KR20040024747A - A High brightness light emitting diode and its method of making - Google Patents

A High brightness light emitting diode and its method of making Download PDF

Info

Publication number
KR20040024747A
KR20040024747A KR1020020056180A KR20020056180A KR20040024747A KR 20040024747 A KR20040024747 A KR 20040024747A KR 1020020056180 A KR1020020056180 A KR 1020020056180A KR 20020056180 A KR20020056180 A KR 20020056180A KR 20040024747 A KR20040024747 A KR 20040024747A
Authority
KR
South Korea
Prior art keywords
light emitting
emitting diode
lead frame
lens
frame
Prior art date
Application number
KR1020020056180A
Other languages
Korean (ko)
Inventor
유애정
Original Assignee
주식회사 티씨오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티씨오 filed Critical 주식회사 티씨오
Priority to KR1020020056180A priority Critical patent/KR20040024747A/en
Priority to AU2003261643A priority patent/AU2003261643A1/en
Priority to PCT/KR2003/001863 priority patent/WO2004025741A1/en
Publication of KR20040024747A publication Critical patent/KR20040024747A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE: A high brightness LED and a fabricating method thereof are provided to improve the brightness by reducing the loss of light to the radiative direction. CONSTITUTION: A plurality of frames are arrayed in frame couple units. An adhesive(211) is dotted on each opposite side of radiative sides of single lead frames. An LED chip(1) is adhered on a lead frame pad cup(2) by performing a die bonding process using the adhesive(211). The LED chip(1) is attacked to at a frame part of the lead frame by using a gold wire. The frame part of the lead frame is loaded on a mold. A lens(7) is formed on the opposite side of the radiative side by using a transmissive epoxy resin(6). A mixture(8) including yttrium, aluminum, and garnet-based phosphor is coated on a surface of the lens(7). A total reflective material(9) is coated on the lens. A package is unified by performing a trimming process.

Description

고휘도 발광다이오드 및 그 제조방법 {A High brightness light emitting diode and its method of making}High brightness light emitting diode and its method of making

본 발명은 고휘도 발광다이오드(LED) 및 그 제조방법에 관한 것으로, 상세히는 광 효율을 향상시킴과 동시에 발광원인 InGaN, GaN계의 발광다이오드 칩을 방사면의 반대방향에 실장하고 방사면의 반대방향에 렌즈를 형성하여 이 렌즈표면에 발광 파장을 변환하기 위하여 외장재에 이트륨·알루미늄·가넷계의 형광체(YAG 형광체)를 에폭시수지에 일정비율로 혼합하여 렌즈표면에 진공증착으로 코팅하고, 코팅된 렌즈표면에 광을 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 도포함으로써 발광다이오드 칩에서 방사되는 광이 형광체 벽면에서 반사하여 나오는 칩의 발광파장과 투과하여 반사코팅재에 의하여 재반사되어 나오는 칩의 발광파장이 혼합됨으로써파장을 변환하여 백색광을 얻을 수 있도록 한 것이다.The present invention relates to a high-brightness light emitting diode (LED) and a method of manufacturing the same. In detail, the light emitting diode chip of InGaN, GaN-based light emitting source is mounted in the opposite direction to the emitting surface while improving the light efficiency. In order to convert the emission wavelength on the lens surface by forming a lens on the surface of the lens, yttrium-aluminum-garnet-based phosphor (YAG phosphor) is mixed with epoxy resin in a fixed ratio and coated on the lens surface by vacuum deposition. By applying a coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects the light on the surface, the light emitted from the light emitting diode chip is transmitted through the light emission wavelength of the chip reflected from the phosphor wall surface and is reflected back by the reflective coating material The light emission wavelengths are mixed to convert the wavelengths to obtain white light.

일반적으로 광 반도체 소자는 전기신호를 거쳐 광의 전송을 수행하기 위한 부품으로서, 전기신호를 발광다이오드에 의해 광신호로 변환한 후 전방출력으로 사용하는 일반적인 발광 소자(350nm~990nm)와, 광의 신호를 받아 전기적인 신호로 전환하는 수발광다이오드(포토 트랜지스터, 포토 다이오드, 트라이악, 포토IC)로 대별된다.In general, an optical semiconductor device is a component for transmitting light through an electric signal, and converts an electric signal into an optical signal by a light emitting diode, and then uses a general light emitting device (350 nm to 990 nm) that is used as a forward output and a light signal. It is generally classified into a light emitting diode (photo transistor, photo diode, triac, photo IC) that receives and converts into an electrical signal.

이들 광 반도체 소자는 반도체 결정의 재료 PN 접합을 형성하는 불순물의 종류와 농도, 구조에 의해 자외광(UV Light)에서 가시광(visual light), 적외광 (infra red light)까지 각종 파장의 제품이 제작되고 있다.These optical semiconductor devices are manufactured with products of various wavelengths from UV light to visual light to infrared red light by the type, concentration and structure of impurities forming the material PN junction of the semiconductor crystal. It is becoming.

자외선(350nm~405nm) 발광다이오드는 주로 살균용 및 위폐 감지기등에 사용되며 가시광(405~880nm) 발광다이오드는 주로 표시용으로 사용하고 적외광 (880~990nm) 발광다이오드는 인간의 시각으로는 검지되지 않는 빛을 수광하는 소자로서 포토 트랜지스터, 포토 다이오드와 조합되어 신호 처리용으로 이용된다.Ultraviolet (350nm ~ 405nm) light emitting diodes are mainly used for sterilization and forgery detection. Visible light (405 ~ 880nm) light emitting diodes are mainly used for display. Infrared light (880 ~ 990nm) light emitting diodes are not detected by human eyes. It is a device for receiving light that is not used in combination with a photo transistor and a photo diode for signal processing.

이하의 설명에서는 가시 발광다이오드와 이를 이용한 백색 발광다이오드로 하여 광 반도체 소자를 갈음하기로 한다.In the following description, an optical semiconductor device is replaced with a visible light emitting diode and a white light emitting diode using the same.

가시 발광다이오드는 p-n접합의 주입형 일렉트로 루미네센스(Electro Luminescence)를 이용한 발광다이오드로서, 발광에 필요한 인가 전압이 매우 낮고 또 그 수명도가 길기 때문에 고체 표시 소자나 화상 표시용 등 매우 넓은 용도로사용되는 반도체 소자이다.The visible light emitting diode is a light emitting diode using an injection type electro luminescence of pn junction. Since the applied voltage required for light emission is very low and its lifespan is long, the visible light emitting diode is used for a wide range of applications such as a solid display device or an image display. It is a semiconductor element used.

일반적인 발광다이오드의 구성은 도 1a,1b에 도시된 바와 같다. 전압을 인가하면 빛(light)을 발산하는 칩(1; Chip)과, 상기 칩(1)에 전압을 인가하기 위한 도전성 금속재의 음극(Cathode)및 양극(Anode) 리드(3,4; lead)로 이루어지고, 상기 칩(1)은 음극 리드(4)의 끝단에 형성된 컵형상의 패드(2)상에 도전성 접착제(211)로 부착됨과 동시에 양극리드(3)의 끝단과 와이어(5)로 본딩되어 음극 및 양극리드(4,3) 사이에서 전기적으로 접속된 구성이다.The configuration of a general light emitting diode is shown in FIGS. 1A and 1B. When a voltage is applied, the chip 1 emits light, and the cathode and anode leads 3 and 4 made of a conductive metal material for applying a voltage to the chip 1 are provided. The chip 1 is attached to the cup-shaped pad 2 formed at the end of the cathode lead 4 with a conductive adhesive 211 and at the same time as the end of the anode lead 3 and the wire 5. It is bonded and electrically connected between the cathode and anode leads 4 and 3.

