KR20040042469A - Thixocast magnesium alloy and method for manufacturing the same - Google Patents

Thixocast magnesium alloy and method for manufacturing the same Download PDF

Info

Publication number
KR20040042469A
KR20040042469A KR1020020070772A KR20020070772A KR20040042469A KR 20040042469 A KR20040042469 A KR 20040042469A KR 1020020070772 A KR1020020070772 A KR 1020020070772A KR 20020070772 A KR20020070772 A KR 20020070772A KR 20040042469 A KR20040042469 A KR 20040042469A
Authority
KR
South Korea
Prior art keywords
alloy
magnesium alloy
magnesium
semi
manufacturing
Prior art date
Application number
KR1020020070772A
Other languages
Korean (ko)
Inventor
박순찬
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020020070772A priority Critical patent/KR20040042469A/en
Publication of KR20040042469A publication Critical patent/KR20040042469A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: A magnesium alloy is provided in which mechanical properties are improved by micronization of pro-eutectic solid grains by adding Ti and B to a commercially supplied AZ91D magnesium alloy in the semi-solid forming process, and a method for manufacturing the magnesium alloy is provided. CONSTITUTION: The magnesium alloy for semi-solid forming comprises 8.3 to 9.7 wt.% of Al, 0.35 to 1.0 wt.% of Zn, 0.15 to 0.5 wt.% of Mn, 0.1 to 0.5 wt.% of Ti, 0.05 to 0.1 wt.% of B and a balance of Mg and other inevitable impurities. The method for manufacturing a magnesium alloy for semi-solid forming comprises the steps of adding Ti and B as an Al-5 wt.%Ti-1 wt.%B master alloy to molten magnesium at a temperature of 670 to 720 deg.C; agitating the alloy using an agitator for 5 minutes; stationing the alloy at the same temperature for 30 to 60 minutes; furnace cooling the alloy to a temperature of 650 to 670 deg.C, and water cooling the furnace cooled alloy; and passing the alloy through isothermal and water cooling processes so as to manufacture a magnesium alloy comprising 8.3 to 9.7 wt.% of Al, 0.35 to 1.0 wt.% of Zn, 0.15 to 0.5 wt.% of Mn, 0.1 to 0.5 wt.% of Ti, 0.05 to 0.1 wt.% of B and a balance of Mg and other inevitable impurities, wherein the isothermal process is performed by maintaining the heated alloy at the same temperature for 10 to 30 minutes after heating the furnace cooled and water cooled magnesium alloy to a temperature of 570 to 590 deg.C.

Description

반용융 성형용 마그네슘 합금과 그 제조방법{Thixocast magnesium alloy and method for manufacturing the same}Thixocast magnesium alloy and method for manufacturing the same

본 발명은 반용융 성형용 마그네슘 합금과 그 제조방법에 관한 것으로서, 더욱 상세하게는 상용으로 제공되는 AZ91D 마그네슘 합금에 반용융 성형공정시 Ti와 B가 새로이 첨가되어 제조되어짐으로써, 초정고상입자의 미세화에 의하여 기계적 특성이 향상되어진 마그네슘 합금과 그 제조방법에 관한 것이다.The present invention relates to a magnesium alloy for semi-melting molding and a method for manufacturing the same, and more particularly, by minimizing ultra-solid particles by adding Ti and B to the AZ91D magnesium alloy, which is commercially available, during the semi-melting molding process. The present invention relates to a magnesium alloy having improved mechanical properties and a method of manufacturing the same.

일반적으로 마그네슘 합금은 경량화의 장점으로 인하여, 연비 향상의 요구가 증대되고 있는 자동차 산업을 중심으로 부품 경량화 측면에서 매우 중요한 위치를점하고 있다.In general, magnesium alloys have a very important position in terms of weight reduction of parts, especially in the automotive industry, where the demand for fuel economy is increasing due to the advantages of light weight.

따라서, 최근 10년 동안 전세계적으로 자동차 부품용 마그네슘 합금 소재의 소요량은 해마다 15% 이상 증가하는 추세에 있다.Accordingly, the demand for magnesium alloy materials for automotive parts has increased by more than 15% year on year in the world over the last 10 years.

통상, 자동차에 적용되는 마그네슘 합금 부품은 다이캐스팅 공정에 의하여 제조되어진다.Typically, magnesium alloy parts applied to automobiles are manufactured by a die casting process.

그러나, 마그네슘 합금 부품을 제조하는데 있어서, 다이캐스팅 공정의 특성상 기공 등의 주조 결함의 제어가 어려워 주조 후 열처리에 의한 강도 향상이 불가능하고, 실형상 성형이 되지 않아 주조 후 고가의 후처리 공정을 요구하고 있다.However, in manufacturing magnesium alloy parts, due to the nature of the die casting process, it is difficult to control casting defects such as pores, so that it is impossible to improve the strength by heat treatment after casting. have.

