KR20040012224A - hybrid fiber reinforced composites for radar absorbing structures - Google Patents

hybrid fiber reinforced composites for radar absorbing structures Download PDF

Info

Publication number
KR20040012224A
KR20040012224A KR1020020045667A KR20020045667A KR20040012224A KR 20040012224 A KR20040012224 A KR 20040012224A KR 1020020045667 A KR1020020045667 A KR 1020020045667A KR 20020045667 A KR20020045667 A KR 20020045667A KR 20040012224 A KR20040012224 A KR 20040012224A
Authority
KR
South Korea
Prior art keywords
fiber
hybrid
composite material
carbon
reinforced composite
Prior art date
Application number
KR1020020045667A
Other languages
Korean (ko)
Inventor
홍창선
김천곤
오정훈
이상의
한주현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020020045667A priority Critical patent/KR20040012224A/en
Publication of KR20040012224A publication Critical patent/KR20040012224A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/002Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material

Abstract

PURPOSE: Provided are hybrid fiber-reinforced composite comprising glass fibers and carbon fibers as glass-reinforced and carbon-reinforced composites, respectively for the radar absorbing structure. Accordingly, the resultant composite has moderate dielectric constant and prevents strength deterioration by containing carbon fibers instead of conventional carbon powder as conductive materials. CONSTITUTION: The hybrid fiber-reinforced composite has the characteristics of containing less than 10wt.% of carbon fibers based on the total weight of glass fibers and carbon fibers. The hybrid yarn-shaped composite materials are produced by gathering glass fibers and carbon fibers in an effective ratio, and the hybrid prepreg-shaped composite materials are produced by arranging carbon fibers and glass fibers in prepreg matrix such as polyethylene, polypropylene, polyamide, polyethylene terephthalate, etc.

Description

레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료{hybrid fiber reinforced composites for radar absorbing structures}Hybrid fiber reinforced composites for radar absorbing structures

본 발명은 유리섬유와 탄소섬유가 혼합된 레이더 흡수 구조체용 하이브리드 섬유강화 복합재료에 관한 것으로, 좀 더 상세하게는 탄소섬유와 유리섬유의 혼합량에 대하여 탄소 섬유의 비율이 10wt% 미만으로 혼합되어 있는 섬유강화 복합재료에 관한 것이며, 또한 그 혼합제조법으로 탄소/유리 혼합 다발(yarn)을 이용한 혼합 다발 제조법과 탄소섬유와 유리섬유를 프리프레그(prepreg)상에 일정한 비율로 배치하여 제조하는 방법에 관한 것이다.The present invention relates to a hybrid fiber-reinforced composite material for a radar absorbent structure in which glass fibers and carbon fibers are mixed. More specifically, the ratio of carbon fibers to less than 10 wt% is mixed with the amount of carbon fibers and glass fibers. The present invention relates to a fiber-reinforced composite material, and also to a method for producing a mixed bundle using a carbon / glass mixed yarn, and a method of arranging carbon fibers and glass fibers in a predetermined ratio on a prepreg. will be.

일반적으로 전자파의 흡수와 차폐는 물질의 전기적 특징인 유전율과 도전율에 영향을 받지만 그 의미와 방법이 다르다.In general, the absorption and shielding of electromagnetic waves are affected by the dielectric constant and conductivity, which are the electrical characteristics of materials, but their meaning and method are different.

유전율은 전기를 함유할 수 있는 크기를 말하며, 도전율은 전기를 잘 통하게 할 수 있는 능력을 말하는데, 전기적 특성이 없는 매질에 전기적 특성이 좋은 전도성 분말을 혼합하면 그 혼합량이 증가할수록 유전율이 상승하게 되고, 어느 임계치에 도달하게 되면 도전성질이 급속히 증가하게 된다.Dielectric constant refers to the size that can contain electricity, and conductivity refers to the ability to conduct electricity well. When the conductive powder with good electrical properties is mixed in a medium without electrical properties, the dielectric constant increases as the amount of the mixture increases. When a certain threshold is reached, the conductivity increases rapidly.