또한 상기 칩(1)을 외부로부터 보호하기 위해 절연재질의 몰딩물(6)로 몰딩하되, 음극 및 양극리드(4,3)의 다른 끝단의 일부가 외부로 노출되도록 하여 외부에서 칩(1)으로 전압을 인가할 수 있도록 구성된다.In addition, in order to protect the chip (1) from the outside molded with an insulating material (6) of the insulating material, a portion of the other end of the cathode and anode lead (4,3) is exposed to the outside to the chip (1) It is configured to be able to apply a voltage.

외부로 노출된 발광다이오드의 음극 및 양극리드(4,3)를 사용하고자 하는 회로와 전기적으로 접속시키게 되면, 음극 및 양극리드(4,3)를 통해 칩(1)으로 전원이 인가됨으로써 광 반도체 소자인 칩(1)이 발광되어 기능을 수행할 수 있는 것이며, 몰딩물(6)은 통상 투명 에폭시수지(Epoxy)로 이루어지고 발광다이오드 칩(1)의 종류에 따라 적색, 그린, 블루, 오렌지색등으로 제조된다.When the cathode and anode leads 4 and 3 of the light emitting diode exposed to the outside are electrically connected to the circuit to be used, power is applied to the chip 1 through the cathode and anode leads 4 and 3 so that the optical semiconductor The chip 1, which is an element, may emit light to perform a function. The molding 6 is usually made of a transparent epoxy resin, and is red, green, blue, and orange depending on the type of the light emitting diode chip 1. And the like.

한편, 대표적인 백색 발광다이오드의 제조방법은 빛의 3원색인 적색, 녹색, 청색의 발광다이오드를 하나의 패키지에 접착하여 전극을 형성한 후 동시에 발광토록하여 백색광을 얻는 방법인데, 이와 같은 방법은 각 발광다이오드의 발광 파장으로서 660nm의 순수 적색과 525nm의 순수 녹색 및 450nm의 순수 청색이 아니면 동시 발광하여도 백색광이 얻어지지 않을 뿐 아니라, 각 발광다이오드의 발광 휘도 특성이 다르면 색 배합의 불균일에 기인하는 얼룩이 생기고 시인성도 그만큼 저하된다. 그리고, 3색의 발광다이오드를 사용함으로써 제조비용도 매우 고가로 그 실용화가 어려움이 있다.On the other hand, a typical method of manufacturing a white light emitting diode is a method in which the three primary colors of light, red, green, and blue light emitting diodes are bonded to one package to form an electrode, and then simultaneously emit light to obtain white light. If the light emission wavelength of the light emitting diode is not 660 nm pure red, 525 nm pure green, and 450 nm pure blue, white light is not obtained even at the same time, and if the light emission luminance characteristics of each light emitting diode are different, Smudges occur and visibility decreases by that much. In addition, the production cost is also very expensive due to the use of three colors of light emitting diodes, which makes it difficult to realize the practical use.

위와 같은 3색 발광다이오드를 이용한 백색 발광다이오드의 문제점을 해결하고자 최근에는 도 2a,2b에 도시한 바와 같이, InGaN, GaN계의 발광다이오드 칩(1: 350nm~470nm 블루 LED)을 패드컵(2)에 실장한 후 이 패드컵(2)에 광의 일부를 흡수하여 광의 파장과는 다른 파장을 가지는 포토루미네선스 형광체(8)를 포팅 (Potting)하여 백색광을 얻는 방법이 가장 많이 개발되고 있는 방법이다.In order to solve the problem of the white light emitting diode using the three-color light emitting diodes as described above, as shown in FIGS. 2A and 2B, an InGaN, GaN-based light emitting diode chip (1: 350 nm to 470 nm blue LED) is used as a pad cup (2). The most widely developed method is a method of obtaining white light by potting photoluminescent phosphors 8 having a wavelength different from the wavelength of light by absorbing a part of light in the pad cup 2 after being mounted on the pad cup 2). to be.

하지만, 포토루미네선스 형광체(8)를 포팅(Potting)하여 백색광을 얻는 방법은 그 공정이 매우 복잡하고, 형광체의 혼합비율이 일정하지 않으면 파장 불일치로 인하여 얼룩이 생기고 시인성도 그만큼 저하된다. 또한, 이와 같은 방법은 휘도가 매우 낮아 백색 발광다이오드를 실용화하는 데에는 어려움이 있다.However, the method of obtaining the white light by potting the photoluminescent phosphor 8 is very complicated. If the mixing ratio of the phosphor is not constant, staining occurs due to wavelength mismatch, and the visibility is also reduced. In addition, such a method has a low luminance, which makes it difficult to put a white light emitting diode into practical use.

위의 두가지 방법이 현재 개발되고 있는 백색 발광다이오드 제조 방법이다. 이들 방법이 실용화가 어려운 점을 간단히 요약하면 아래와 같다.The above two methods are a method of manufacturing white light emitting diodes currently being developed. In summary, these methods are difficult to put to practical use as follows.

먼저, 3색 발광다이오드를 이용한 백색 발광다이오드 제조방법은 고가의 제조방법이고, 백색광을 얻기가 곤란하며, 얼룩에 의한 시인성이 저하되고, 시간에 따른 3색 발광다이오드의 각각 다른 휘도 저하 속도로 백색광의 경년 변화 문제를 해결하기 곤란하다.First, a white light emitting diode manufacturing method using a three-color light emitting diode is an expensive manufacturing method, it is difficult to obtain white light, visibility is reduced by staining, and white light at different luminance drop rates of the three color light emitting diodes with time. It is difficult to solve the secular change problem.

또, 포토루미네선스 형광체를 포팅(Potting)하여 백색광을 얻는 방법은 형광체의 두께와 혼합 비율에 따라 제조할 때마다 다른 파장의 제품이 생산됨으로 인하여 제조공정이 매우 어렵고, 또한 형광체의 손실 비용이 높아 백색 발광다이오드가 매우 고가이고, 휘도가 매우 낮아 백색광을 상용화하는 데는 어려움이 있다.In addition, the method of obtaining white light by potting photoluminescent phosphors is very difficult because the products having different wavelengths are produced every time they are manufactured according to the thickness and mixing ratio of the phosphors. As a result, the white light emitting diode is very expensive and the luminance is very low, making it difficult to commercialize the white light.

본 발명은 이러한 백색 발광다이오드의 문제점을 해결하기 위한 것으로, 빛의 손실을 줄여서 방사방향으로 방사할 수 있도록 하는 고휘도의 백색 발광다이오드 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the white light emitting diode, and to provide a high brightness white light emitting diode and a method for manufacturing the same to reduce the loss of light to radiate in the radial direction.

본 발명의 다른 목적은 시간 변화에 따른 백색광의 얼룩과 파장 변화가 없는 고신뢰도의 백색 발광다이오드 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a highly reliable white light emitting diode and a method of manufacturing the same, which do not have white spots and wavelength changes with time.

본 발명의 또 다른 목적은 발광 소자로부터 방사하는 빛을 손실없이 전방으로 조사하여 방사효율을 향상시킬 수 있는 고휘도 발광다이오드 및 그 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a high-brightness light emitting diode and a method of manufacturing the same, which can improve radiation efficiency by irradiating light emitted from the light emitting device forward without loss.