이에, 새로운 성형주조공법으로서, 주조공정과 열간가공공정을 결합시킨 반용융 성형공정이 최근 각광을 받고 있다.Accordingly, as a new molding casting method, a semi-molten molding process combining a casting process and a hot processing process has been in the spotlight recently.

이는 합금 주조재를 고액공존영역까지 가열한 후 일정시간 유지시켜 구형에 가까운 초정고상입자가 액상 내에 고르게 분산된 슬러리를 제조하고, 이를 성형 가공하여 제품을 생산해 내는 방법이다.This is a method of producing a slurry in which an alloy casting material is heated to a solid-liquid coexistence area, and then maintained for a predetermined time to produce a slurry in which ultrafine solid particles close to a sphere are uniformly dispersed in a liquid phase and molded and processed to produce a product.

이러한 반용융 성형공정에 의하여 제조된 제품에서는 초정고상입자의 크기가 제품의 성질에 큰 영향을 미치게 된다.In the product manufactured by the semi-melt molding process, the size of the ultra-solid particles has a great influence on the properties of the product.

즉, 반용융 성형공정에서 합금 주조재를 가열한 후 고액공존 영역에서 유지시키는 과정에서 발생된 초정고상입자의 집합 및 합체에 의한 조대화는 제품의 기계적 특성에 악영향을 미치게 되는 것이다.That is, coarsening by the aggregation and coalescence of ultra-solid particles generated in the process of maintaining the alloy casting material in the solid-liquid coexistence region in the semi-melting molding process will adversely affect the mechanical properties of the product.

그러나, 이러한 조대화 과정을 억제할 수 있는 공정변수의 조절 및 합금 개발에 대한 종래기술이 미미한 실정이다.However, the prior art for the control of process variables and alloy development that can suppress such coarsening process is insignificant.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 반용융 성형 후 보다 미세한 초정고상입자 크기를 가지는 마그네슘 합금의 개발을 위하여, 기존의 주조용 합금으로 널리 사용되는 AZ91D 마그네슘 합금에 Ti와 B를 새로이 첨가하여, 초정고상입자의 미세화에 의하여 기계적 특성이 향상되어진 마그네슘 합금과 그 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention was invented to solve the above problems, in order to develop a magnesium alloy having a finer ultra-solid particle size after the semi-melt molding, Ti to AZ91D magnesium alloy widely used as an existing casting alloy It is an object of the present invention to provide a magnesium alloy and a method for producing the same by adding a new B and the mechanical properties are improved by miniaturization of the ultra-solid particles.

도 1은 본 발명에 따른 마그네슘 합금 제조방법을 나타낸 공정그래프이고,1 is a process graph showing a magnesium alloy manufacturing method according to the present invention,

도 2a와 도 2b는 본 발명에 따른 마그네슘 합금의 실시예 1과 실시예 2의 미세조직을 나타낸 현미경 사진이며,2a and 2b are micrographs showing the microstructure of Example 1 and Example 2 of the magnesium alloy according to the present invention,

도 3은 종래의 마그네슘 합금의 미세조직을 나타낸 현미경 사진이다.Figure 3 is a micrograph showing the microstructure of a conventional magnesium alloy.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 마그네슘 합금에 있어서,The present invention in the magnesium alloy,

Al 8.3 ∼ 9.7 중량%, Zn 0.35 ∼ 1.0 중량%, Mn 0.15 ∼ 0.5 중량%, Ti 0.1 ∼ 0.5 중량%, B 0.05 ∼ 0.1 중량%, Mg 나머지 중량% 및 기타 불가피한 불순물로 구성된 것을 특징으로 한다.It is characterized by consisting of 8.3 to 9.7% by weight of Al, 0.35 to 1.0% by weight of Zn, 0.15 to 0.5% by weight of Mn, 0.1 to 0.5% by weight of Ti, 0.05 to 0.1% by weight of B, the remaining weight of Mg and other unavoidable impurities.