이 상태에 이르게 되면 전자기파가 혼합체에 입사를 하게 되어도 도체와 같이 전자기파를 전부 반사시키게 되며, 이 효과를 전자기파 차폐라고 한다.When this state is reached, even if the electromagnetic wave enters the mixture, all electromagnetic waves are reflected like the conductor, and this effect is called electromagnetic shielding.

하지만 전자기파의 흡수는 전자기파를 투과시키지 않는 차폐 뿐만 아니라 입사하는 파의 반사파가 없도록 하는 기술을 말하며, 따라서 물질이 입사하는 파를 일정정도 통과시키면서 감쇄시켜야 한다. 이는 적절한 유전율을 가지도록 조절하고, 물질의 두께를 조절함으로써 가능하게 된다.However, absorption of electromagnetic waves means not only shielding that does not transmit electromagnetic waves, but also a technique of avoiding reflected waves of incident waves. Therefore, the material must be attenuated while passing a certain amount of incident waves. This is made possible by controlling to have an appropriate dielectric constant and by controlling the thickness of the material.

기존의 이러한 전자파 흡수재료들은 고무와 같이 유연하고 취급이 쉬운 매질에 은, 카본블랙 등과 같은 전도성을 띠는 분말이나 자성을 띠는 페라이트(ferrite) 분말 등을 혼합한 재료 등이 사용되어 왔다.Existing electromagnetic wave absorbing materials have been used such as a mixture of conductive powders such as silver, carbon black, and ferrite powders such as silver and carbon in a flexible and easy-to-handle medium such as rubber.

이러한 연구는 "레이다용 광대역 고성능 전파흡수체의 개발에 관한 연구, 김동일, 안영섭 정세모, 한국항해학회지 제 15권 제 1호 p. 1~8, 1991" 등에서 연구되어져 온 분야이다.These studies have been studied in "Development of Broadband High-Performance Radio Wave Absorbers for Radar, Dong-Il Kim, Young-Seop Ahn, Se-Mo Ahn," Journal of Korean Nautical Society, Vol. 15, No. 1, pp. 1-8, 1991.

상기와 같이 전자파를 흡수하는 물질들을 RAM(radar absorbing material)이라 통칭하고, 이러한 RAM과 같은 전파흡수성능을 가지면서 하중을 지지할 수 있는재료를 RAS(radar absorbing structure)라 한다.Materials that absorb electromagnetic waves as described above are commonly referred to as RAM (radar absorbing material), and a material capable of supporting a load while having a radio wave absorbing performance such as RAM is called a radar absorbing structure (RAS).

이와 같은 RAS를 제조하는 방법으로 유리섬유강화 복합재료에 전도성 분말을 첨가하여 제조하는 방법이 통용되고 있는데, 이러한 방법은 전자파를 잘 흡수시킬 뿐만 아니라 강도를 가진다는 장점을 가지게 된다.As a method of manufacturing such RAS, a method of manufacturing by adding a conductive powder to a glass fiber reinforced composite material is commonly used. This method has advantages of absorbing electromagnetic waves as well as having strength.

하지만 이러한 방법은 섬유강화 복합재료 사이에 손상으로 작용될 수 있는 전도성 분말이 첨가됨으로서 섬유강화 복합재료의 기계적 강도, 특히 층간 전단강도를 많이 저하시키게 되고, 복합재료와 분말의 혼합이 용이하지 않으며, 복합재료의 혼합이 용이하지 않을 뿐만 아니라 정확한 배합을 하기가 어려워 원하는 유전율을 갖는 복합재료의 제조가 어렵다는 문제점이 발생하게 된다.However, this method reduces the mechanical strength, especially the interlaminar shear strength, of the fiber-reinforced composites by adding conductive powders which may act as damages between the fiber-reinforced composites, and is not easy to mix the composites and powders. Not only the mixing of the composite material is not easy, but also difficult to produce the correct compounding problem is difficult to produce a composite material having a desired dielectric constant.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 유리섬유를 주성분으로 하는 섬유 강화 복합재료에 전도성 물질로 탄소섬유를 일정량 혼합함으로서, 전도성 분말에 의한 강도저하를 막을 수 있고, 제조시 유리강화 복합재료와 탄소강화 복합재료 간의 배합을 정확히 맞출 수 있어 적절한 유전율을 가질 수 있는 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료를 제공하는 것을 목적으로 한다.Therefore, the present invention is to solve the above problems, by mixing a certain amount of carbon fibers as a conductive material in a fiber reinforced composite material containing glass fibers as a main component, it is possible to prevent the strength decrease by the conductive powder, glass reinforced during manufacture An object of the present invention is to provide a hybrid fiber-reinforced composite material for a radar absorbent structure that can accurately match the blend between the composite material and the carbon-reinforced composite material.