본 발명의 또 다른 목적은 패키지의 렌즈를 구면 거울, 포물경 거울로 제작하여 전방으로 방사되는 빛의 직진성을 향상시킴으로써 발광다이오드의 휘도를 향상시키며 보다 장거리에서도 광을 이용할 수 있도록 하여 발광다이오드의 실용화를 실현하는 것이다.Another object of the present invention is to make the lens of the package as a spherical mirror, a parabolic mirror to improve the linearity of the light emitted to the front to improve the brightness of the light emitting diode and to use the light at a longer distance to the practical use of the light emitting diode To realize that.

이러한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 발광다이오드의 제조방법은 한 쌍의 프레임부가 다수개의 1조로 다수열로 배열구성되며, 단일 리드프레임(Lead Frame)마다 방사면의 반대방향에 도전성 접착제로 도팅(Dotting)하는 제1공정과, 이 접착제에 발광다이오드 칩(350nm~470nm)을 리드프레임 패드컵 부분에 다이본딩(Die Bonding)하는 제2공정과, 상기 리드프레임(Lead Frame)의 프레임부로 상기 발광다이오드 칩을 골드 와이어에 의해 전극 접합하는 제3공정과, 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지로 몰드하여 방사면의 반대방향에 렌즈를 형성하는 제4공정과, 몰드가 끝난 렌즈 표면에 이트륨,알루미늄,가넷계의 형광체(YAG 형광체)를 투명 에폭시수지에 일정비율로 혼합하여 진공증착에 의해 코팅하는 제5공정과, 코팅된 렌즈표면에 광을 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 코팅하는 제6공정과, 트리밍 작업을 통하여 패키지를 단일화시키는 제7공정을 포함하여 이루어지는 것을 특징으로 한다.In the manufacturing method of the light emitting diode according to the embodiment of the present invention for achieving the above object, a pair of frame parts are arranged in a plurality of groups in a plurality of sets, each in a single lead frame (Lead Frame) in the opposite direction of the radiation surface A first step of dotting with a conductive adhesive, a second step of die bonding a light emitting diode chip (350 nm to 470 nm) to the lead frame pad cup portion, and the lead frame A third step of electrode-bonding the light emitting diode chip with a gold wire to a frame portion of the frame portion, a fourth process of seating the frame portion of the lead frame on a mold mold and molding a transmissive epoxy resin to form a lens in a direction opposite to the radiation surface; A fifth step of coating yttrium, aluminum and garnet-based phosphors (YAG phosphors) on the surface of the molded lens with a transparent epoxy resin in a fixed ratio and coating them by vacuum deposition; A first and a characterized in that comprising the step of claim 6, 7 unifies the package through the step, a trimming operation of coating the coating material (rhodium, Ag, Au, zinc sulfide) that the total reflection of light on the surface of the lens.

본 발명에서는 발광다이오드 칩을 방사면의 반대방향에 실장하고, 방사면의 반대방향에 투과성 에폭시수지로 구형 또는 포물경 렌즈를 형성하며, 이 렌즈 표면에 발광 파장을 변환하기 위하여 외장재에 이트륨·알루미늄·가넷계의 형광체를 에폭시수지에 일정비율로 혼합하여 렌즈표면에 진공증착으로 코팅하고, 코팅된 렌즈표면에 광을 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 도포함으로써 발광다이오드 칩에서 방사되는 광이 형광체 벽면에서 반사하여 나오는 칩의 발광파장과 투과하여 반사코팅재에 의하여 재반사되어 나오는 칩의 발광파장이 혼합됨으로써 파장을 변환하여 백색광을 얻을 수 있도록 한 것이다.In the present invention, the light emitting diode chip is mounted in the opposite direction to the radiation surface, and a spherical or parabolic lens is formed of a transparent epoxy resin in the opposite direction to the radiation surface, and the yttrium-aluminum is applied to the exterior material in order to convert the emission wavelength on the lens surface. By mixing a garnet-based phosphor in an epoxy resin at a certain ratio, it is coated by vacuum deposition on the lens surface, and a coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects light on the coated lens surface is applied in the LED chip. The emitted light is mixed with the light emission wavelength of the chip reflected from the phosphor wall surface and the light emission wavelength of the chip transmitted through and reflected back by the reflective coating material to convert the wavelength to obtain white light.

본 발명에 따른 광 반도체 소자의 제조방법의 다른 실시예에서는 단일 리드프레임마다 방사면의 반대방향에 도전성 접착제로 도팅하는 제1공정과, 도전성 접착제에 발광다이오드 칩(430nm~470nm)을 리드프레임 패드컵부분에 다이본딩하는 제2공정과, 상기 리드프레임의 프레임부로 상기 발광다이오드 칩을 골드 와이어에 의해 전극 접합하는 제3공정과, 이트륨,알루미늄,가넷계 형광체를 투명 에폭시수지와 일정 비율로 혼합하여 발광다이오드 칩(350nm~470nm)에 포팅하는 제4공정과, 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지로 방사면의 반대방향에 몰드하여 렌즈를 형성하는 제5공정과, 몰드가 끝난 렌즈 표면에 광을 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 코팅하는 제6공정과, 트리밍 작업을 통하여 패키지를 단일화시키는 제7공정을 포함하여 이루어지는 것을 특징으로 한다.In another embodiment of the method for manufacturing an optical semiconductor device according to the present invention, the first step of doping with a conductive adhesive in the opposite direction of the radiation surface for each single lead frame, and a light emitting diode chip (430nm ~ 470nm) to the conductive adhesive lead frame pad A second step of die bonding to a cup part, a third step of electrode bonding the light emitting diode chip to the frame part of the lead frame with a gold wire, and mixing of yttrium, aluminum and garnet-based phosphors with a transparent epoxy resin at a predetermined ratio A fourth step of potting the light emitting diode chip (350 nm to 470 nm), a fifth step of forming a lens by mounting the frame portion of the lead frame in a mold mold and molding the lens in a direction opposite to the radiation surface with a transmissive epoxy resin; A sixth process of coating a coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects the light on the finished lens surface, and a package which unifies the package through trimming. It is characterized by comprising seven steps.

본 실시예에서는 발광다이오드 칩을 방사면의 반대방향에 실장하고, 이트륨,알루미늄,가넷계 형광체를 투명 에폭시수지와 일정 비율로 혼합하여 발광다이오드 칩(350nm~470nm)에 포팅하며, 그 위에 투과성 에폭시수지로 구형 또는 포물경 렌즈를 형성하며, 이 렌즈 표면에 광을 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 도포하여 백색광을 얻을 수 있도록 한 것이다.In this embodiment, the light emitting diode chip is mounted on the opposite side of the emitting surface, and yttrium, aluminum and garnet-based phosphors are mixed with the transparent epoxy resin at a predetermined ratio and ported to the light emitting diode chip (350 nm to 470 nm), and a transparent epoxy is placed thereon. A spherical or parabolic lens is formed of resin, and a coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects light is applied to the lens surface to obtain white light.

본 실시예의 경우에는 발광다이오드 칩(350nm~470nm)에서 방사되는 블루파장의 빛이 발광다이오드 칩(350nm~470nm)위의 YAG 형광체를 투과하면서 YAG 파장과 혼합하여 백색광을 방출한다. 이 백색광은 구면, 포물경의 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 도포한 벽면에서 반사하여 전방으로 방사함으로써 고휘도의 백색광을 얻을 수 있다.In the present embodiment, the blue wavelength light emitted from the light emitting diode chips (350nm to 470nm) transmits the YAG phosphor on the light emitting diode chips (350nm to 470nm), and mixes with the YAG wavelength to emit white light. This white light is reflected on a wall surface coated with a spherical surface and a total reflection of a parabolic mirror (rhodium, Ag, Au, zinc sulfide) and radiates forward to obtain white light having high luminance.