한편, 본 발명은 마그네슘 합금을 제조함에 있어서,On the other hand, in the present invention to manufacture a magnesium alloy,

Al 8.3 ∼ 9.7 중량%, Zn 0.35 ∼ 1.0 중량%, Mn 0.15 ∼ 0.5 중량%, Ti 0.1 ∼ 0.5 중량%, B 0.05 ∼ 0.1 중량% 및 Mg 나머지 중량%를 사용하되, 상기 Ti과 B은 670 ∼ 720℃에서 마그네슘 용탕에 Al-5중량%Ti-1중량%B 모합금 형태로 첨가하고, 이를 교반자를 이용하여 5분간 교반한 후 동일 온도에서 30 ∼ 60분간 정치한 다음, 이어 650 ∼ 670℃까지 노냉한 후 수냉하고, 이후 등온유지과정 및 수냉을거쳐 제조함을 특징으로 한다.8.3 to 9.7 wt% of Al, 0.35 to 1.0 wt% of Zn, 0.15 to 0.5 wt% of Mn, 0.1 to 0.5 wt% of Ti, 0.05 to 0.1 wt% of B and the remaining weight of Mg are used. Al-5 wt% Ti-1 wt% B mother alloy was added to the molten magnesium at 720 ° C., which was stirred for 5 minutes using a stirrer and allowed to stand at the same temperature for 30 to 60 minutes, followed by 650 to 670 ° C. After the furnace is cooled to water and then, characterized in that the manufacturing through the isothermal maintenance process and water cooling.

특히, 상기 등온유지과정은 노냉 및 수냉한 상기 마그네슘 합금 주조재를 570 ∼ 590℃까지 가열한 후 동일 온도에서 10 ∼ 30분간 등온유지하여 실시하는 것임을 특징으로 한다.In particular, the isothermal maintenance process is characterized in that it is carried out by heating the furnace-cooled and water-cooled magnesium alloy cast material to 570 ~ 590 ℃ and isothermally maintained for 10 to 30 minutes at the same temperature.

이하, 첨부한 도면을 참조하여 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명은 반용융 성형공정을 이용하여 주조재 형태로 제조되는 마그네슘 합금과 그 제조방법에 관한 것으로서, 기존의 다이캐스팅용 합금으로 널리 사용되고 있는 AZ91D 마그네슘 합금에 주조재의 결정립 미세화를 위한 합금 개량용 원소로 Ti과 B을 적정량 첨가시킨 새로운 마그네슘 합금과 그 제조방법에 관한 것이다.The present invention relates to a magnesium alloy manufactured in the form of a cast material using a semi-melt molding process, and a method for manufacturing the same, as an element for improving alloys for refining grains of AZ91D magnesium alloy widely used as an existing die casting alloy. The present invention relates to a new magnesium alloy added with an appropriate amount of Ti and B, and a method of manufacturing the same.

상기 AZ91D 마그네슘 합금은 Mg을 주재로 하고 이에 Al 8.3 ∼ 9.7 중량%, Zn 0.35 ∼ 1.0 중량%, Mn 0.15 ∼ 0.5 중량% 및 기타 불가피한 불순물이 포함되어 이루어진 것으로서, 고강도를 요구하는 자동차 부품 주조재의 제조에 널리 사용되는 합금이다.The AZ91D magnesium alloy is based on Mg and includes 8.3 to 9.7 wt% of Al, 0.35 to 1.0 wt% of Zn, 0.15 to 0.5 wt% of Mn, and other unavoidable impurities. It is a widely used alloy.

먼저, 본 발명의 마그네슘 합금은 상기한 AZ91D 마그네슘 합금에 Ti 0.1 ∼ 0.5 중량% 및 B 0.05 ∼ 0.1 중량%를 첨가하여 제조된 새로운 마그네슘 합금이다.First, the magnesium alloy of the present invention is a new magnesium alloy prepared by adding 0.1 to 0.5% by weight of Ti and 0.05 to 0.1% by weight of B to the AZ91D magnesium alloy.

본 발명에서 Ti과 B의 첨가 및 그 조성범위 설정 이유를 살펴보면 다음과 같다.Looking at the addition of Ti and B in the present invention and the reason for setting the composition range is as follows.

일반적으로 알루미늄 합금에서 Ti과 B은 주조재의 결정립 미세화제로서 탁월한 효과가 있어 널리 이용되고 있다.In general, Ti and B are widely used in aluminum alloys because they have excellent effects as grain refining agents in cast materials.

이는 Ti의 첨가로 형성된 TiAl3가 응고시 핵생성 자리로 작용함에 기인하는 것으로 알려져 있다.It is known that TiAl 3 formed by the addition of Ti acts as nucleation site upon solidification.

그러나, 용탕에 Ti을 첨가한 후 10 ∼ 20분 정도 유지하면 생성핵이 녹아버려 결정립 미세화 효과가 사라진다는 단점을 가지고 있다.However, if Ti is added to the molten metal and maintained for about 10 to 20 minutes, the resulting nucleus melts and the grain refinement effect disappears.

이를 극복하기 위하여 소량의 B을 첨가하게 되는데, 이 경우 TiB2및 준안정상인 (Al,Ti)B2가 형성되어 생성핵의 유지시간을 증가시켜줄 뿐 아니라 결정립 미세화 효과를 더욱 향상시키게 된다.To overcome this, a small amount of B is added. In this case, TiB 2 and metastable (Al, Ti) B 2 are formed, which not only increases the retention time of the nucleus but also further improves the grain refining effect.

