KR20040034760A - Turbo charger boost control logic - Google Patents

Turbo charger boost control logic Download PDF

Info

Publication number
KR20040034760A
KR20040034760A KR1020020062805A KR20020062805A KR20040034760A KR 20040034760 A KR20040034760 A KR 20040034760A KR 1020020062805 A KR1020020062805 A KR 1020020062805A KR 20020062805 A KR20020062805 A KR 20020062805A KR 20040034760 A KR20040034760 A KR 20040034760A
Authority
KR
South Korea
Prior art keywords
wgcv
ecm
map
rpm
boost pressure
Prior art date
Application number
KR1020020062805A
Other languages
Korean (ko)
Other versions
KR100516186B1 (en
Inventor
박상진
Original Assignee
(주)엔지브이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엔지브이아이 filed Critical (주)엔지브이아이
Priority to KR10-2002-0062805A priority Critical patent/KR100516186B1/en
Publication of KR20040034760A publication Critical patent/KR20040034760A/en
Application granted granted Critical
Publication of KR100516186B1 publication Critical patent/KR100516186B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE: A logic for controlling boost pressure of a turbo charger is provided to prevent deterioration of output due to wear of a WGCV(Waste Gate Control Valve) by controlling number of operation and operating stroke of the WGCV. CONSTITUTION: A logic includes the steps of: a determining step(S100) whether MAP(Manifold Absolute Pressure) is higher than MAP value stored in an ECM(Electronic Control Module); a determining step(S110) whether a WGCV is switched on at idle mode when the MAP is lower than the MAP value stored in the ECM; a determining step(S120) whether FPP(Food Pedal Position) at idle mode if the MAP is higher than the MAP value stored in the ECM; a determining step(S130) whether RPM is larger than the total of idle speed and WGCV actuating RPM stored in the ECM if the WGCV is switched on; a step(S140) opening the WGCV if the WGCV is switched off; a determining step(S150) whether boost pressure is fixed value if FPP at idle mode; a step(S160) normally controlling the boost pressure if not FPP at idle mode or the boost pressure is not the fixed value; a step(S170) harmonizing boost PWM(Pulse Width Modulation) with exhaust gas control value stored in the ECM if the RPM is larger than the total of the idle speed and the WGCV actuating RPM, or the boost pressure is the fixed value; and a step(S180) closing the WGCV if the RPM is smaller than the total of the idle speed and the WGCV actuating RPM.

Description

터보챠저 부스트압 제어논리{TURBO CHARGER BOOST CONTROL LOGIC}Turbocharger Boost Pressure Control Logic {TURBO CHARGER BOOST CONTROL LOGIC}

본 발명은 천연가스 자동차의 터보차저 부스트압력 제어논리에 관한 것으로, 보다 상세하게는 터보차저 웨이스트게이트(wastegate) 제어밸브의 작동논리를 변경하여 웨이스트게이트 밸브 작동시 스트로크(stroke)를 줄여 터보차저의 내구력 증대 및 차량 상품성을 높일 수 있는 터보차저 부스트압력 제어논리에 관한 것이다.The present invention relates to the turbocharger boost pressure control logic of a natural gas vehicle, and more particularly, by changing the operation logic of the turbocharger wastegate control valve to reduce the stroke during operation of the wastegate valve. The present invention relates to a turbocharger boost pressure control logic that can increase durability and improve vehicle commercialization.

일반적으로, 자동차는 공기를 흡입하는 구멍이 있고 그 구멍과 엔진사이에 에어클리너가 있으며 아무런 저항없이 공기가 들어오는대로 흡입하는 자연흡기방식을 사용하고 있다. 하지만, 자연흡기방식은 엔진의 배기량만큼 혼합기를 흡입하여야 하는데 실제 배기량의 80% 정도밖에 흡입하지 못한다. 이러한 문제점을 해결하기 위해 도입된 것이, 터빈이나 펌프를 강제로 돌려 공기의 압력을 증가시켜 더 많은 공기를 실린더 내로 흡입하여 엔진의 출력을 상승시키는 터보차저방식이 도입되었다. 이때, 과급압력이 규정값 이상으로 상승되어 기관이 파손되는 것을 방지하기 위하여 웨이스트게이트 제어밸브를 구비하고 있다.In general, a car has a hole for intake of air, and there is an air cleaner between the hole and the engine, and a natural intake method is used to intake air as it enters without any resistance. However, spontaneous intake requires the mixer to suck as much as the engine's displacement, but only 80 percent of the actual displacement. In order to solve this problem, a turbocharger system is introduced to force the turbine or the pump to increase the pressure of the air to draw more air into the cylinder to increase the engine output. At this time, a wastegate control valve is provided to prevent the engine from being damaged due to the boost pressure being raised above a prescribed value.