본 발명에 따른 광 반도체 소자의 제조방법의 또 다른 실시예에서는 백색 발광다이오드가 아닌 가시 발광다이오드나, 적외, 자외광의 발광다이오드의 방사 효율을 향상시키는 방법으로, 상기 첫번째 실시예에서와 같이 투과형 에폭시수지로 몰드하는 제4공정후 이트륨,알루미늄,가넷계의 형광체의 코팅공정을 없애고, 렌즈 표면에 광을 전반사하는 코팅재(로듐,Ag,Au,황화아연)를 코팅하는 공정으로만 이루어져 고효율의 가시, 적외, 자외선 발광다이오드의 제조방법과 이에 의해 제조된 발광다이오드를 제공한다.In another embodiment of the method for manufacturing an optical semiconductor device according to the present invention is a method of improving the radiation efficiency of the visible light emitting diodes, not the white light emitting diodes, or the infrared or ultraviolet light emitting diodes, the transmission type as in the first embodiment After the fourth process of molding with epoxy resin, it removes the coating process of yttrium, aluminum, garnet-based phosphors, and coats the coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects light on the lens surface. Provided are a method of manufacturing a visible, infrared and ultraviolet light emitting diode, and a light emitting diode manufactured thereby.

도 1a, 1b는 종래 발광다이오드를 도시한 단면도,1A and 1B are sectional views showing a conventional light emitting diode,

도 2a, 2b는 종래의 백색 발광다이오드를 도시한 단면도,2A and 2B are cross-sectional views showing a conventional white light emitting diode;

도 3a,3b,3c는 각각 본 발명의 일 실시예에 따른 백색 발광다이오드의 평단면도, 정단면도 및 측단면도,3A, 3B, and 3C are planar cross-sectional views, forward cross-sectional views, and side cross-sectional views of a white light emitting diode according to an embodiment of the present invention, respectively;

도 4a,4b,4c는 각각 본 발명의 다른 실시예에 따른 백색 발광다이오드의 평단면도, 정단면도 및 측단면도,4A, 4B, and 4C are planar, front and side cross-sectional views of a white light emitting diode according to another embodiment of the present invention, respectively;

도 5a,5b,5c는 각각 본 발명의 또다른 실시예에 따른 고휘도 발광다이오드 (350nm~990nm)의 평단면도, 정단면도 및 측단면도,5A, 5B, and 5C are planar, front and side cross-sectional views, respectively, of a high-brightness light emitting diode (350 nm to 990 nm) according to another embodiment of the present invention;

도 6은 본 발명의 또 다른 실시예에 따른 렌즈의 단면도,6 is a cross-sectional view of a lens according to another embodiment of the present invention;

도 7은 구면 렌즈의 축 위에 있는 물체와 상의 위치, 크기, 초점거리 및 상의 배율을 설명하기 위한 도면,7 is a view for explaining the position, size, focal length and magnification of an object and an image on an axis of a spherical lens;

도 8은 본 발명의 일 실시예에 따른 백색 발광다이오드의 파장 분포를 도시한 그래프이다.8 is a graph illustrating wavelength distribution of a white light emitting diode according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : InGaN, GaN계 발광다이오드 칩 2 : 리드프레임 패드컵1: InGaN, GaN-based light emitting diode chip 2: Lead frame pad cup

211 : 도전성 접착제 3 : 양극 리드프레임211: conductive adhesive 3: anode lead frame

31 : 양극 리드 4 : 음극 리드프레임31: positive lead 4: negative lead frame

41 : 음극 리드 5 : 골드 와이어41: cathode lead 5: gold wire

6 : 투과형 에폭시수지 61 : 반사형 사출 재질6: Transmission type epoxy resin 61: Reflective injection material

7 : 에폭시 렌즈(구형,포물경)7: epoxy lens (spherical, parabolic)

8 : 형광체(이트륨,알루미늄,가넷계)와 에폭시수지의 혼합물8: mixture of phosphor (yttrium, aluminum, garnet) and epoxy resin

9 : 전반사하는 코팅재(로듐,Ag,Au,황화아연)-거울면 코팅재9: Coating material for total reflection (rhodium, Ag, Au, zinc sulfide)-Mirror surface coating material

10 : 광경로 11 : 발광다이오드 칩(적외, 자외, 가시광 다이오드)10: light path 11: light emitting diode chip (infrared, ultraviolet, visible light diode)

이하 첨부된 도면을 참조로 본 발명에 따른 광 반도체 소자 및 그 제조방법을 설명하기로 한다.Hereinafter, an optical semiconductor device and a manufacturing method thereof according to the present invention will be described with reference to the accompanying drawings.

도 3a,3b,3c는 각각 본 발명의 일 실시예에 따른 백색 광 반도체 소자의 평단면도, 정단면도 및 측단면도이다.3A, 3B, and 3C are plan cross-sectional views, forward cross-sectional views, and side cross-sectional views, respectively, of a white optical semiconductor device according to one embodiment of the present invention.

도시된 바와 같이 본 발명에 따른 백색 광 반도체 소자의 구성은 양극 리드프레임(Anode Lead Frame)(3)과, 음극 리드프레임(Cathode Lead Frame)(4)과, 상기 양,음극 리드프레임(3,4)과 발광다이오드 칩(1)의 통전을 위한 통전 와이어(5)와, 상기 두 리드프레임(3)(4)부분을 몰딩한 투과 에폭시수지(6)와, 상기 투과 에폭시수지(6)하단부에 형성된 렌즈표면(7)과, 렌즈표면(7)에 350nm~470nm파장대의 광을 520nm~630nm의 파장의 일부로 변환하는 이트륨,알루미늄,가넷계의 형광체 코팅층(8)과, 이 형광체 표면에 광을 전반사 시켜주는 코팅재(9; 로듐,Ag,Au,황화아연)로 이루어져 있다.As shown, a white optical semiconductor device according to the present invention includes an anode lead frame 3, a cathode lead frame 4, and a positive and negative lead frame 3. 4) and a conducting wire 5 for energizing the LED chip 1, a permeable epoxy resin 6 formed by molding the two lead frames 3 and 4, and a lower end of the permeable epoxy resin 6; Yttrium, aluminum, garnet-based phosphor coating layer 8 for converting light of 350 nm to 470 nm wavelength into a part of the wavelength of 520 nm to 630 nm on the lens surface 7 formed on the lens surface 7 and the surface of the phosphor; It consists of a coating material (9; rhodium, Ag, Au, zinc sulfide) that totally reflects.