이에, 본 발명에서는 용탕에 Ti 및 B을 첨가함으로써 형성되는 상기한 화합물의 역할을, 알루미늄이 합금원소로 첨가된 마그네슘 합금에 적용하여, 반용융 성형공정에서 초정고상입자 미세화에 적용하고자 하였다.Accordingly, in the present invention, the role of the compound formed by adding Ti and B to the molten metal is applied to the magnesium alloy to which aluminum is added as an alloying element, and applied to the refinement of ultrafine solid particles in the semi-melting molding process.

본 발명의 마그네슘 합금에서 새로이 첨가되는 두 합금원소 중 하나인 Ti은 Mg 기지 내에 최대 고용한이 Mg의 용융점인 650℃에서 0.2 중량% 정도이며, 상온에서는 고용한이 거의 존재하지 않는다.Ti, one of the two alloying elements newly added in the magnesium alloy of the present invention, has a maximum solubility in the Mg matrix at about 0.2% by weight at 650 ° C, which is the melting point of Mg.

특히, 상기 Ti은 Mg-Ti 이원계 상태도 상에서 전 조성범위에 걸쳐 어떠한 화합물도 형성하지 않는 특징을 가지고 있다.In particular, the Ti is characterized in that no compound is formed over the entire composition range on the Mg-Ti binary system.

본 발명에서 Ti은 반용융 성형제품의 초정고상입자 미세화를 위하여 극소량 첨가하는 '트레이스(trace)' 원소의 역할을 위하여 첨가하였으며, 그 최소함량은 첨가효과를 나타내는 최소치인 0.1 중량%로 정하였고, 그 최대함량은 고용한 및 다른 합금원소와의 화합물 형성 경향을 실험적으로 검토하여 0.5 중량%로 정하였다.In the present invention, Ti was added to serve as a 'trace' element added in a very small amount for miniaturization of ultra-solid particles of semi-molded molded products, and the minimum content was set to 0.1 wt%, which is a minimum value indicating the addition effect. The maximum content was set to 0.5% by weight by experimentally examining the tendency of compound formation with the dissolved and other alloying elements.

결국, 본 발명에서 Ti의 첨가범위는 0.1 ∼ 0.5 중량%로 제한된다.As a result, the addition range of Ti in the present invention is limited to 0.1 to 0.5% by weight.

한편, B은 전 조성범위에 걸쳐 Mg 기지 내에 고용한이 거의 존재하지 않으며, 고융점의 안정상인 MgB2를 형성하는 경향이 있다.On the other hand, B has little solid solution in the Mg matrix over the entire composition range, and tends to form MgB 2 , which is a stable phase of high melting point.

본 발명에서는 Ti에 의해 형성되는 초정고상입자 핵의 유지시간 증대를 위하여 B을 첨가하였으며, 첨가되는 Ti과의 화학적 결합특성 그리고 Ti과 B의 첨가방식을 고려하여 그 첨가범위를 실험적으로 정하였다.In the present invention, B was added to increase the retention time of the ultrafine solid particle nucleus formed by Ti, and the range of the addition was experimentally determined in consideration of the chemical bonding property of Ti and the method of adding Ti and B.

즉, 본 발명에서의 B의 첨가범위는 0.05 ∼ 0.1 중량%로 제한된다.That is, the range of addition of B in the present invention is limited to 0.05 to 0.1% by weight.

다음으로, 본 발명은 AZ91D 마그네슘 용탕에 Al-Ti-B 모합금 형태로 Ti 및 B을 첨가하여 전술한 본 발명의 마그네슘 합금을 주조재 형태로 제조하는 방법을 제공하며, 이를 첨부한 도 1을 참조하여 설명하면 다음과 같다.Next, the present invention provides a method for producing the above-described magnesium alloy of the present invention in the form of a casting material by adding Ti and B in the Al-Ti-B mother alloy form to the AZ91D magnesium molten metal, attached to Figure 1 If described with reference to:

첨부한 도 1은 본 발명에 따른 마그네슘 합금의 제조방법을 나타낸 공정그래프이다.1 is a process graph showing a method of manufacturing a magnesium alloy according to the present invention.

우선, AZ91D 마그네슘 합금 용탕에 Al-5중량%Ti-1중량%B 모합금을 670 ∼ 720℃에서 첨가하고, 교반자를 이용하여 5분간 용탕을 교반한 후, 핵생성 자리 역할을 하는 화합물 석출상의 형성을 위하여 동일 온도에서 30 ∼ 60분간 정치하게 된다.First, Al-5% by weight Ti-1% by weight B master alloy was added to the AZ91D magnesium alloy molten metal at 670-720 ° C., and the molten metal was stirred for 5 minutes using a stirrer. It is left to stand for 30 to 60 minutes at the same temperature for formation.