도 1은 본 발명의 직조형태의 섬유강화 복합재료에 사용되는 하이브리드 얀을 나타낸 도면1 shows a hybrid yarn used in the woven fiber reinforced composite material of the present invention.

도 2는 본 발명의 하이브리드 프리프레그 형태의 섬유강화 복합재료를 나타낸 도면2 is a view showing a fiber-reinforced composite material of the hybrid prepreg form of the present invention

도 3은 본 발명의 하이브리드 섬유강화 복합재료의 유전율을 측정한 그래프Figure 3 is a graph measuring the dielectric constant of the hybrid fiber reinforced composite material of the present invention

상기와 같은 목적을 해결하기 위하여 본 발명은,The present invention to solve the above object,

유리섬유를 포함하는 유리강화 복합재료에 전도성 물질로서 탄소강화 복합재료가 혼합되는 것을 특징으로 하는 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료를 제공함으로써 달성될 수 있다.It can be achieved by providing a hybrid fiber reinforced composite material for a radar absorbing structure, characterized in that the carbon-reinforced composite material as a conductive material is mixed with the glass-reinforced composite material including the glass fiber.

이하에서는 본 발명의 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료에 대하여 좀 더 상세하게 설명하기로 한다.Hereinafter, the hybrid fiber reinforced composite material for the radar absorbing structure of the present invention will be described in more detail.

본 발명은 전자파 투과성이 좋은 유리강화 복합재료에 전도성이 뛰어난 탄소강화 복합재료가 혼합된 하이브리드 섬유강화 복합재료로서, 유리섬유와 탄소섬유간의 배합에 의해 적정한 유전율을 가질 수 있으며, 전도성 분말의 첨가없이 이루어지므로 분말에 의한 강도저하를 막을 수 있게 된다.The present invention is a hybrid fiber-reinforced composite material in which a carbon-reinforced composite material having excellent conductivity is mixed with a glass-reinforced composite material having good electromagnetic wave permeability. Since it is possible to prevent the decrease in strength due to the powder.

일반적으로 유리 섬유로만 이루어진 복합재료의 경우에는 전자파의 흡수가 일어나지 않게 되는데, 따라서 전자파의 흡수성능을 향상시키기 위하여 탄소섬유를 혼합하게 되며, 이때 탄소섬유의 혼합량은 그양이 미량이라도 첨가되면 복합재료의 흡수성능에서 차이를 보일 뿐 흡수체로 사용할 수 있기 때문에 탄소섬유의 첨가량은 사용자의 용도에 따라 적절한 유전율에 맞춰 결정된다.In general, in the case of a composite material composed of glass fibers only, absorption of electromagnetic waves does not occur. Therefore, carbon fibers are mixed to improve the absorption performance of electromagnetic waves. The amount of carbon fiber added depends on the proper dielectric constant according to the user's use because it can be used as an absorber.

다만 상기와 같은 유리강화 복합재료에 있어서 탄소섬유의 첨가비율은 전체 무게에 대하여 10wt% 미만이 되도록 혼합해야 하는데, 이는 탄소섬유가 10wt%를 초과하여 혼합되면 입사되는 전자파를 흡수하기 전에 대부분 반사시켜버리는 문제점이 발생하기 때문이다.However, in the glass-reinforced composite materials as described above, the addition ratio of carbon fiber should be mixed to be less than 10wt% based on the total weight. If the carbon fiber is mixed in excess of 10wt%, it is reflected mostly before absorbing the incident electromagnetic waves. This is because discarding problems occur.