도 1에는 일반적인 터보차저의 구성이 도시되어 있다. 터보차저의 작동원리는 다음과 같다. 엔진(1)의 연소후 배출되는 배기가스가 터빈(2)을 작동시키고, 상기 터빈(2)의 작동으로 더 많은 공기를 강제흡입하여 압축기(4)에서 공기를 압축한다. 이때, 압축공기의 온도가 상승하기 때문에 쿨러(6)를 작동하여 적정온도로 낮추어준다. 압축공기가 일정압력 이상 상승되는 것을 방지하기 위해 웨이스트게이트 제어밸브(10)를 구비하고 있고, 또한 상기 웨이스트게이트 제어밸브(10)를 작동시키기 위한 액츄에이터(8)를 구비하고 있다.1 shows a configuration of a general turbocharger. The operation principle of the turbocharger is as follows. The exhaust gas discharged after combustion of the engine 1 operates the turbine 2, and by the operation of the turbine 2 forcibly sucks in more air to compress the air in the compressor 4. At this time, since the temperature of the compressed air rises, it operates the cooler 6 to lower it to an appropriate temperature. In order to prevent the compressed air from rising above a certain pressure, a wastegate control valve 10 is provided, and an actuator 8 for operating the wastegate control valve 10 is provided.

상기 웨이스트게이트 제어밸브(10)의 작동원리는 다음과 같다. 압축공기탱크(12) 내에 저장된 압축공기는 압력조절기(14)를 거치며 9∼10bar에 이르던 공기압이 2bar로 낮아진다. 이후, 감압된 압축공기는 전자제어모듈(18, ECM)에 의해 제어되는 솔레노이드밸브(16)의 작동에 의해 액츄에이터(8) 또는 블리드(20)로 유입되게 된다. 터보차저에 의해 흡입된 공기의 압력이 일정압력이상 상승되면 상기 솔레노이드 밸브(16)가 열려 공기가 상기 액츄에이터(8)로 유입된다. 상기 액츄에이터(8)로 유입된 공기는 다이어프램(22)을 거쳐 로드(24)를 작동시켜, 웨이스트게이트 제어밸브(10)를 오픈시킨다. 이후, 배기가스가 웨이스트게이트 제어밸브(10)로 유입되어 배기가스가 상기 터빈(2)을 우회하여 배출되고, 따라서 터보차저로 유입되는 공기의 압력이 감소하게 된다. 반대로, 터보차저로 유입되는 공기의 압력이 일정할 때에는, 솔레노이드 밸브(16)가 닫히게 되고 압축공기는 블리드(20)로 빠져나가게 된다. 상기와 같은 방법으로 터보차저로 유입되는 공기의 압력을 조절할 수 있게 된다.The operation principle of the wastegate control valve 10 is as follows. The compressed air stored in the compressed air tank 12 passes through the pressure regulator 14, and the air pressure reaching 9 to 10 bar is lowered to 2 bar. Thereafter, the decompressed compressed air is introduced into the actuator 8 or the bleed 20 by the operation of the solenoid valve 16 controlled by the electronic control module 18 (ECM). When the pressure of the air sucked by the turbocharger rises above a certain pressure, the solenoid valve 16 is opened so that air flows into the actuator 8. The air introduced into the actuator 8 operates the rod 24 via the diaphragm 22 to open the wastegate control valve 10. Thereafter, the exhaust gas flows into the wastegate control valve 10 so that the exhaust gas bypasses the turbine 2 and is discharged, thereby reducing the pressure of the air flowing into the turbocharger. On the contrary, when the pressure of the air flowing into the turbocharger is constant, the solenoid valve 16 is closed and the compressed air is discharged to the bleed 20. In this way it is possible to adjust the pressure of the air flowing into the turbocharger.

도 2는 종래의 터보차저의 부스트압 제어논리의 플로우 차트이다.2 is a flowchart of a boost pressure control logic of a conventional turbocharger.