이때, 정치온도 및 유지시간이 주조재의 반용융 특성에 큰 영향을 미치게 되는데, 본 발명에서는 여러 조건의 조합에 의한 실험을 통하여 상기와 같이 결정하였다.At this time, the stationary temperature and the holding time has a great influence on the anti-melting properties of the cast material, in the present invention was determined as described above through the experiment by a combination of several conditions.

정치가 끝난 용탕은 다시 650 ∼ 670℃까지 노냉한 후 수냉을 통하여 주조재로 만들어진다.After the stationary molten metal is further cooled to 650 to 670 ° C., the molten metal is formed into a casting material through water cooling.

합금의 용해시 CO2+ 0.5% SF6혼합가스를 2ℓ/min의 유량으로 용탕표면에 도포시키는 무용제 용해법에 의하여 용탕표면을 보호하며, 스틸(steel) 도가니를 이용한다.When dissolving the alloy, the surface of the molten metal is protected by a solventless dissolution method in which a CO 2 + 0.5% SF 6 mixed gas is applied to the molten surface at a flow rate of 2 l / min, and a steel crucible is used.

이후, 상기와 같이 만들어진 마그네슘 합금 주조재는, 반용융 성형시 첨가된 Ti과 B에 의한 결정립 미세화 효과가 나타날 수 있도록 하기 위하여, 등온유지과정을 거치게 된다.Thereafter, the magnesium alloy casting material made as described above is subjected to an isothermal holding process so that the grain refinement effect due to Ti and B added during semi-melting molding can be shown.

즉, 상온까지 수냉한 상기 마그네슘 합금 주조재를 분당 30℃의 승온속도로 570 ∼ 590℃까지 재가열한 후 동일 온도에서 10 ∼ 30분간 등온유지하고, 이후 다시 수냉한다.That is, the magnesium alloy cast material cooled to room temperature is reheated to 570 to 590 ° C at a heating rate of 30 ° C per minute, and then isothermally maintained at the same temperature for 10 to 30 minutes, and then cooled again.

상기한 바의 등온유지과정은 반용융 성형공정에서 주조재에 구상화 조직을 얻은 후 성형공정에 소재를 투입하기 위하여 필수적으로 거치는 공정을 모사하기 위한 것으로서, 실제 작업조건을 고려하여 등온유지시 필요한 온도 및 시간을 설정하였다.The isothermal holding process described above is to simulate the process that is essential to obtain the spheroidizing structure in the casting material in the semi-melting molding process and to put the material into the molding process, and the temperature required for isothermal holding in consideration of the actual working conditions. And time was set.

상기와 같이 등온유지과정이 끝나면 본 발명에 따른 마그네슘 합금의 제조과정이 완료된다.After the isothermal maintenance process as described above, the manufacturing process of the magnesium alloy according to the present invention is completed.

이후, 상기와 같이 제조된 본 발명의 마그네슘 합금을 이용하여 파워트레인 부품, 샤시 부품 및 내장재 부품 등의 자동차 부품을 제조하기 위해서는 성형공정을 실시하여 해당 부품의 최종 형상으로 가공한다.Subsequently, in order to manufacture automobile parts such as powertrain parts, chassis parts, and interior parts by using the magnesium alloy of the present invention manufactured as described above, a molding process is performed to process the final shape of the corresponding parts.

이와 같이 하여, 본 발명의 제조방법에 따르면, 초정고상입자 미세화에 의해 기계적 특성이 향상되어진 마그네슘 합금을 제조할 수 있게 된다.In this way, according to the production method of the present invention, it is possible to manufacture a magnesium alloy with improved mechanical properties by miniaturization of ultra-solid particles.

즉, 전술한 바와 같이, 상용으로 제공되는 기존의 AZ91D 마그네슘 합금에 반용융 성형공정시 적정량의 Ti와 B를 첨가한 후 등온유지과정을 거치게 되면, 초정고상입자의 크기가 현저히 작아짐과 더불어 경도가 향상된 새로운 마그네슘 합금이 제조되는 것이다.That is, as described above, when an isothermal maintenance process is performed after adding an appropriate amount of Ti and B to the AZ91D magnesium alloy, which is commercially available, in the semi-melting molding process, the size of the ultra-solid particles is significantly smaller and the hardness is increased. Improved new magnesium alloys are produced.