제 1도는 본 발명의 하이브리드 얀을 나타낸 도면이고, 제 2도는 하이브리드 프리프레그 형태의 섬유강화 복합재료를 나타낸 도면이다.1 is a view showing a hybrid yarn of the present invention, Figure 2 is a view showing a fiber-reinforced composite material in the form of a hybrid prepreg.

상기 도 1과 도 2를 참고로 하여 본 발명의 유리섬유와 탄소섬유가 혼합되어 있는 섬유강화 복합재료의 제조방법에 대하여 좀 더 상세하게 설명하기로 한다.1 and 2 will be described in more detail with respect to the manufacturing method of the fiber-reinforced composite material is mixed with the glass fiber and carbon fiber of the present invention.

본 발명을 위한 구체적인 제조방안으로 먼저, 유리섬유와 탄소섬유의 가닥들을 모아 섬유다발인 얀을 제조하게 되는데, 이때 유리섬유와 탄소섬유를 용도에 따른 요구비율에 맞춰 균일하게 혼합하여 하이브리드 얀(hybrid yarn)을 제조하고, 이렇게 제조된 하이브리드 얀은 직조(fabric)형태의 섬유강화 복합재료의 제조에 이용할 수 있다.As a specific manufacturing method for the present invention, first, the strands of glass fibers and carbon fibers are collected to prepare a yarn which is a fiber bundle, wherein the hybrid yarns are mixed by uniformly mixing the glass fibers and carbon fibers in accordance with the required ratio according to the use. yarn) and the hybrid yarn thus prepared can be used for the production of fiber reinforced composite materials in the form of fabrics.

또한 유리섬유와 탄소섬유 복합재료의 프리프레그(prepreg)제조 단계에서 용도에 따른 적절한 혼합비율에 맞춰 혼합배열시키고, 그 사이를 매트릭스(matrix)로 채워 하이브리드 프리프레그(hybrid prepreg)를 제조하는 방법을 이용할 수 있다.In addition, in the prepreg manufacturing step of the glass fiber and carbon fiber composite material, the method of mixing and arranging according to the appropriate mixing ratio according to the use, and filling the matrix between them to produce a hybrid prepreg (hybrid prepreg) It is available.

본 발명에서 사용되는 매트릭스(matrix)는 폴리에틸렌, 폴리프로필렌, 폴리아마이드, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리카보네이트 등의 열가소성 수지 조성물이 사용될 수 있으며, 절연효과와 각각의 섬유들을 결합하는 역할을 수행하게 된다.The matrix used in the present invention may be a thermoplastic resin composition such as polyethylene, polypropylene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, etc., and serves to bond the fibers with the insulation effect. Will be performed.

상기와 같은 방법으로 배합된 섬유강화 복합재료는 제조시 유리강화 복합재료와 탄소강화 복합재료 간의 배합을 정확히 맞출 수 있어 적절한 유전율을 가질 수 있으며, 탄소 강화 복합재료의 혼합 비율에 따라 자체 복합재료의 유전율을 용이하게 변화시킬 수 있다는 것이다.The fiber-reinforced composite material blended in the above manner can have a proper dielectric constant by accurately matching the blend between the glass-reinforced composite material and the carbon-reinforced composite material during manufacture, and according to the mixing ratio of the carbon-reinforced composite material, The permittivity can be easily changed.

이와 같이 적절한 유전율을 갖는 하이브리드 섬유 강화 복합재료는 유해전자파를 차단하기 위하여 컴퓨터 케이스를 비롯한 전자제품의 외장 케이스에 사용되거나 방위산업용으로 레이더에 포착되지 않은 구조체를 제작하는데 적용될 수 있다.Such hybrid fiber-reinforced composite materials having an appropriate dielectric constant may be used in exterior cases of electronic products including computer cases to block harmful electromagnetic waves, or may be applied to fabricate structures that are not captured by radar for the defense industry.

