium oxide material
CN102050432A (en) Method for growing InN nanorod material with aid of dopant zinc
KR100499814B1 (en) Method for fabricating single crystal GaN substrate using GaN nanorods
KR100525723B1 (en) Method for forming GaN nanorods by hydride vapor phase epitaxial growth method
KR100525724B1 (en) Method for forming p-GaN nanorods
KR100693130B1 (en) Method for forming single-rod GaN pn junction
CN106757323B (en) A kind of unstressed InN nanowire growth method
KR20040056441A (en) METHOD FOR FABRICATING SINGLE-ROD GaN PN JUNCTION LED
Xu et al. Synthetics of ZnO nanowires on GaN micro-pyramids by gold catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20051102

Effective date: 20060928