이하, 본 발명의 구성 내용 및 효과를 실시예를 통하여 살펴보면 다음과 같다.Hereinafter, the contents and effects of the present invention will be described with reference to the following Examples.

첨부한 도 2a와 도 2b에서는 본 발명의 제조방법에 따라 제조된 마그네슘 합금의 미세조직을 보여주고 있으며, 도 3에서는 상용으로 제공되는 AZ91D 마그네슘 합금의 미세조직을 보여주고 있다.2A and 2B show the microstructure of the magnesium alloy prepared according to the method of the present invention, and FIG. 3 shows the microstructure of the commercially available AZ91D magnesium alloy.

본 발명의 실시예 1과 실시예 2로서, 하기 표 1에 나타낸 바와 같은 Ti 및 B의 함유량을 갖는 마그네슘 합금을 도 1에 나타낸 제조공정에 따라 제조하였으며, 도 2a는 실시예 1의 미세조직을, 도 2b는 실시예 2의 미세조직을 나타낸다.As Example 1 and Example 2 of the present invention, a magnesium alloy having a content of Ti and B as shown in Table 1 was prepared according to the manufacturing process shown in FIG. 1, and FIG. 2A illustrates the microstructure of Example 1. FIG. 2b shows the microstructure of Example 2.

상기 표 1에서 알 수 있는 바와 같이, 실시예 1과 실시예 2는 기존의 AZ91D 마그네슘 합금에 새로이 첨가되는 Ti와 B의 함량을 달리하여 제조한 본 발명의 마그네슘 합금이다.As can be seen in Table 1, Examples 1 and 2 are magnesium alloy of the present invention prepared by varying the content of Ti and B newly added to the existing AZ91D magnesium alloy.

한편, 상기 표 1에는 미세조직으로부터 측정한 초정고상입자의 크기와 더불어, 그에 따른 기계적 특성의 평가 척도로 실시한 경도시험의 결과를 함께 나타내었다.On the other hand, Table 1 shows the results of the hardness test carried out as an evaluation scale of the mechanical properties according to the size of the ultra-solid particles measured from the microstructure.

우선, 도 2a, 도 2b, 도 3 및 표 1에 나타낸 바와 같이, 본 발명의 제조방법에 따라 제조된 마그네슘 합금, 즉 실시예 1과 실시예 2에서 기존의 합금인 AZ91D 마그네슘 합금에 비하여 Ti 및 B의 첨가 및 등온유지과정에 의하여 구상화된 초정고상입자의 크기가 미세해짐을 알 수 있었다.First, as shown in Figures 2a, 2b, 3 and Table 1, compared to the magnesium alloy prepared according to the production method of the present invention, that is, in comparison with the conventional alloy AZ91D magnesium alloy in Examples 1 and 2 and Ti and It was found that the size of spherical superfine particles was miniaturized by the addition of B and isothermal maintenance.

아울러, Ti와 B의 첨가량 증가에 따라 미세화 정도는 더욱 증대됨을 알 수있었다.In addition, it was found that the degree of refinement was further increased as the amount of Ti and B added increased.

또한, 본 발명의 제조방법에 따라 제조된 실시예 1과 실시예 2에서는 기존의 합금인 AZ91D 마그네슘 합금에 비하여 초정고상입자의 크기가 감소함과 더불어 경도가 향상되었고, Ti와 B의 첨가량 증가에 따라 경도 향상의 효과는 더욱 증대되었다.In addition, in Examples 1 and 2 prepared according to the production method of the present invention, the size of the ultra-solid particles is reduced and hardness is improved, and the amount of Ti and B added is increased, compared to the existing alloy AZ91D magnesium alloy. Accordingly, the effect of improving the hardness was further increased.

이상에서 살펴본 바와 같이, 본 발명에 따른 반용융 성형용 마그네슘 합금과 그 제조방법에 의하면, 기존의 다이캐스팅용 합금으로 널리 사용되고 있는 AZ91D 마그네슘 합금에 주조재의 결정립 미세화를 위한 합금 개량용 원소로 Ti과 B을 적정량 첨가시켜 제조함으로써, 다음과 같은 효과가 있다.As described above, according to the present invention, according to the present invention, a semi-molten magnesium alloy and a method for manufacturing the same are alloys for improving alloys for refining grains of AZ91D magnesium alloy, which is widely used as a die casting alloy. By adding the appropriate amount of Pb, the following effects are obtained.

즉, 반용융 성형공정 후에 초정고상입자의 크기가 현저히 작아지고, 그에 따라 기계적 특성이 향상되어지는 주조재 형태의 새로운 마그네슘 합금을 제조할 수 있다.That is, after the semi-melting molding process, the size of the ultra-solid particles is significantly reduced, thereby producing a new magnesium alloy in the form of a cast material, the mechanical properties are improved.