이하에서는 실시예를 통하여 본 발명을 좀 더 상세하게 설명하기는 하나, 하기의 실시예는 본 발명의 예시일 뿐, 본 발명이 하기의 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are merely illustrative of the present invention, and the present invention is not limited by the following Examples.

<실시예 1><Example 1>

유리섬유(Glass fiber)에 탄소섬유(carbon fiber)를 각각 0, 5, 10wt%의 무게비로 첨가하여 혼합배열하고, 그 사이를 매트릭스(matrix)로서 에폭시수지를 채워 제조된 하이브리드 프리프레그에 대한 유전율을 X-band용 wave-guide를 이용하여 network analyzer(HP-8520B)를 사용하여 측정한 값을 첨부된 도면 도 3에 나타내었다.The dielectric constant of the hybrid prepreg prepared by adding carbon fiber to glass fiber at a weight ratio of 0, 5 and 10 wt%, respectively, and filling the epoxy resin with a matrix therebetween. The measured value using a network analyzer (HP-8520B) using a wave-guide for X-band is shown in Figure 3 attached.

도 3을 통하여 알 수 있듯이, 섬유강화 복합재료에 대한 유전율은 허수항 측정치에서 판단되는데, 먼저 섬유강화 복합재료에 탄소섬유가 첨가되지 않은 경우에는 흡수가 일어나지 않는 것을 보여주고 있으며, 탄소섬유가 10wt%의 비율로 혼합된 경우에는 허수항의 측정치가 15 내지 20으로 이 경우에는 90%이상 표면에서 반사가 되기 때문에 흡수제로 사용할 수 없게 된다.As can be seen from Figure 3, the dielectric constant for the fiber-reinforced composite material is determined from the imaginary term measurement, first showing that the absorption does not occur when carbon fiber is not added to the fiber-reinforced composite material, 10wt% carbon fiber In the case of mixing in the ratio of%, the measured value of the imaginary term is 15 to 20, and in this case, it cannot be used as an absorbent because it is reflected at the surface of 90% or more.

따라서 탄소섬유의 첨가량을 전체 섬유혼합량에 대하여 0wt%를 초과하고 10wt% 미만까지 혼합하여 제조된 유리섬유 복합재료는 유전율에 대해서 차이는 보이나, 전자기파를 표면에서 반사시키지 않고 통과시키면서 흡수할 수 있는 정도의 유전율을 가질 수 있으므로 용도에 따라서 적절한 혼합비로 유전율을 조절하여 사용할 수 있다는 것이다.Therefore, the glass fiber composite material prepared by mixing the carbon fiber addition amount to more than 0wt% and less than 10wt% with respect to the total fiber mixing amount shows a difference in dielectric constant, but the degree of absorbing electromagnetic wave without passing it through the surface Since it can have a dielectric constant of can be used to adjust the dielectric constant at an appropriate mixing ratio according to the application.

<실시예 2><Example 2>

유리섬유(Glass fiber)에 전도성 분말로서 각각 탄소섬유와 카본블랙을 전체무게비에 대하여 7wt%의 비율이 되도록 혼합하고, 그 사이를 매트릭스(matrix)로서 에폭시수지를 채워 하이브리드 프리프레그를 제조하고, 상기 제조된 하이브리드 프리프레그에 대한 층간전단강도를 ASTM 규정 D2344-84에 따라 만능시험기(Instron 4482)로 5회 측정하여 그 결과를 하기 표 1에 나타내었다.A hybrid prepreg was prepared by mixing carbon fibers and carbon black as glass powders at a ratio of 7 wt% based on the total weight ratio, and filling an epoxy resin with a matrix therebetween. The interlaminar shear strength of the prepared hybrid prepreg was measured five times with a universal testing machine (Instron 4482) according to ASTM specification D2344-84 and the results are shown in Table 1 below.