종래의 터보차저 부스트압 제어논리는 MAP(흡기압력)이 ECM(전자제어모듈)에 저장된 MAP값 보다 큰지를 판단하는 단계(S10)와, 상기 MAP가 ECM에 저장된 MAP보다 작은 경우 idle모드에서 WGCV(웨이스트게이트 제어밸브)가 ON인지를 판단하는 단계(S20)와, 상기 MAP가 ECM에 저장된 MAP보다 큰 경우 WGCV를 닫는 단계(부스트PWM=100%, S30)와, 상기 WGCV가 ON인 경우 RPM이 idle speed(엔진 공회전수)와 ECM에 저장된 WGCV작동 RPM값의 합보다 큰가를 판단하는 단계(S40)와, RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 큰 경우 RPM이 WGCV가 작동하는 최소 RPM보다 큰지를 판단하는 단계(S50)와, RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 작은 경우 WGCV를 닫는 단계(S60)와, RPM이 WGCV가 작동하는 최소 RPM보다 큰 경우 부스트PWM을 ECM에 저장된 배기가스 제어값과 일치시키는 단계(S70)와, RPM이 WGCV가 작동하는 최소 RPM보다 작은 경우 WGCV를 여는 단계(부스트PWM=0%, S80)로 이루어져 있다.The conventional turbocharger boost pressure control logic determines whether the MAP (intake pressure) is greater than the MAP value stored in the ECM (electronic control module) (S10), and when the MAP is smaller than the MAP stored in the ECM, the WGCV ( Determining whether the wastegate control valve is ON (S20), closing the WGCV when the MAP is larger than the MAP stored in the ECM (boost PWM = 100%, S30), and the RPM when the WGCV is ON. Determining whether the idle speed (engine idle speed) and the WGCV operating RPM value stored in the ECM is greater than the sum (S40), and if the RPM is greater than the sum of the idle speed and the WGCV operating RPM value stored in the ECM, the WGCV will operate. Determining whether it is greater than the minimum RPM (S50), if the RPM is less than the sum of the idle speed and the WGCV operating RPM value stored in the ECM step of closing the WGCV (S60), and the RPM is greater than the minimum RPM WGCV operating If the boost PWM match with the exhaust gas control value stored in the ECM (S70) , RPM This consists of opening a small step if WGCV the minimum RPM (the boost PWM = 0%, S80) that WGCV is operating.

여기에서, PWM(Pulse Width Modulation)은 ECM에서 전기적신호를 받아 배기가스의 양을 제어하는 것을 의미하며, 예를 들어, 부스트PWM이 100%인 경우는 WGCV가 닫혀 배기가스가 터보차저의 터빈(2)으로 유입되어 터빈(2) 및 터빈(2)과 연결된 압축기(4)를 작동시켜 MAP가 상승하게 된다. 반대로, 부스트PWM이 0%인 경우에는 WGCV가 열려 배기가스가 터빈(2)으로 유입되지 않고 상기 터빈(2)을 우회하여 외부로 배출되게 된다. 이외의 경우에는 부스트PWM은 ECM에 저장된 배기가스 제어값에 따라 WGCV를 작동하게 된다.Here, PWM (Pulse Width Modulation) refers to controlling the amount of exhaust gas by receiving an electrical signal from the ECM. For example, when the boost PWM is 100%, the WGCV is closed so that the exhaust gas is the turbine of the turbocharger. 2) the MAP rises by operating the turbine 2 and the compressor 4 connected to the turbine 2. On the contrary, when the boost PWM is 0%, the WGCV is opened so that the exhaust gas does not flow into the turbine 2 and bypasses the turbine 2 and is discharged to the outside. In other cases, the boost PWM operates the WGCV according to the emission control values stored in the ECM.

상기와 같은 방법으로 터보차저의 부스트압이 일정값 이상으로 상승하는 것을 방지할 수 있다. 하지만, 종래의 부스트압 제어논리는 WGCV의 작동횟수가 과다하게 많고, 작동 스트로크가 과다하여 WGCV의 마모가 심하였다. 이는 곧 운행중 차량의 출력과 연관되어 출력저하의 문제점을 야기시키고 정비에 많은 비용이 소모되는 문제점이 제기되었다.In this manner, it is possible to prevent the boost pressure of the turbocharger from rising above a predetermined value. However, in the conventional boost pressure control logic, the operation frequency of the WGCV is excessively large, and the operation stroke is excessive, and the wear of the WGCV is severe. This was soon associated with the output of the vehicle while driving, causing a problem of lowering the power and costly maintenance.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, WGCV의 작동횟수와 작동 스트로크를 제어하여 WGCV의 마모에 따른 차량운행중 출력저하 현상과 이에 따른 정비의 문제점을 해결하기 위한 터보차저 부스트압 제어논리를 제공하는 것을 목적으로 하고 있다.The present invention has been made to solve the above problems, the turbocharger boost pressure control logic to solve the problem of output degradation during the operation of the vehicle according to the wear of the WGCV by the control of the operation frequency and the operation stroke of the WGCV according to the wear The purpose is to provide.