이러한 효과는 첨가된 Ti와 B에 의하여 TiB2및 준안정상인 (Al, Ti)B2가 형성되고, 이들이 초정고상입자 핵생성 위치를 제공함에 기인하는 것으로 판단된다.This effect is believed to be due to the formation of TiB 2 and metastable (Al, Ti) B 2 by the added Ti and B, and these provide a supercrystalline solid particle nucleation site.

또한, 본 발명을 통하여 제조된 마그네슘 합금을 자동차 파워트레인 부품, 샤시 부품 및 내장재 부품의 소재로 적용할 경우, 기존의 성형공법으로는 제조가 어려웠던 후육부를 갖는 부품 및 형상이 복잡한 제품의 제조가 가능해진다.In addition, when the magnesium alloy produced through the present invention is applied as a material for automobile powertrain parts, chassis parts and interior parts, it is possible to manufacture parts with complex parts and shapes having thick parts, which were difficult to manufacture by conventional molding methods. It becomes possible.

Claims (3)

마그네슘 합금에 있어서,In magnesium alloy, Al 8.3 ∼ 9.7 중량%, Zn 0.35 ∼ 1.0 중량%, Mn 0.15 ∼ 0.5 중량%, Ti 0.1 ∼ 0.5 중량%, B 0.05 ∼ 0.1 중량%, Mg 나머지 중량% 및 기타 불가피한 불순물로 구성된 것을 특징으로 하는 반용융 성형용 마그네슘.Half consisting of 8.3 to 9.7 wt% Al, 0.35 to 1.0 wt% Zn, 0.15 to 0.5 wt% Mn, 0.1 to 0.5 wt% Ti, 0.05 to 0.1 wt% B, remaining wt% Mg and other unavoidable impurities Magnesium for melt molding. 마그네슘 합금을 제조함에 있어서,In preparing magnesium alloys, Al 8.3 ∼ 9.7 중량%, Zn 0.35 ∼ 1.0 중량%, Mn 0.15 ∼ 0.5 중량%, Ti 0.1 ∼ 0.5 중량%, B 0.05 ∼ 0.1 중량% 및 Mg 나머지 중량%를 사용하되, 상기 Ti과 B은 670 ∼ 720℃에서 마그네슘 용탕에 Al-5중량%Ti-1중량%B 모합금 형태로 첨가하고, 이를 교반자를 이용하여 5분간 교반한 후 동일 온도에서 30 ∼ 60분간 정치한 다음, 이어 650 ∼ 670℃까지 노냉한 후 수냉하고, 이후 등온유지과정 및 수냉을 거쳐 제조함을 특징으로 하는 반용융 성형용 마그네슘 합금 제조방법.8.3 to 9.7 wt% of Al, 0.35 to 1.0 wt% of Zn, 0.15 to 0.5 wt% of Mn, 0.1 to 0.5 wt% of Ti, 0.05 to 0.1 wt% of B and the remaining weight of Mg are used. Al-5 wt% Ti-1 wt% B mother alloy was added to the molten magnesium at 720 ° C., which was stirred for 5 minutes using a stirrer and allowed to stand at the same temperature for 30 to 60 minutes, followed by 650 to 670 ° C. Magnesium alloy manufacturing method for semi-melting molding, characterized in that it is cooled by the furnace after cooling to water, and then manufactured through isothermal holding process and water cooling. 제 2 항에 있어서, 상기 등온유지과정은 노냉 및 수냉한 상기 마그네슘 합금 주조재를 570 ∼ 590℃까지 가열한 후 동일 온도에서 10 ∼ 30분간 등온유지하여 실시하는 것임을 특징으로 하는 반용융 성형용 마그네슘 합금 제조방법.The method of claim 2, wherein the isothermal holding step is a semi-melting magnesium for heating, characterized in that is carried out by heating the furnace-cooled and water-cooled magnesium alloy casting material to 570 ~ 590 ℃ 10 to 30 minutes isothermal at the same temperature Alloy manufacturing method.
KR1020020070772A 2002-11-14 2002-11-14 Thixocast magnesium alloy and method for manufacturing the same KR20040042469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020070772A KR20040042469A (en) 2002-11-14 2002-11-14 Thixocast magnesium alloy and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020070772A KR20040042469A (en) 2002-11-14 2002-11-14 Thixocast magnesium alloy and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20040042469A true KR20040042469A (en) 2004-05-20