Carbon fiber 7w%함유Hybrid compositeCarbon fiber 7w% containing hybrid composite Carbon black 7w%함유Glass compositeCarbon black 7w% containing glass composite 시편Psalter 층간전단강도(MPa)Interlaminar Shear Strength (MPa) 시편Psalter 층간전단강도(MPa)Interlaminar Shear Strength (MPa) HB7_1HB7_1 78.778.7 CB7_1CB7_1 47.847.8 HB7_2HB7_2 76.776.7 CB7_2CB7_2 52.652.6 HB7_3HB7_3 75.575.5 CB7_3CB7_3 50.450.4 HB7_4HB7_4 77.677.6 CB7_4CB7_4 44.444.4 HB7_5HB7_5 75.575.5 CB7_5CB7_5 43.643.6 평균값medium 76.876.8 평균값medium 47.847.8

상기 표 1을 통하여 알 수 있듯이, 전도성 물질로서 탄소섬유를 사용한 경우가 카본블랙을 사용하는 경우보다 층간전단강도가 높음을 알 수 있었다. 이는 카본블랙을 사용시 epoxy matrix가 연성을 띄는 성질을 가지게 되어 복합재료 층 사이가 벌어지면서 파괴되는 층간분리(delamination)가 발생하게 되는 점을 개선하였음을 보여주고 있다.As can be seen from Table 1, it was found that the use of carbon fiber as the conductive material was higher in the interlayer shear strength than in the case of using carbon black. This suggests that the epoxy matrix has ductile properties when carbon black is used, thereby improving delamination, which occurs when the composite layers are separated.

상술한 바와 같이 본 발명의 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료는 유리 섬유와 탄소 섬유의 혼합무게에 대하여 탄소 섬유의 비율이 10wt% 미만이 되도록 혼합함으로써, 전도성 분말에 의한 강도저하를 막을 수 있고, 제조시 유리강화 복합재료와 탄소강화 복합재료 간의 배합을 정확히 맞출 수 있어 적절한 유전율을 가질 수 있다는 효과를 가져오는 것이다.As described above, the hybrid fiber reinforced composite material for the radar absorbing structure of the present invention can be mixed so that the ratio of the carbon fiber to the mixing weight of the glass fiber and the carbon fiber is less than 10wt%, thereby preventing the decrease in strength due to the conductive powder. In this case, it is possible to precisely match the blending between the glass-reinforced composite material and the carbon-reinforced composite material in manufacturing, thereby bringing the effect of having an appropriate dielectric constant.

또한, 본 발명을 위한 구체적인 제조방안으로 유리섬유와 탄소섬유의 가닥들을 모아 용도에 따른 요구비율에 맞춰 균일하게 혼합하여 하이브리드 얀(hybrid yarn)을 제조하고, 이렇게 제조된 하이브리드 얀을 이용하여 직조(fabric)형태의 섬유강화 복합재료의 제조방법과, 유리섬유와 탄소섬유 복합재료의 프리프레그(prepreg)제조 단계에서 용도에 따른 적절한 혼합비율에 맞춰 혼합배열시키고, 그 사이를 매트릭스(matrix)로 채워 하이브리드 프리프레그(hybrid prepreg)를 제조방법을 제공함으로서 섬유 강화 복합재료를 용이하게 제조할 수 있다는 것이다.In addition, as a specific manufacturing method for the present invention by collecting the strands of glass fiber and carbon fiber uniformly mixed according to the required ratio according to the use to produce a hybrid yarn (hybrid yarn), weaving using the hybrid yarn thus prepared ( In the manufacturing method of fiber reinforced composite material in the form of fabric, and prepreg manufacturing step of glass fiber and carbon fiber composite material, mixing and arranging according to the appropriate mixing ratio according to the use, and filling it with matrix By providing a method for preparing hybrid prepreg, it is possible to easily manufacture fiber reinforced composites.