상기한 백색 발광다이오드의 제조방법은, 한 쌍의 프레임부가 다수열로 배열구성되고 단일 리드프레임(Lead Frame)마다 발광다이오드 칩(1)을 부착시키기 위하여 접착제(211)로 도팅(Dotting)하게 되는 제1공정과, 이 접착제(211)에 발광다이오드 칩(1)(350nm~470nm)을 리드프레임 패드컵(2)부분에 다이본딩(Die Bonding)하는 제2공정과, 상기 리드프레임(Lead Frame)의 프레임부로 상기 발광다이오드 칩(1)을 골드 와이어(5)에 의해 전극 접합하는 제3공정과, 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지(6)로 몰드하는 제4공정과, 몰드가 끝난 에폭시수지(6)로 만들어진 렌즈(7) 표면에 이트륨,알루미늄,가넷계의 형광체 (8)를 투명 에폭시수지에 일정비율로 혼합하여 코팅하는 제5공정과, 코팅된 렌즈 (7)표면에 광을 전반사하는 코팅재(9:로듐,Ag,Au,황화아연)를 코팅하는 제6공정과, 트리밍 작업을 통하여 패키지를 단일화시키는 제7공정을 거쳐 제조된다.In the method of manufacturing the white light emitting diode, a pair of frame portions are arranged in a plurality of rows and doted with an adhesive 211 to attach the light emitting diode chip 1 to each single lead frame. A first step, and a second step of die bonding the light emitting diode chip 1 (350 nm to 470 nm) to the lead frame pad cup 2 in the adhesive 211, and the lead frame A third step of electrode joining the light emitting diode chip 1 to the frame part of the electrode by a gold wire 5, and a fourth step of seating the frame part of the lead frame in a mold die and molding the transparent epoxy resin 6 into a mold. And a fifth process of coating yttrium, aluminum, and garnet-based phosphors 8 on a surface of a lens 7 made of a molded epoxy resin 6 by mixing them at a predetermined ratio with a transparent epoxy resin, and a coated lens 7 Coating material for total reflection of light on the surface (9: rhodium, Ag, Au, sulfide Lead) is coated through a sixth step of coating and a seventh step of unifying the package through trimming.

도 4a,4b,4c는 본 발명의 또다른 실시예를 도시한 백색 발광다이오드의 평단면도, 정단면도 및 측단면도이다.4A, 4B, and 4C are planar, front and side cross-sectional views of a white light emitting diode showing another embodiment of the present invention.

이것은 350nm~470nm의 파장을 갖는 GaN, InGaN계의 블루의 발광다이오드 칩 (1)을 리드프레임(3,4)의 패드컵(2)에 다이본딩한 후, 이트륨,알루미늄,가넷계 형광체를 투명 에폭시수지와 일정비율로 혼합한 혼합물(8)을 리드프레임의 패드컵에 포팅(Potting)하여 경화시킨 후, 리드프레임의 프레임부를 몰드 금형에 안착시키고투과형 에폭시수지(6)로 몰드한 후, 에폭시수지(6)로 만들어진 렌즈(7)의 표면에 전반사 코팅재(9)를 도포한 것이다.This is done by bonding a GaN, InGaN-based blue light emitting diode chip 1 having a wavelength of 350 nm to 470 nm to the pad cup 2 of the lead frames 3 and 4, and then making the yttrium, aluminum and garnet phosphors transparent. After the mixture (8) mixed with epoxy resin at a fixed ratio is potted and hardened by potting on the pad cup of the lead frame, the frame part of the lead frame is seated in a mold mold and molded into a transparent epoxy resin (6), and then epoxy The total reflection coating material 9 is applied to the surface of the lens 7 made of the resin 6.

상기한 실시예의 백색 발광다이오드를 제조하는 방법은, 한 쌍의 프레임부가 다수개의 1조로 다수열로 배열구성되며 단일 리드프레임마다 도전성 접착제(211)로 도팅하는 제1공정과, 도전성 접착제에 발광다이오드 칩(1; 430nm~470nm)을 리드프레임 패드컵부분에 다이본딩하는 제2공정과, 상기 리드프레임의 프레임부로 상기 발광다이오드 칩(1)을 골드 와이어(5)에 의해 전극 접합하는 제3공정과, 이트륨,알루미늄,가넷계 형광체를 투명 에폭시수지와 일정 비율로 혼합한 혼합물(8)을 발광다이오드 칩(1; 350nm~470nm)에 포팅하는 제4공정과, 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지(6)로 몰드하는 제5공정과, 투과형 에폭시수지(6)의 몰드가 끝나서 만들어진 렌즈(7) 표면에 광을 전반사하는 코팅재(9; 로듐,Ag,Au,황화아연)를 코팅하는 제6공정과, 트리밍 작업을 통하여 패키지를 단일화시키는 제7공정을 거쳐 제조된다.The method of manufacturing the white light emitting diode of the above embodiment comprises a first step in which a pair of frame portions are arranged in a plurality of groups and doped with a conductive adhesive 211 per single lead frame, and a light emitting diode on the conductive adhesive. A second step of die bonding the chips 1 (430 nm to 470 nm) to the lead frame pad cup portion, and a third step of electrode bonding the light emitting diode chip 1 to the frame portion of the lead frame by the gold wire 5; And a fourth step of potting a mixture 8 of yttrium, aluminum, and garnet-based phosphors with a transparent epoxy resin to a light emitting diode chip (1; 350 nm to 470 nm), and a frame portion of the lead frame to a mold mold. The fifth step of seating and molding into the transmissive epoxy resin (6), and the coating material (9; rhodium, Ag, Au, zinc sulfide) to totally reflect the light on the surface of the lens (7) made by the mold of the transmissive epoxy resin (6) 6th coating Jung, is produced through a trimming operation after the seventh step of unifying the package.

도 5a,5b,5c는 본 발명의 또 다른 실시에 따른 발광다이오드의 광효율 향상과 광의 직진성을 향상시키기 위한 발광다이오드로서, 백색 발광다이오드가 아닌 가시광, 적외광, 자외광 발광다이오드를 렌즈(7) 표면에 전반사 코팅재(9)를 도포한 구면 거울, 포물경 거울의 원리를 이용하여 광을 직진하도록 전반사시킴으로써 빛의 손실을 방지할 수 있도록 한 것이다.5A, 5B, and 5C are light emitting diodes for improving light efficiency and light linearity of light emitting diodes according to still another embodiment of the present invention, and do not use white light emitting diodes but display visible light, infrared light, and ultraviolet light emitting diodes. It is to prevent the loss of light by totally reflecting the light to go straight by using the principle of the spherical mirror and the parabolic mirror coated with the total reflection coating material 9 on the surface.

이와 같은 발광 다이오드의 제조방법은 한 쌍의 프레임부가 다수개의 1조로다수열로 배열구성되며 단일 리드프레임마다 도전성 접착제(211)로 도팅하는 제1공정과, 이 도전성 접착제(211)에 발광다이오드 칩(11; 350nm~990nm)을 리드프레임 패드컵 부분에 다이본딩하는 제2공정과, 상기 리드프레임의 프레임부로 상기 발광다이오드 칩(11)을 골드와이어(5)에 의해 전극 접합하는 제3공정과, 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지(6)로 몰드하는 제4공정과, 몰드가 끝난 렌즈(7) 표면에 광을 전반사하는 코팅재(9; 로듐,Ag,Au,황화 아연)를 코팅하는 제5공정과, 트리밍 작업을 통하여 패키지를 단일화시키는 제6공정을 포함하여 이루어진다.The method of manufacturing such a light emitting diode includes a first step in which a pair of frame portions are arranged in a plurality of sets and doted with a conductive adhesive 211 for each single lead frame, and a light emitting diode chip on the conductive adhesive 211. A second step of die bonding (11; 350 nm to 990 nm) to the lead frame pad cup portion, a third step of electrode bonding the light emitting diode chip 11 to the frame portion of the lead frame by gold wires 5; And a fourth step of seating the frame portion of the lead frame in a mold mold and molding the transparent epoxy resin 6 and a coating material 9 totally reflecting light onto the surface of the mold 7, rhodium, Ag, Au, zinc sulfide. ) And a sixth step of unifying the package through trimming.