또한, 터보차저의 내구력을 증대시키고, 별도의 터보차저 개발없이 기존의터보차저에 사용가능한 터보차저 부스트압 제어논리를 제공하는 것을 목적으로 하고 있다.In addition, it is an object of the present invention to increase the durability of the turbocharger and to provide a turbocharger boost pressure control logic that can be used in an existing turbocharger without developing a separate turbocharger.

도 1은 일반적인 터보차저의 구성도.1 is a block diagram of a typical turbocharger.

도 2는 종래의 터보차저의 부스트압 제어논리를 도시하는 플로우차트.2 is a flowchart showing a boost pressure control logic of a conventional turbocharger.

도 3은 본 발명에 따른 터보차저 부스트압 제어논리를 도시하는 플로우차트.3 is a flowchart showing the turbocharger boost pressure control logic according to the present invention;

※도면의 주요부분에 대한 부호의 설명※ Explanation of symbols for main parts of drawing

1 : 엔진 2 : 터빈 4 : 압축기1: engine 2: turbine 4: compressor

6 : 쿨러 8 : 액츄에이터 10 : 웨이스트케이트 제어밸브6 cooler 8 actuator 10 wastegate control valve

12 : 압축공기탱크 14 : 압력조절기 16 : 솔레노이드밸브12: compressed air tank 14: pressure regulator 16: solenoid valve

18 : 전자제어모듈 20 : 블리드 22 : 다이어프램18: electronic control module 20: bleed 22: diaphragm

24 : 로드24: loading

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 터보차저 부스트압 제어논리의 플로우차트이다.3 is a flowchart of a turbocharger boost pressure control logic according to the present invention.

도 3에 도시된 바와 같이, 본 발명에 따른 터보차저 부스트압 제어논리는 MAP이 ECM에 저장된 MAP값 보다 큰지를 판단하는 단계(S100)와, 상기 MAP가 ECM에 저장된 MAP보다 작은 경우 idle모드에서 WGCV가 ON인지를 판단하는 단계(S110)와, 상기 MAP가 ECM에 저장된 MAP보다 큰 경우 idle상태에서 FPP(Foot Pedal Position, 풋페달의 작동)인지를 판단하는 단계(S120)와, 상기 WGCV가 ON인 경우 RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 큰가를 판단하는 단계(S130)와, 상기 WGCV가 OFF인 경우 WGCV를 여는 단계(부스트PWM=0%, S140)와, 상기 단계 S120에서 idle상태에서 FPP인 경우 부스트압이 정해진 값인지를 판단하는 단계(S150)와, 상기 단계 S120에서 idle상태에서 FPP가 아닌 경우 또는 단계 S150에서 부스트압이 정해진 값이 아닌 경우 정상 부스트압 제어를 하는 단계(S160)와, 상기 단계 S130에서 RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 큰 경우 또는 상기 단계 S150에서 부스트압이 정해진 값인 경우 부스트PWM을 ECM에 저장된 배기가스 제어값과 일치시키는 단계(S170)와, RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 작은 경우 WGCV를 닫는 단계(S180)로 이루어져 있다.As shown in FIG. 3, the turbocharger boost pressure control logic according to the present invention determines whether the MAP is larger than the MAP value stored in the ECM (S100), and the WGCV in idle mode when the MAP is smaller than the MAP stored in the ECM. Determining whether is ON (S110), and if the MAP is larger than the MAP stored in the ECM, determining whether the FPP (Foot Pedal Position, foot pedal operation) in the idle state (S120), and the WGCV is ON Determining whether the RPM is greater than the sum of the idle speed and the WGCV operation RPM value stored in the ECM (S130), and if the WGCV is OFF opening the WGCV (Boost PWM = 0%, S140) and the step Determining whether the boost pressure is a predetermined value in the case of FPP in the idle state at S120 (S150), and if the boost pressure is not the predetermined value in the idle state at step S120 or in step S150, performing normal boost pressure control. (S160) and the step S130 If the RPM is greater than the sum of the idle speed and the WGCV operating RPM value stored in the ECM or if the boost pressure is determined in step S150, the boost PWM matches the exhaust gas control value stored in the ECM (S170) and RPM is idle. If it is less than the sum of the WGCV operating RPM value stored in the speed and ECM it consists of a step (S180) of closing the WGCV.