Claims (4)

유리섬유를 포함하는 유리강화 복합재료에 전도성 물질로서 탄소강화 복합재료로서 탄소섬유가 혼합되는 것을 특징으로 하는 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료Hybrid fiber reinforced composite material for radar absorbing structure, characterized in that carbon fiber is mixed as a carbon reinforced composite material as a conductive material to a glass reinforced composite material including glass fiber 청구항 1에 있어서, 상기 탄소섬유가 유리섬유와 탄소섬유의 전체무게에 대하여 10wt% 미만으로 혼합되는 것을 특징으로 하는 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료The hybrid fiber reinforced composite material for a radar absorbing structure according to claim 1, wherein the carbon fiber is mixed at less than 10 wt % based on the total weight of the glass fiber and the carbon fiber. 유리섬유와 탄소섬유의 가닥을 요구비율에 맞춰 균일하게 혼합하여 하이브리드 얀(hybrid yarn)을 제조하고, 상기 하이브리드 얀을 이용하여 직조(fabric)형태의 섬유강화 복합재료를 제조하는 것을 특징으로 하는 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료의 제조방법Radar, characterized in that to produce a hybrid yarn (hybrid yarn) by uniformly mixing the strands of glass fiber and carbon fiber in accordance with the required ratio, and to produce a fiber-reinforced composite material of the fabric (fabric) form using the hybrid yarn Manufacturing method of hybrid fiber reinforced composite material for absorbent structure 유리섬유와 탄소섬유를 적절한 혼합비율에 맞춰 혼합배열시키고, 그 사이를 기지(matrix)로 채워 하이브리드 프리프레그(hybrid prepreg)를 제조하는 것을 특징으로 하는 레이더 흡수 구조체용 하이브리드 섬유 강화 복합재료의 제조방법A method for producing a hybrid fiber reinforced composite material for a radar absorbing structure, wherein the glass fiber and carbon fiber are mixed and arranged according to a suitable mixing ratio, and a hybrid prepreg is produced by filling a matrix between them.
KR1020020045667A 2002-08-01 2002-08-01 hybrid fiber reinforced composites for radar absorbing structures KR20040012224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020045667A KR20040012224A (en) 2002-08-01 2002-08-01 hybrid fiber reinforced composites for radar absorbing structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020045667A KR20040012224A (en) 2002-08-01 2002-08-01 hybrid fiber reinforced composites for radar absorbing structures

Publications (1)

Publication Number Publication Date
KR20040012224A true KR20040012224A (en) 2004-02-11

Family

ID=37320229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020045667A KR20040012224A (en) 2002-08-01 2002-08-01 hybrid fiber reinforced composites for radar absorbing structures

Country Status (1)

Country Link
KR (1) KR20040012224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252731A1 (en) * 2008-02-28 2010-11-24 Bell Helicopter Textron Inc. Uncured composite rope including a plurality of different fiber materials
KR101006775B1 (en) * 2008-06-05 2011-01-10 제주대학교 산학협력단 Folding bollard
KR101018068B1 (en) * 2008-10-23 2011-03-02 한국해양연구원 Composite-material Flat Panel for Radar Cross Section Reducing using Shaped Reflector
CN112876273A (en) * 2021-03-17 2021-06-01 中南大学 High-temperature-resistant wave-absorbing structure integrated ceramic matrix composite and preparation method thereof
WO2021257023A1 (en) * 2020-06-19 2021-12-23 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi A radar absorbing structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647495A (en) * 1984-08-10 1987-03-03 Bridgestone Corporation Electromagnetic reflection body
KR900700669A (en) * 1988-01-28 1990-08-16 제이. 바버 제임스 Carbon Fibrils
JPH07221486A (en) * 1994-01-28 1995-08-18 Shimizu Corp Panel for preventing radio interference
JP2000299591A (en) * 1999-04-16 2000-10-24 Fuji Kagaku Kk Radio wave absorbing material, radio wave absorber and rf anechoic chamber
JP2001088236A (en) * 1999-09-24 2001-04-03 Murai Tsugio Tourmaline nonwoven fabric
KR20030086059A (en) * 2002-05-03 2003-11-07 김성수 Electromagnetic wave absorbing composite and preparation process for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647495A (en) * 1984-08-10 1987-03-03 Bridgestone Corporation Electromagnetic reflection body
KR900700669A (en) * 1988-01-28 1990-08-16 제이. 바버 제임스 Carbon Fibrils
JPH07221486A (en) * 1994-01-28 1995-08-18 Shimizu Corp Panel for preventing radio interference
JP2000299591A (en) * 1999-04-16 2000-10-24 Fuji Kagaku Kk Radio wave absorbing material, radio wave absorber and rf anechoic chamber
JP2001088236A (en) * 1999-09-24 2001-04-03 Murai Tsugio Tourmaline nonwoven fabric
KR20030086059A (en) * 2002-05-03 2003-11-07 김성수 Electromagnetic wave absorbing composite and preparation process for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252731A1 (en) * 2008-02-28 2010-11-24 Bell Helicopter Textron Inc. Uncured composite rope including a plurality of different fiber materials
EP2252731A4 (en) * 2008-02-28 2013-09-18 Bell Helicopter Textron Inc Uncured composite rope including a plurality of different fiber materials
KR101006775B1 (en) * 2008-06-05 2011-01-10 제주대학교 산학협력단 Folding bollard
KR101018068B1 (en) * 2008-10-23 2011-03-02 한국해양연구원 Composite-material Flat Panel for Radar Cross Section Reducing using Shaped Reflector
WO2021257023A1 (en) * 2020-06-19 2021-12-23 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi A radar absorbing structure
CN112876273A (en) * 2021-03-17 2021-06-01 中南大学 High-temperature-resistant wave-absorbing structure integrated ceramic matrix composite and preparation method thereof
CN112876273B (en) * 2021-03-17 2022-05-10 中南大学 High-temperature-resistant wave-absorbing structure integrated ceramic matrix composite and preparation method thereof