Family

ID=37339248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020070772A KR20040042469A (en) 2002-11-14 2002-11-14 Thixocast magnesium alloy and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20040042469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659284B1 (en) * 2005-06-01 2006-12-20 한국생산기술연구원 Method of manufacturing Mg alloy by control of semi-solid microstructure
CN104313372A (en) * 2014-09-29 2015-01-28 南昌大学 Method for preparing magnesium matrix composite semisolid slurry by adopting mechanical stirring in situ synthesis
KR101491218B1 (en) * 2012-12-17 2015-02-06 현대자동차주식회사 Method for producing aluminum alloy
KR20200009323A (en) * 2018-07-18 2020-01-30 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228698A (en) * 1993-02-03 1994-08-16 Kobe Steel Ltd Mg base alloy excellent in corrosion resistance
JPH06240395A (en) * 1993-02-12 1994-08-30 Sky Alum Co Ltd Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH08120390A (en) * 1994-10-26 1996-05-14 Mitsui Mining & Smelting Co Ltd Magnesium-silicon alloy tip and method for forming same alloy
KR20000041707A (en) * 1998-12-23 2000-07-15 박호군 Method for manufacturing hyper-eutectic al-si forging alloy excellent in abrasion resistance and having small coefficient of thermal expansion and use of the same
JP2000303134A (en) * 1999-04-20 2000-10-31 Furukawa Electric Co Ltd:The Aluminum base alloy for semisolid working and production of worked member therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228698A (en) * 1993-02-03 1994-08-16 Kobe Steel Ltd Mg base alloy excellent in corrosion resistance
JPH06240395A (en) * 1993-02-12 1994-08-30 Sky Alum Co Ltd Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH08120390A (en) * 1994-10-26 1996-05-14 Mitsui Mining & Smelting Co Ltd Magnesium-silicon alloy tip and method for forming same alloy
KR20000041707A (en) * 1998-12-23 2000-07-15 박호군 Method for manufacturing hyper-eutectic al-si forging alloy excellent in abrasion resistance and having small coefficient of thermal expansion and use of the same
JP2000303134A (en) * 1999-04-20 2000-10-31 Furukawa Electric Co Ltd:The Aluminum base alloy for semisolid working and production of worked member therefrom

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
11~13쪽, 도면4, 1998, 엄태민, 서울대학교 *
1997년 추계 학술강연 및 발표개요, 엄태민 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659284B1 (en) * 2005-06-01 2006-12-20 한국생산기술연구원 Method of manufacturing Mg alloy by control of semi-solid microstructure
KR101491218B1 (en) * 2012-12-17 2015-02-06 현대자동차주식회사 Method for producing aluminum alloy
CN104313372A (en) * 2014-09-29 2015-01-28 南昌大学 Method for preparing magnesium matrix composite semisolid slurry by adopting mechanical stirring in situ synthesis
KR20200009323A (en) * 2018-07-18 2020-01-30 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
EP3825429A4 (en) * 2018-07-18 2021-10-27 Posco Magnesium alloy sheet and manufacturing method therefor
US11542577B2 (en) 2018-07-18 2023-01-03 Posco Holdings Inc. Magnesium alloy sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
Fan Development of the rheo-diecasting process for magnesium alloys
Liao et al. Dispersoid particles precipitated during the solutionizing course of Al-12 wt% Si-4 wt% Cu-1.2 wt% Mn alloy and their influence on high temperature strength
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
EP1882753A1 (en) Aluminium alloy
JP2004523357A (en) Method of spheroidizing silicon during casting of aluminum-silicon alloy
EP1882754B1 (en) Aluminium alloy
CN105568082A (en) Heat treatment method for Al-Si-Cu-Mg casting alloy
Zhang et al. Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA
CN101285144A (en) Magnesium alloy for semi-solid forming and preparation method of semi- solid blank
Suresh et al. The effect of charcoal addition on the grain refinement and ageing response of magnesium alloy AZ91
CN112301259A (en) High-strength die-casting aluminum alloy, and preparation method and application thereof
CN105568080A (en) Aluminum alloy die casting and preparation method thereof
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
CN109182804A (en) A kind of high intensity aluminum bronze line aluminium alloy preparation method
JP2001316787A (en) METHOD FOR PRODUCING HALF-MELTED BILLET OF Al ALLOY FOR TRANSPORTING MACHINE
JP2004322206A (en) Method for manufacturing magnesium alloy billet for semi-solidified forming
KR20040042469A (en) Thixocast magnesium alloy and method for manufacturing the same
JP3467824B2 (en) Manufacturing method of magnesium alloy member
JP6726058B2 (en) Manufacturing method of Al alloy casting
JPH08176768A (en) Wear resistant aluminum member and production thereof
KR102407828B1 (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
GB2494354A (en) Preparation method of Al-Zr-C master alloy
KR100448127B1 (en) Preparation method of Mg alloy for improvement of high temperature strength
CN110607472A (en) High-strength AZ81 magnesium alloy material containing Ce-based misch metal and preparation process thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application