여기에서, 부스트PWM이 100%인 경우는 WGCV가 닫혀 배기가스가 터보차저의 터빈(2)으로 유입되어 터빈(2) 및 터빈(2)과 연결된 압축기(4)를 작동시켜 MAP가 상승하게 된다. 반대로, 부스트PWM이 0%인 경우에는 WGCV가 열려 배기가스가 터빈(2)으로 유입되지 않고 상기 터빈(2)을 우회하여 외부로 배출되게 된다. 또한, 정상 부스트압 제어는 차량 주행시 ECM 에서 피드백되는 MAP의 값이 일정값 이상 상승하는 경우 ECM에서 웨이스트게이트 제어밸브를 작동시켜 MAP값을 다운시켜 ECM에 저장된 데이타값과 동일하게 하는 것을 의미한다. 이외의 경우에는 부스트PWM은 ECM에 저장된 배기가스 제어값에 따라 WGCV를 작동하게 된다.In this case, when the boost PWM is 100%, the WGCV is closed so that the exhaust gas flows into the turbine 2 of the turbocharger to operate the turbine 2 and the compressor 4 connected to the turbine 2, thereby increasing the MAP. . On the contrary, when the boost PWM is 0%, the WGCV is opened so that the exhaust gas does not flow into the turbine 2 and bypasses the turbine 2 and is discharged to the outside. In addition, the normal boost pressure control means that when the value of the MAP fed back from the ECM rises by a certain value or more while driving the vehicle, the wastegate control valve is operated in the ECM to lower the MAP value to equal the data value stored in the ECM. In other cases, the boost PWM operates the WGCV according to the emission control values stored in the ECM.

상기와 같은 본 발명에 따른 터보차저 부스트압 제어논리는 WGCV의 작동횟수와 작동 스트로크를 제어하여 WGCV의 마모에 따른 차량운행중 출력저하 현상과 이에 따른 정비의 문제점을 해결할 수 있고, 터보차저의 내구력을 증대시키고, 별도의 터보차저 개발없이 기존의 터보차저에 사용이 가능하다.The turbocharger boost pressure control logic according to the present invention as described above can solve the problem of output degradation and maintenance due to the wear of the WGCV by controlling the number of operation and the operating stroke of the WGCV, and increase the durability of the turbocharger It is possible to use the existing turbocharger without developing a separate turbocharger.

Claims (1)

터보차저 부스트압 제어논리에 있어서,In turbocharger boost pressure control logic, MAP이 ECM에 저장된 MAP값 보다 큰지를 판단하는 단계(S100);Determining whether the MAP is larger than a MAP value stored in the ECM (S100); 상기 MAP가 ECM에 저장된 MAP보다 작은 경우 idle모드에서 WGCV가 ON인지를 판단하는 단계(S110);Determining whether the WGCV is ON in the idle mode when the MAP is smaller than the MAP stored in the ECM (S110); 상기 MAP가 ECM에 저장된 MAP보다 큰 경우 idle상태에서 FPP인지를 판단하는 단계(S120);Determining whether the MAP is FPP in an idle state when the MAP is larger than the MAP stored in the ECM (S120); 상기 WGCV가 ON인 경우 RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 큰가를 판단하는 단계(S130);Determining whether the RPM is greater than the sum of idle speed and WGCV operation RPM values stored in the ECM when the WGCV is ON (S130); 상기 WGCV가 OFF인 경우 WGCV를 여는 단계(S140);Opening the WGCV when the WGCV is OFF (S140); 상기 단계 S120에서 idle상태에서 FPP인 경우 부스트압이 정해진 값인지를 판단하는 단계(S150);Determining whether the boost pressure is a predetermined value in the case of FPP in the idle state at step S120 (S150); 상기 단계 S120에서 idle상태에서 FPP가 아닌 경우 또는 단계 S150에서 부스트압이 정해진 값이 아닌 경우 정상 부스트압 제어를 하는 단계(S160);Performing normal boost pressure control in the case where it is not FPP in the idle state in step S120 or when the boost pressure is not a predetermined value in step S150 (S160); 상기 단계 S130에서 RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 큰 경우 또는 상기 단계 S150에서 부스트압이 정해진 값인 경우 부스트PWM을 ECM에 저장된 배기가스 제어값과 일치시키는 단계(S170); 및If the RPM in step S130 is greater than the sum of the idle speed and the WGCV operation RPM value stored in the ECM or if the boost pressure is a predetermined value in step S150 step (S170) matching the boost PWM control value stored in the ECM; And RPM이 idle speed와 ECM에 저장된 WGCV작동 RPM값의 합보다 작은 경우 WGCV를 닫는 단계(S180)를 포함하고 있는 것을 특징으로 하는 터보차저 부스트압 제어논리.Turbocharger boost pressure control logic, comprising the step (S180) of closing the WGCV if the RPM is less than the sum of the idle speed and the WGCV operating RPM value stored in the ECM.
KR10-2002-0062805A 2002-10-15 2002-10-15 Turbo charger boost control method KR100516186B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0062805A KR100516186B1 (en) 2002-10-15 2002-10-15 Turbo charger boost control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0062805A KR100516186B1 (en) 2002-10-15 2002-10-15 Turbo charger boost control method