Similar Documents

Publication Publication Date Title
Choi et al. Radar absorbing composite structures dispersed with nano-conductive particles
CN106589810B (en) A kind of carbon fibers/fiberglass mixes the preparation method of camouflage composite material
Jagatheesan et al. Fabrics and their composites for electromagnetic shielding applications
CN111546722B (en) Reinforced high-thermal-conductivity mica tape and preparation method thereof
CN107618228B (en) A kind of camouflage composite material and preparation method thereof of three-dimensional orthohormbic structure
Guo et al. Construction of interconnected and oriented graphene nanosheets networks in cellulose aerogel film for high-efficiency electromagnetic interference shielding
Yuchang et al. Graphene nanosheets/E-glass/epoxy composites with enhanced mechanical and electromagnetic performance
Umashankar et al. Electromagnetic shielding effectiveness of nylon-66 nanofiber interleaved carbon epoxy composites
Merizgui et al. High content of siliconized MWCNTs and cobalt nanowire with E-glass/kenaf fibers as promising reinforcement for EMI shielding material
Wang et al. Temperature dependence of the electromagnetic and microwave absorption properties of polyimide/Ti 3 SiC 2 composites in the X band
JP2003309395A (en) Radio wave absorption material
Nagaraju et al. Role of silicon carbide nanoparticle on electromagnetic interference shielding behavior of carbon fibre epoxy nanocomposites in 3-18GHz frequency bands
KR20040012224A (en) hybrid fiber reinforced composites for radar absorbing structures
Mehdizadeh et al. Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites
Razak et al. Polyaniline-coated kenaf core and its effect on the mechanical and electrical properties of epoxy resin
Zhou et al. Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design
Silveira et al. Microwave absorbing properties of glass fiber/epoxy resin composites tailored with frequency selective surface based on nonwoven of carbon fibers metalized with nickel
Yusof et al. Effect of fiber morphology and elemental composition of Ananas comosus leaf on cellulose content and permittivity
CN115384136A (en) Composite material applied to electromagnetic shielding and preparation method thereof
Keskin et al. Analysis and measurement of the electromagnetic shielding efficiency of the multi-layered carbon fiber composite fabrics
Gao et al. 3D printing of carbon black/polylactic acid/polyurethane composites for efficient microwave absorption
Kim et al. Double‐layered microwave absorbers composed of ferrite and carbon fiber composite laminates
Amudhu et al. Low-Profile Polymer Composite Radar Absorber Embedded with Frequency Selective Surface
US20240124667A1 (en) Multifunctional Carbon Nanotubes-Glass Fiber-Epoxy Composites with High Density Interfaces for Microwave Absorption and Structural Materials
KR20090027379A (en) Prepreg structure for shielding electromagnetic wave and antenna including the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application