도 6은 본 발명에 의한 고휘도의 LED를 얻을 수 있는 발광다이오드의 광효율 향상과 광의 직진성을 향상하기 위한 광반도체 소자의 렌즈 단면도로써, 도 3에 도시된 실시예의 발광다이오드 칩(1)에서 나오는 광을 전반사시키기 위한 렌즈 도면을 나타낸 것이다.FIG. 6 is a lens cross-sectional view of an optical semiconductor device for improving light efficiency and improving linearity of light of a light emitting diode capable of obtaining a high brightness LED according to the present invention, and the light emitted from the light emitting diode chip 1 of the embodiment shown in FIG. 3. It shows a lens drawing for total reflection.

이와 같이 본 발명은 구면, 포물경 거울의 원리를 이용하여 광을 전반사시킴으로써 빛의 손실을 방지할 수 있게 된다. 구의 바깥쪽을 반사면으로 하는 凸형의 구면거울은 볼록거울이라 하며, 구의 안쪽을 반사면으로 하는 凹형의 구면거울은 오목거울이라 한다. 볼록거울·오목거울 어느 것이나 결상작용(結像作用)이 있고, 거울면의 중심을 극, 경구(鏡球)의 곡률중심을 구심, 극과 구심을 잇는 직선을 거울축 또는 광축이라 한다. 구면거울의 초점은 반사면으로 되어 있는 구면 반지름의 1/2로 그 위치는 거울의 중심과 구면의 중심을 잇는 선상에 있다. 단, 볼록거울은빛을 발산시키는 기능을 갖는 것으로 허초점(虛焦點), 즉 초점이 거울의 후방에 있으며, 그에 의한 물체의 영상은 모두 허상이고, 물체를 거울에 대해서 어떤 위치에 놓더라도 상은 실물보다 작고 정립하고 있다. 이에 대해서 오목거울에서는 상의 성질이 물체의 위치에 따라 변하며, 물체가 초점보다 거울 가까이에 있을 때는 정립된 상(허상)이 확대되어 나타난다. 물체가 초점과 구면중심의 중간에 있을 때는 도립(倒立)된 실상이 확대되어 나타난다. 물체가 구면의 중심보다 먼 곳에 있을 때는 축소된 도립상(실상)이 된다. 즉, 광학적으로 오목거울 렌즈는 볼록렌즈와 동일한 기능을 갖는다고 하여 광를 전반사 시킬때 광을 직진선을 향상 시킴으로써 발광다이오드의 휘도를 향상시킬수 있다. 광학적으로 볼록거울 렌즈는 오목렌즈와 동일한 기능을 갖는다고 하여 광을 전반사 시킬 때 광을 장축으로 넓게 퍼트리는 작용을 하여 광의 지향성을 넓게 퍼트려 준다.As described above, the present invention can prevent the loss of light by totally reflecting light using the principle of spherical and parabolic mirrors. A spherical mirror of convex shape is called a convex mirror and the concave mirror is concave mirror. Both convex mirrors and convex mirrors have an image forming effect, and the center of the mirror surface is the pole, the orbital center of curvature, and the straight line connecting the pole and the center is called the mirror or optical axis. The focus of the spherical mirror is 1/2 of the spherical radius of the reflecting surface, and its position is on the line connecting the center of the mirror and the center of the sphere. However, the convex mirror has a function of emitting light, and the focal point, i.e., the focal point is behind the mirror, and the images of the object are all virtual images, and no matter where the object is placed with respect to the mirror, the image is larger than the real object. It is small and establishes. On the other hand, in concave mirrors, the nature of the image changes depending on the position of the object, and when the object is closer to the mirror than the focal point, the established image (imaginary image) is enlarged. When the object is between the focal point and the spherical center, the inverted image appears enlarged. When the object is further away from the center of the sphere, it becomes a reduced inverted image. That is, since the optically concave mirror lens has the same function as the convex lens, the luminance of the light emitting diode can be improved by improving the straight line of the light when totally reflecting the light. An optically convex mirror lens has the same function as a concave lens, and spreads the light in a long axis when the total reflection is reflected.

구면거울의 축 위에 있는 물체와 상의 위치, 크기, 초점거리 및 상의 배율은 다음 식으로 구한다. 즉, 도 7에 도시한 바와 같이 경심에서 물체 및 상까지의 거리를 a, b, 초점거리를 f, 상의 배율을 m이라 하면, 1/a+1/b=1/f=2/r, m=b/a가 된다. 상의 배율은 발광다이오드의 칩이 구면 거울 렌즈에 확대되어 보이는 비율이고 이 발광다이오드 칩의 확대 비율이 구면 거울 렌즈에 가득차게 제작할수록 광의 직진성 및 휘도는 향상되게 된다. 여기서 a, b가 양(+)이면 거울 앞쪽에 실상이 생기고, a와 b가 음(-)이면 거울 뒤쪽에 허상이 생긴다. 또 f> 0이면 오목거울, f 〉0이면 볼록거울이며, m은 상이 정립할 때를 +, 도립할 때를 -로 한다.The position, size, focal length, and magnification of the object and image on the axis of the spherical mirror are obtained by the following equation. That is, as shown in FIG. 7, when the distance from the center of gravity to the object and the image is a, b, the focal length is f, and the image magnification is m, 1 / a + 1 / b = 1 / f = 2 / r, m = b / a. The magnification of the image is a ratio in which the chip of the light emitting diode is enlarged to the spherical mirror lens, and as the magnification of the light emitting diode chip is filled in the spherical mirror lens, the linearity and brightness of the light are improved. If a and b are positive, a real image occurs in front of the mirror, and if a and b are negative, a virtual image occurs behind the mirror. If f> 0, it is a concave mirror, and if f> 0, it is a convex mirror, and m is + when the image is established and-when it is inverted.

단, 이 관계식이 정확하게 성립되는 것은 빛이 광축을 따라 좁은 폭을 가지고 방사할 때이며, 거울면 전체에 들어오는 빛이나 광축에 대해서 큰 각도로 입사하는 빛에 대해서는 엄밀히 맞지 않는다. 이 경향은 특히 초점거리가 거울에 비해서 작을수록 두드러지며, 이것을 일반적으로 구면수차라 한다. 구면수차를 피하기 위해서는 보통 구면거울 대신에 반사면을 포물면으로 한 포물면거울이 사용된다. 도 5는 이들 구면 수차를 보증하기 위하여 설계된 포물경 거울 렌즈이다.However, this relation holds true when light is emitted with a narrow width along the optical axis, and it does not strictly apply to light entering the entire mirror surface or light incident at a large angle with respect to the optical axis. This tendency is especially pronounced when the focal length is smaller than the mirror, which is generally called spherical aberration. To avoid spherical aberration, parabolic mirrors with reflective surfaces as parabolic mirrors are usually used instead of spherical mirrors. 5 is a parabolic mirror lens designed to ensure these spherical aberrations.

평면상에 하나의 정점 F와 하나의 정직선 g가 주어진 경우, F에 이르는 거리 PF와 g에 이르는 거리 PH가 같은 점 P의 자취를, F를 초점, g를 준선(準線)으로 하는 포물선이라 한다. 물체를 공중에 비스듬히 던져 올리면 던져진 물체는 이 곡선을 그리므로 포물선이라고 한다.Given a vertex F and a straight line g on the plane, a trace of point P where the distance PF to F and the distance PH to g is the same, a parabola with F as the focal point and g as the quasi line do. When an object is thrown into the air at an angle, the thrown object is called a parabola because it draws this curve.

그림에서와 같이 x축, y축을 취하면 포물선의 방정식은 y2=4px 이다. 단, F좌표는 (p,0)으로 한다. 이 포물경 렌즈에 의하여 발광다이오드에서 방사되는 광은 렌즈 표면에서 전반사될 때 평행광으로 전반사됨으로 광의 직직선을 향상 시키고 휘도를 향상시키는 역할을 하게 된다.Taking the x and y axes as shown in the figure, the parabolic equation is y 2 = 4px. However, the F coordinate is set to (p, 0). The light emitted from the light emitting diode by the parabolic lens is totally reflected by parallel light when totally reflected from the lens surface, thereby improving the linearity of the light and improving luminance.

도 8은 본 발명에서 구면 렌즈, 포물경 렌즈 표면에 이트륨,알루미늄,가넷계의 형광체 코팅층과 이 형광체 표면에 광을 전반사 시켜주는 코팅재(로듐,Ag,Au,황화 아연)를 도포하여 일정한 색좌표를 구현한 백색광의 파장 분포도이다. 이는 렌즈표면에 이들 코팅 재질을 일정 두께로 도포함으로써 일정한 파장 분포를 나타내게 됨을 알 수 있다.8 is a surface of a spherical lens and a parabolic lens in the present invention is coated with a phosphor coating layer of yttrium, aluminum, garnet and a coating material (rhodium, Ag, Au, zinc sulfide) for total reflection of light on the surface of the phosphor to give a constant color coordinate The wavelength distribution map of the implemented white light. It can be seen that by coating these coating materials with a certain thickness on the lens surface, it exhibits a constant wavelength distribution.

이상에서 설명한 바와 같이 본 발명은 구면 렌즈, 포물경 렌즈 표면에 이트륨,알루미늄,가넷계의 형광체 코팅층과 이 형광체 표면에 광을 전반사 시켜주는 코팅재(로듐,Ag,Au,황화 아연)를 도포하면 일정한 색좌표를 구현한 백색광을 고휘도 및 저가의 제품으로 얻을 수 있다. 또한 본 발명의 제조 공정은 단순하고 경년 변화가 없는 백색광을 얻을 수 있으며, 구면경 렌즈, 포물경 렌즈 표면에서 광을 전반사시켜주는 코팅재(로듐,Ag,Au,황화 아연)를 도포하면 전반사되는 광의 직직성을 개선하여 광을 손실없이 방사방향으로 광을 방사시킴으로써 고휘도의 제품을 생산할 수 있게 되는 효과를 갖는다.As described above, the present invention provides a uniform phosphor coating layer of yttrium, aluminum, and garnet on the surface of a spherical lens and a parabolic lens and a coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects light on the surface of the phosphor. White light with color coordinates can be obtained with high brightness and low cost. In addition, the manufacturing process of the present invention can obtain a white light with a simple and no aging change, the application of a coating material (rhodium, Ag, Au, zinc sulfide) that totally reflects the light from the surface of the spherical lens and parabolic lens, the total of the light is totally reflected By improving the directivity, by emitting light in a radial direction without losing light, it is possible to produce a product of high brightness.

Claims (6)

한 쌍의 프레임부가 다수개의 1조로 다수열로 배열구성되며 단일 리드프레임 (Lead Frame)마다 방사면의 반대방향에 접착제(211)로 도팅(Dotting)하는 제1공정과;A first step in which a pair of frame portions are arranged in a plurality of sets in a plurality of rows and dotting with an adhesive 211 in a direction opposite to the radial surface for each single lead frame; 상기 접착제(211)에 발광다이오드 칩(1; 350nm~470nm)을 리드프레임 패드컵 (2)부분에 다이본딩(Die Bonding)하는 제2공정과;A second process of die bonding the light emitting diode chip (1; 350 nm to 470 nm) to the adhesive frame 211 to a portion of the lead frame pad cup; 상기 리드프레임(Lead Frame)의 프레임부로 상기 발광다이오드 칩(1)을 골드 와이어(5)에 의해 전극 접합하는 제3공정과;A third step of electrode bonding the light emitting diode chip (1) to the frame portion of the lead frame by a gold wire (5); 상기 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지 (6)로 몰드하여 방사면의 반대방향에 렌즈(7)를 형성하는 제4공정과;A fourth step of seating the frame portion of the lead frame in a mold mold and molding the transmissive epoxy resin (6) to form the lens (7) in the opposite direction of the radiation surface; 몰드가 끝난 렌즈(7)표면에 이트륨,알루미늄,가넷계의 형광체를 투명 에폭시수지에 일정비율로 혼합한 혼합물(8)을 코팅하는 제5공정과;A fifth step of coating a mixture (8) in which yttrium, aluminum, garnet-based phosphors are mixed with a transparent epoxy resin at a predetermined ratio on the surface of the mold lens (7); 상기 혼합물(8)로 코팅된 렌즈(7)표면에 광을 전반사하는 코팅재(9: 로듐, Ag,Au,황화아연)를 코팅하는 제6공정과;A sixth step of coating a coating material (9: rhodium, Ag, Au, zinc sulfide) on the surface of the lens (7) coated with the mixture (8); 트리밍 작업을 통하여 패키지를 단일화시키는 제7공정;을 포함하여 이루어지는 것을 특징으로 하는 고휘도 백색 발광다이오드의 제조방법.A seventh step of unifying the package through a trimming operation; manufacturing method of a high brightness white light emitting diode comprising a. 청구항 1의 제조방법으로 제조된 고휘도 백색 발광다이오드.A high brightness white light emitting diode manufactured by the manufacturing method of claim 1. 한 쌍의 프레임부가 다수개의 1조로 다수열로 배열구성되며 단일 리드프레임마다 방사면의 반대방향에 도전성 접착제(211)로 도팅하는 제1공정과;A first step in which a pair of frame portions are arranged in a plurality of sets in a plurality of rows and doped with a conductive adhesive 211 in a direction opposite to the radiation surface for each single lead frame; 상기 이 도전성 접착제(211)에 발광다이오드 칩(1; 430nm~470nm)을 리드프레임 패드컵 부분에 다이본딩하는 제2공정과;A second step of die bonding a light emitting diode chip (430 nm to 470 nm) to the lead frame pad cup portion in the conductive adhesive 211; 상기 리드프레임의 프레임부로 상기 발광다이오드 칩(1)을 골드 와이어(5)에 의해 전극 접합하는 제3공정과;A third step of electrode bonding the light emitting diode chip (1) to the frame portion of the lead frame by a gold wire (5); 이트륨,알루미늄,가넷계 형광체를 투명 에폭시수지와 일정 비율로 혼합한 혼합물(8)을 발광다이오드 칩(1;350nm~470nm)에 포팅하는 제4공정과;A fourth step of potting a mixture (8) in which yttrium, aluminum and garnet-based phosphors are mixed with a transparent epoxy resin at a predetermined ratio to a light emitting diode chip (1; 350 nm to 470 nm); 상기 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지 (6)로 몰드하여 방사면의 반대방향에 렌즈(7)를 형성하는 제5공정과;A fifth step of seating the frame part of the lead frame in a mold die and molding the transmissive epoxy resin (6) to form the lens (7) in the opposite direction of the radiation surface; 상기 렌즈(7) 표면에 광을 전반사하는 코팅재(9;로듐,Ag,Au,황화아연)를 코팅하는 제6공정과;A sixth step of coating a coating material (9; rhodium, Ag, Au, zinc sulfide) which totally reflects light on the surface of the lens (7); 트리밍 작업을 통하여 패키지를 단일화시키는 제7공정;을 포함하여 이루어지는 것을 특징으로 하는 고휘도 백색 발광다이오드의 제조방법.A seventh step of unifying the package through a trimming operation; manufacturing method of a high brightness white light emitting diode comprising a. 청구항 3의 제조방법으로 제조된 고휘도 백색 발광다이오드.A high brightness white light emitting diode manufactured by the manufacturing method of claim 3. 한 쌍의 프레임부가 다수개의 1조로 다수열로 배열구성되며 단일 리드프레임마다 방사면의 반대방향에 도전성 접착제(211)로 도팅하는 제1공정과;A first step in which a pair of frame portions are arranged in a plurality of sets in a plurality of rows and doped with a conductive adhesive 211 in a direction opposite to the radiation surface for each single lead frame; 상기 도전성 접착제(211)에 발광다이오드 칩(11; 350nm~990nm)을 리드프레임패드컵 부분에 다이본딩하는 제2공정과;A second step of die-bonding the light emitting diode chip 11 (350 nm to 990 nm) to the lead frame pad cup portion of the conductive adhesive 211; 상기 리드프레임의 프레임부로 상기 발광다이오드 칩(11)을 골드와이어(5)에 의해 전극 접합하는 제3공정과;A third step of electrode bonding the light emitting diode chip 11 to the frame portion of the lead frame by gold wires; 상기 리드프레임의 프레임부를 몰드 금형에 안착시키고 투과형 에폭시수지 (6)로 몰드하여 방사면의 반대방향에 렌즈(7)를 형성하는 제4공정과;A fourth step of seating the frame portion of the lead frame in a mold mold and molding the transmissive epoxy resin (6) to form the lens (7) in the opposite direction of the radiation surface; 상기 렌즈(7) 표면에 광을 전반사하는 코팅재(9; 로듐,Ag,Au,황화 아연)를 코팅하는 제5공정과;A fifth step of coating a coating material (9; rhodium, Ag, Au, zinc sulfide) for total reflection of light on the surface of the lens (7); 트리밍 작업을 통하여 패키지를 단일화시키는 제6공정;을 포함하여 이루어지는 것을 특징으로 하는 고휘도 발광다이오드 제조방법.And a sixth step of unifying the package through a trimming operation. 청구항 5의 제조방법에 의해 제조된 고휘도 발광다이오드.A high brightness light emitting diode manufactured by the manufacturing method of claim 5.
KR1020020056180A 2002-09-16 2002-09-16 A High brightness light emitting diode and its method of making KR20040024747A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020020056180A KR20040024747A (en) 2002-09-16 2002-09-16 A High brightness light emitting diode and its method of making
AU2003261643A AU2003261643A1 (en) 2002-09-16 2003-09-15 A high brightness light emitting diode and its method of making
PCT/KR2003/001863 WO2004025741A1 (en) 2002-09-16 2003-09-15 A high brightness light emitting diode and its method of making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020056180A KR20040024747A (en) 2002-09-16 2002-09-16 A High brightness light emitting diode and its method of making

Publications (1)

Publication Number Publication Date
KR20040024747A true KR20040024747A (en) 2004-03-22

Family

ID=31987448

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020056180A KR20040024747A (en) 2002-09-16 2002-09-16 A High brightness light emitting diode and its method of making

Country Status (3)

Country Link
KR (1) KR20040024747A (en)
AU (1) AU2003261643A1 (en)
WO (1) WO2004025741A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649640B1 (en) * 2005-02-03 2006-11-27 삼성전기주식회사 Side emission type led package
KR100757828B1 (en) * 2006-09-28 2007-09-11 서울반도체 주식회사 Whole side viewing led package
US7572036B2 (en) 2004-10-18 2009-08-11 Samsung Electronics Co., Ltd. Light emitting diode and lens for the same
KR101300716B1 (en) * 2012-02-24 2013-08-26 크루셜텍 (주) Led package and method for fabricating the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382341C (en) * 2004-06-28 2008-04-16 光宝科技股份有限公司 Reflective photoelectric semiconductor module
KR101183858B1 (en) * 2004-09-30 2012-09-19 코닌클리케 필립스 일렉트로닉스 엔.브이. Brightness enhancement of led using selective ray angular recycling
CN100428512C (en) * 2005-01-31 2008-10-22 东芝照明技术株式会社 Light-emitting diode apparatus
TW200941761A (en) * 2008-03-27 2009-10-01 Liung Feng Ind Co Ltd Packaging process of a light emitting component
US9046383B2 (en) 2012-01-09 2015-06-02 Allegro Microsystems, Llc Systems and methods that use magnetic field sensors to identify positions of a gear shift lever
CN109192840A (en) * 2018-09-14 2019-01-11 惠州市鑫永诚光电科技有限公司 A kind of die pressing type LED structure and its packaging method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151975A (en) * 1992-04-20 1994-05-31 Victor Co Of Japan Ltd Luminescent device
JPH0669547A (en) * 1992-08-19 1994-03-11 Omron Corp Light emitting device and optical fiber-type photoelectric sensor
JP3065263B2 (en) * 1996-12-27 2000-07-17 日亜化学工業株式会社 Light emitting device and LED display using the same
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572036B2 (en) 2004-10-18 2009-08-11 Samsung Electronics Co., Ltd. Light emitting diode and lens for the same
US7963680B2 (en) 2004-10-18 2011-06-21 Samsung Electronics Co., Ltd. Light emitting diode and lens for the same
US8696175B2 (en) 2004-10-18 2014-04-15 Samsung Display Co., Ltd. Light emitting diode and lens for the same
US9200778B2 (en) 2004-10-18 2015-12-01 Samsung Display Co., Ltd. Light emitting diode and lens for the same
KR100649640B1 (en) * 2005-02-03 2006-11-27 삼성전기주식회사 Side emission type led package
KR100757828B1 (en) * 2006-09-28 2007-09-11 서울반도체 주식회사 Whole side viewing led package
KR101300716B1 (en) * 2012-02-24 2013-08-26 크루셜텍 (주) Led package and method for fabricating the same

Also Published As

Publication number Publication date
WO2004025741A1 (en) 2004-03-25
AU2003261643A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
US7514723B2 (en) Optoelectronic component
KR100985452B1 (en) Light emitting device
KR100710102B1 (en) Light emitting apparatus
US6881980B1 (en) Package structure of light emitting diode
TWI542037B (en) Optoelectronic devices with laminate leadless carrier packaging in side-looker or top-looker device orientation
US8003998B2 (en) Light-emitting diode arrangement
KR101634406B1 (en) Semiconductor arrangement
KR101249010B1 (en) Luminescent diode chip
CN102171844A (en) LED with particles in encapsulant for increased light extraction and non-yellow off-state color
US20110068354A1 (en) High power LED lighting device using high extraction efficiency photon guiding structure
JP2009527122A (en) Light emitting device and manufacturing method thereof
JP2012533902A (en) Light emitting diode with molded reflective sidewall coating
CN104396035B (en) The phosphor separated by transparent partition object from LED
JPH10151794A (en) Light emitting device and method for molding it
JPH11154766A (en) Light emitting diode, and signaling
TW201436293A (en) Method of packaging a light-emitting diode and light-emitting diode packaging structure
CN111123620A (en) Flash module comprising an array of reflector cups of phosphor converted LEDs
KR20040024747A (en) A High brightness light emitting diode and its method of making
JP2003243724A (en) Light emitting apparatus
US20220102599A1 (en) Deep molded reflector cup used as complete led package
JP4239564B2 (en) Light emitting diode and LED light
US11342486B2 (en) Light-emitting device package and lighting device having same
JP4820133B2 (en) Light emitting device
JP2000164939A (en) Light emitting device

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
A302 Request for accelerated examination
E902 Notification of reason for refusal
E601 Decision to refuse application