Publications (2)

Publication Number Publication Date
KR20040034760A true KR20040034760A (en) 2004-04-29
KR100516186B1 KR100516186B1 (en) 2005-09-21

Family

ID=37333773

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0062805A KR100516186B1 (en) 2002-10-15 2002-10-15 Turbo charger boost control method

Country Status (1)

Country Link
KR (1) KR100516186B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986213B1 (en) * 2008-06-30 2010-10-12 유진곤 Flowerpots with magnets
US10132234B2 (en) 2016-06-07 2018-11-20 Hyundai Motor Company Method and system for controlling turbocharger of vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227522A (en) * 1989-02-28 1990-09-10 Fuji Heavy Ind Ltd Supercharging pressure control device
JPH10103069A (en) * 1996-09-24 1998-04-21 Ishikawajima Harima Heavy Ind Co Ltd Boost pressure controller for turbocharger
KR100264437B1 (en) * 1996-12-31 2000-08-16 정몽규 Apparatus for limiting of maximum speed of turbo charger
KR100290398B1 (en) * 1997-12-31 2001-07-12 이계안 Turbo charger control apparatus
KR20040000117A (en) * 2002-06-24 2004-01-03 현대자동차주식회사 Control apparatus of waste gate valve
KR20040003130A (en) * 2002-06-29 2004-01-13 현대자동차주식회사 a device and the method for turbo charger controling of diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986213B1 (en) * 2008-06-30 2010-10-12 유진곤 Flowerpots with magnets
US10132234B2 (en) 2016-06-07 2018-11-20 Hyundai Motor Company Method and system for controlling turbocharger of vehicle

Also Published As

Publication number Publication date
KR100516186B1 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
US6418719B2 (en) Control of a variable geometry turbocharger by sensing exhaust pressure
EP1989425B1 (en) Control apparatus of internal combustion engine and control method of internal combustion engine
US7562527B2 (en) Internal combustion engine with a supercharger
US9284881B2 (en) Method for operating a compressor
EP1798394A1 (en) Internal combustion engine with supercharger
KR100516186B1 (en) Turbo charger boost control method
JP2008069667A (en) Starting method of two-cycle engine
KR102249597B1 (en) Cotrol method for engine system
JP2008184935A (en) Blow-by gas reductor
KR102217391B1 (en) Method and device for control of valve stroke change in internal combustion engine
KR20200022190A (en) Control method and control system for variable geometric turbocharger
KR20040039736A (en) Oil temperature control system of automatic transmission and method thereof
KR100391627B1 (en) boost pressure controlling system of turbocharger
KR20190002901A (en) Apparatus and method of supplying air for commercial vehicle
JPH1162721A (en) Exhaust gas recirculation device
JP6576190B2 (en) Control device for internal combustion engine
KR100369138B1 (en) Response improve method of variable nozzle turbo charger
KR0167581B1 (en) Supercharger for automotive engines
US10697360B2 (en) Internal combustion engine control method and internal combustion engine control device
KR20040046036A (en) Intake air flow control device and method in a Turbocharger diesel engine
KR200146524Y1 (en) The engine brake and turbocharger structure according to intake air quantity control in diesel engine
JPH1089027A (en) Valve system control device for internal combustion engine
KR101181092B1 (en) Throttle body structure
CN2520421Y (en) Integrated gas supply device for IC engine
JP2008025402A (en) Turbocharger for internal combustion engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee