KR20030069000A - Method and device for extracting germanium from mineral water - Google Patents

Method and device for extracting germanium from mineral water Download PDF

Info

Publication number
KR20030069000A
KR20030069000A KR1020020008885A KR20020008885A KR20030069000A KR 20030069000 A KR20030069000 A KR 20030069000A KR 1020020008885 A KR1020020008885 A KR 1020020008885A KR 20020008885 A KR20020008885 A KR 20020008885A KR 20030069000 A KR20030069000 A KR 20030069000A
Authority
KR
South Korea
Prior art keywords
germanium
powder
magnet
ceramic
heating furnace
Prior art date
Application number
KR1020020008885A
Other languages
Korean (ko)
Inventor
김고정
김용훈
김용준
Original Assignee
김고정
김용훈
김용준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김고정, 김용훈, 김용준 filed Critical 김고정
Priority to KR1020020008885A priority Critical patent/KR20030069000A/en
Publication of KR20030069000A publication Critical patent/KR20030069000A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: A method and an apparatus for extracting enriched germanium powder from mineral water are provided to obtain germanium of high purity at a high yield by passing germanium contained mineral water through carbon filter, magnet, ceramic balls and alternating magnetic field generator to extract the enriched germanium powder. CONSTITUTION: The method and apparatus for extracting enriched germanium powder from mineral water is characterized in that first catchment tank(1) in which magnet(9) and carbon filter(10) are installed, second catchment tank(2) in which magnet(9') is installed, ceramic storage tank(3) in which a plurality of ceramic balls(11) are filled and heating furnace(4) at the lower part of which heater(12) is installed are connected by connection pipe(13), check valves(8,8',8") are installed on connection pipe(13) connected to the upper part of the first catchment tank(1) and heating furnace(4) and connection pipe(13) through which content is discharged from the heating furnace(4), and biozone filter(5), alternating magnetic field generators(6,6') and cooler(7) are sequentially installed on connection pipe(13) through which steam inside the heating furnace(4) is discharged.

Description

광천수로부터의 게르마늄 농축분말 추출방법 및 그 장치 {Method and device for extracting germanium from mineral water}Method for extracting germanium concentrated powder from mineral water and its device {Method and device for extracting germanium from mineral water}

본 발명은 게르마늄이 함유된 광천수로부터 게르마늄 농축분발을 추출해내는 방법 및 그 장치에 관한 것으로, 보다 상세하게는 게르마늄이 함유된 광천수를 자석 및 카본필터, 세라믹을 이용하여 정화 시킨 후 가열하여 분말화하고 고온에서질산으로 추출처리 하므로서 불순물 함량이 최소화된 고순도의 게르마늄 농축분말 및 순수 산화게르마늄(GeO2)을 추출할 수 있는 광천수로부터의 게르마늄 농축분말 추출방법 및 그 장치에 관한 것이다.The present invention relates to a method and apparatus for extracting germanium concentrated powder from mineral water containing germanium. More specifically, the mineral water containing germanium is purified using a magnet, a carbon filter and a ceramic, and then heated and powdered. The present invention relates to a method for extracting germanium concentrated powder from mineral water from which high purity germanium concentrated powder and pure germanium oxide (GeO 2 ) can be extracted by extracting with nitric acid at high temperature and minimizing impurities.

게르마늄은 희귀원소로서 세계적으로 고가의 가치성을 가질 뿐만 아니라 구하기조차 힘든 현실이다.Germanium is a rare element that not only has high value in the world but is also difficult to obtain.

빈글러(Winker)에 의해 밝혀진(참조 Ber..19.210.1886)게르마늄 7%를 함유하는 아지로다이트(argyrodite)와 같은 공지의 물질이 있지만, 근래에는 이를 얻기 위해서 게르마늄의 함량이 기껏해야 0.1%인 물질로부터 시작한다.There are known substances, such as argyrodite, which contain 7% germanium, as found by Winker (see Ber..19.210.1886), but in recent years the germanium content is at most 0.1 to obtain this. Start with substance%.

이런 물질에는 현재 중요한 원료물질로 간주될 수 있는 아연농축물이 있다.These materials currently contain zinc concentrates, which can be regarded as important raw materials.

아연 농축물중에 함유된 게르마늄의 저함량에도 불구하고, 이 금속의 야금에 있어서, 게르마늄은, 이 원소의 농도가 0.1g/l 이상인 용액으로부터 출발하여 수득 가능하게하는 공정(사용된 야금술 형태에 따라 다름)의 특수 생성물중에 농축된다.In spite of the low content of germanium contained in the zinc concentrate, in the metallurgy of this metal, germanium is a process which makes it possible to obtain starting from a solution with a concentration of this element of at least 0.1 g / l (depending on the metallurgical form used) Concentrated in a special product).

엄밀히 말하자면, 이들 용액은 게르마늄의 야금에 있어서 출발점이 된다.Strictly speaking, these solutions are the starting point for the metallurgy of germanium.

문헌(Boving 및 Andre, J.Metals,10,659,1958)에는 벨기에 왕국의 법인체(Vieille Montagne)에 의해 실시된 방법이 기술되어 있는데, 이 방법은 용액의 pH를 조정함으로써 침전시킨 2 내지 3%의 게르마늄이 함유된 농축물을 얻고, 이 농축물을 염산에 용해시킨 후 분별증류시켜 순수한 사염화 게르마늄을 얻은 다음, 이 사염화 게르마늄을 가수분해하여 산화물로 전환시키고 최종적으로 수소를 사용하여 환원시켜 금속을 수득하는 방법으로 이루어진다.Boving and Andre, J. Metals, 10,659, 1958 describe a method carried out by the corporation of the Belgian kingdom (Vieille Montagne), which has 2 to 3% germanium precipitated by adjusting the pH of the solution. This concentrate was obtained, and the concentrate was dissolved in hydrochloric acid and fractional distillation to give pure germanium tetrachloride. The germanium tetrachloride was hydrolyzed to an oxide and finally reduced with hydrogen to obtain a metal. Is done in a way.

최근의 문헌(Hilbert, Erzetmll,35,184, 및 311,1982)에는 오스트리아 소재의 아연 전기분해공장(Bleiberger Bergwerak-Union)에서 실시되고 있는 탄닌(tannin)방법에 의한 게르마늄의 회수방법에 기술되어 있는데, 이는 가장 통상적인 산업적 방법으로 생각된다.Recent publications (Hilbert, Erzetmll, 35, 184, and 311, 1982) describe a method for the recovery of germanium by the tannin method, which is carried out in a zinc electrolysis plant (Bleiberger Bergwerak-Union) in Austria. It is considered the most common industrial method.

게르마늄의 농도가 0.1내지 0.2g/l인 약산 용액으로부터 출발하여 탄닌(또는 탄닌산(tannin acid))으로 게르마늄을 침전시키는 방법은 쉘러(Schoeller)에 의해 개발되었으며 (참조 : Analyst,57,551,1932),데이비스(Davis)와 모르간(Morgan)에 의해 정량분석법으로 실시되었다(참조 : Analyst,63,338,1938).The method of precipitating germanium with tannin (or tannin acid) starting from a weak acid solution with a germanium concentration of 0.1 to 0.2 g / l was developed by Scheller (Analyyst, 57,551,1932). Quantitative analysis was conducted by Davis and Morgan (see Analyst, 63, 338, 1938).

1941년에는 미국소재의 법인체(AmericanSmelting and Refining Co.)가 벨기에 왕국의 법인체(Vieille-Montagne)에 의해 실시된 방법과 유사하나 중화시킴으로써 침전물을 얻는 대신 탄닌을 사용하여 고농도의 게르마늄을 함유하는 생성물을 수득하는 방법으로 첫번째 특허(미국특허 제2,249,341호)를 허여 받았다.In 1941, the American Smelting and Refining Co., similar to the one carried out by the Belgian-Vieille-Montagne, was neutralized to produce products containing high concentrations of germanium using tannins instead of neutralizing precipitates. The method of obtaining was granted the first patent (US Pat. No. 2,249,341).

40년대에 용매를 사용한 추출기법의 도입으로 시작된 추출야금분야에서의 혁신이 게르마늄에는 미치지 못하였다.Innovation in the field of extraction metallurgy, which began with the introduction of solvent extraction techniques in the 40s, fell short of germanium.

탄닌의 경우와 마찬가지로, 분석화학분야를 개발하여 산업적으로 적용시키려는 노력 결과, 용매를 사용하여 추출함으로써 게르마늄-함유용액으로부터 게르마늄을 분리시키는 여러가지 다른 방법들이 제시되었다.As in the case of tannins, efforts to develop analytical chemistry and apply it industrially have suggested several different ways of separating germanium from germanium-containing solutions by extraction with solvents.

다른 추출제의 이용과는 별도로, 산업적 규모로 이용하기에는 어려울 것으로 판단되는 3가지 방법을 언급하고자 한다.Apart from the use of other extractants, we will mention three methods that are considered difficult to use on an industrial scale.

첫번째 방법은 1963년 처음으로 사용된 옥심을 사용하는 방법이다(참조 :RUDENKO.N.P. 및 KOVTUN l.V.,Tr.Kom.Anal. Khim., 14 209(1963) : C.A.59.13584에 요약되어 있슴).The first method is the use of oximes first used in 1963 (see RUDENKO.N.P. And KOVTUN l.V., Tr. Kom. Anal. Khim., 14 209 (1963): C.A.59.13584).

두번째 방법은 1967년에 처음으로 사용된 8-하이드록시퀴놀린 유도체를 사용하는 방법이다(참조 : KOVTUN. l.V. 및 RUDENKO. N.F., Zh. Neorg. Khim., 12(11)3123 (1967) : C.A. 68, 35943에 요약되어 있슴).A second method is the use of 8-hydroxyquinoline derivatives first used in 1967 (see KOVTUN. LV and RUDENKO. NF, Zh. Neorg. Khim., 12 (11) 3123 (1967): CA 68 , 35943).

세번째 방법은 게르마늄의 폴리하이드록실레이트 착화제와 함께 아민(2급,3급 및 4급 아민)을 사용하는 방법이다. 이 방법에서 처음에 옥살산,피로카테콜 및 3급 아민(트리옥틸아민)을 사용하였다(참조 : ANDRIANOV A.M. 및 AVLASOVICHL.M., Zh.Prikl.Khim.41.2313(1968) : C.A. 70, 23534에 요약되어 있음).The third method is the use of amines (secondary, tertiary and quaternary amines) with polyhydroxylate complexing agents of germanium. Oxalic acid, pyrocatechol and tertiary amine (trioctylamine) were initially used in this method (see ANDRIANOV AM and AVLASOVICHL.M., Zh.Prikl.Khim.41.2313 (1968): CA 70, 23534). ).

착화제로서 타타르산(또는 시트르산)을 사용하고 추출제로서 트리옥틸아민을 사용하는 방법은 1973에 처음으로 제시되었다(참조 : POZHARITSKII A.F., BOBROVSKAYA M.N., BELOUSAVA E.M., SKRYLEV L.D. 및 STRELSOVA E.A., Zh. Neorg. Khim.,18(9),2482(1973) : C.A 807627에 요약되어 있음).The use of tartaric acid (or citric acid) as the complexing agent and trioctylamine as the extractant was first presented in 1973 (POZHARITSKII AF, BOBROVSKAYA MN, BELOUSAVA EM, SKRYLEV LD and STRELSOVA EA, Zh. Neorg). Khim., 18 (9), 2482 (1973): summarized in CA 807627).

옥심 및 8-하이드록시퀴놀린 유도체는 상품명 LIX(General Mills의 옥심제품) 및 KELEX(Ashland Chemical의 8-하이드록시퀴놀린제룸)으로 시판되고 있는 시판품으로써 산업적으로 사용되어 왔다.Oxime and 8-hydroxyquinoline derivatives have been used industrially as commercially available products under the trade names LIX (oxime product of General Mills) and KELEX (8-hydroxyquinolinezerum from Ashland Chemical).

이와 관련하여 페나로야(penarroya)의 유럽특허 제046437호(1981.8.17 : 우선권 : LU 83448(1981.6.28))을 언급할 수 있다.In this regard, reference may be made to Penarroya's European Patent No. 046437 (1981.8.17: Priority: LU 83448 (1981.6.28)).

한편, 호보켄의 DE-OD 2,423,355(1973.5.14)와 그 후의 미국특허 제3,883,634(1974.4.26)호도 언급할 수 있다.Reference may also be made to Hoboken DE-OD 2,423,355 (April 1, 1973) and later US Patent No. 3,883,634 (April 26, 1974).

상기 두가지 방법은 문헌(Cote 및 Bauer. Hydrometalluray, 5, 149, 1980) 및 문헌(De Schepper, Hydrometalluray, 1,291,1975)의 대표적인 조작에서 과학적인 서지적 사항으로 기술되어 있는데, 이를 요약하면 다음과 같다.The two methods are described as scientific bibliography in representative manipulations of the literature (Cote and Bauer. Hydrometalluray, 5, 149, 1980) and of the literature (De Schepper, Hydrometalluray, 1,291,1975). .

첫번째 조작에서, 상술한 바와 같이, 케로센중 4% 용액형태로 8-하이드록시퀴놀린(KELEX-100)을 사용하고 제 3상의 형성을 방지하기 위해 개질제인 10% 옥탄올을 가한다.In the first operation, as described above, 8-hydroxyquinoline (KELEX-100) is used in the form of a 4% solution in kerosene and a modifier of 10% octanol is added to prevent the formation of the third phase.

상기 용액과 함께, 10분의 혼합시간으로, 수용액중에 함유된 게르마늄을 150g/l의 황산으로 추출한다. 물로 세척한 후, 재추출시키는데, 이 과정에서는, 유기상을 190분간 3N 수산화나트륨용액과 접촉시키고 10분간 교반하여 Zn이 실질적으로 함유되지 않고(1mg/l) 게르마늄 24.3g/l 함유된 용액을 수득한다.With the above solution, at a mixing time of 10 minutes, germanium contained in the aqueous solution is extracted with 150 g / l sulfuric acid. After washing with water and re-extracting, in this process, the organic phase was contacted with 3N sodium hydroxide solution for 190 minutes and stirred for 10 minutes to obtain a solution substantially free of Zn (1 mg / l) and 24.3 g / l of germanium. do.

드 쉐퍼(De Scbepper)의 문헌에 기술된 방법에서는, 용액으로 게르마늄을 추출하기 위해 110g/l의 황산과 함께 케로센중 50% 이하 용액형태의 LIX-63을 사용하였다.In the method described in De Scbepper's literature, LIX-63 in the form of up to 50% solution in kerosene with 110 g / l sulfuric acid was used to extract germanium into the solution.

혼합시간은 4분으로 감축하였고 수세단계로 수행하였으며 재추출과정은 110g/l의 수산화나트륨 수용액을 사용하여 38g/l의 게르마늄을 함유하는 농축물을 수득하였다.The mixing time was reduced to 4 minutes and washed with water. Re-extraction process was carried out using 110 g / l sodium hydroxide aqueous solution to obtain a concentrate containing 38 g / l germanium.

이 문헌에는 온도는 언급되어 있지 않으나, 두개의 해당 특허에서는 재추출 과정은 45℃이상인 고온, 바람직하게는 60℃에서 수행하고 추출과정은 가능한한 낮은 온도에서 수행하는 것이 바람직하다고 강조하였다.There is no mention of temperature in this document, but the two patents emphasized that the re-extraction process is preferably carried out at a high temperature above 45 ° C., preferably at 60 ° C. and the extraction process at the lowest possible temperature.

유기추출물을 재사용하기전에 농황산(132g/l)으로 재생시켜야 한다.The organic extracts must be regenerated with concentrated sulfuric acid (132 g / l) before reuse.

드 쉐퍼의 문헌에 따르면, 재생과정에서 사용된 산을 사용하여 pH 9 내지 10으로 중화시키면, 수화된 게르마늄 산화물의 침전물을 얻는데, 이는 건조시 게르마늄을 약 50% 함유한다.According to De Schaefer, neutralization to pH 9-10 with the acid used in the regeneration process yields a precipitate of hydrated germanium oxide, which contains about 50% germanium upon drying.

그 전에 사용했던 것 보다 더 싸고 다루기 쉬운 추출제인 아민의 이용은 아직 산업적 규모에는 적용되지 않았으나, 게르마늄의 착화제(옥살산, 타타르산, 시트르산)의 사용을 최소화시킨다.The use of amines, which are cheaper and more manageable extractants than previously used, has not yet been applied on an industrial scale, but minimizes the use of germanium complexing agents (oxalic acid, tartaric acid, citric acid).

착화제를 사용하면 다른 추출물에 비해, 비용이 필요 이상으로 더들며 이질적인 성분이 생성용액에 포함된다.Using complexing agents is more expensive than necessary than other extracts, and heterogeneous components are included in the resulting solution.

한국공개특허 제89-002431호에 따른 방법에서는 최소량의 착화제를 사용하고 아민을 사용하여 게르마늄을 황산 용액으로부터 추출하고 추출된 게르마늄을 불순물 및 오염물이 함량이 매우 낮은 결정화된 알칼리성 폴리게르마네이트 형태로 회수된다. 이어서, 이 폴리게르마네이트를 용이하게 시판용 산화물로 전환시킨다.In the method according to Korean Patent Publication No. 89-002431, a germanium is extracted from a sulfuric acid solution using a minimum amount of complexing agent and an amine, and the extracted germanium is in the form of crystallized alkaline polygermanate having a very low content of impurities and contaminants. Is recovered. Next, this polygermanate is easily converted into a commercial oxide.

또한, 한국 공개특허 제 2000-76429호에서는 게르마늄을 함유하고 광섬유 예형 제조용 유니트에서 나오는 기상폐기물의 처리방법에 있어서, 상기 기상폐기물로부터 폐액을 형성하는 단계, 및 상기 폐액 중의 게르마늄을 침전시키는 단계를 포함하며, 상기 침전이 상기 폐액에 마그네시아 MgO를 가함으로써 수행되는 방법을 개시하고 있다.In addition, Korean Patent Laid-Open Publication No. 2000-76429 discloses a method of treating gaseous waste containing germanium and exiting an optical fiber preform manufacturing unit, comprising: forming a waste liquid from the gaseous waste, and precipitating germanium in the waste liquid. And the precipitation is carried out by adding magnesia MgO to the waste liquid.

아울러, 한국 특허출원 제98-3173호에서는 폐광천수를 0.5% 수산화칼륨(KOH) 및 황화수소(H2S)로 처리하여 유해 중금속 등을 제거하고 이를 1/6로 농축하여 게르마늄 및 세레늄을 함유하는 물파스의 제조방법을 개시하고 있다.In addition, Korean Patent Application No. 98-3173 treats waste mineral water with 0.5% potassium hydroxide (KOH) and hydrogen sulfide (H 2 S) to remove harmful heavy metals and concentrate it to 1/6 to contain germanium and selenium. Disclosed is a method for preparing water paste.

그러나 이와 같은 종래의 모든 게르마늄 추출방법은 천연광석으로부터 게르마늄을 회수하는 방법으로서 산처리(황산) 및 알카리(NaOH 등)로 처리하는 것으로 대별되나, 그 회수요율이 떨어지고 불순물이 다량 함유되는 경향이 있었다.However, all of these conventional germanium extraction methods are widely used to recover germanium from natural ore, which is treated with acid treatment (sulfuric acid) and alkali (NaOH, etc.), but the recovery rate is low and tends to contain a large amount of impurities. .

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서,The present invention has been made to solve the above problems,

게르마늄이 함유된 광천수를 카본필터와 자석, 세라믹볼, 교번자장 발생기를 통과시켜 게르마늄 농축분말 추출하므로서, 불순물의 함량을 최소화한 고순도의 게르마늄을 고수율로 얻을 수 있는 광천수로부터의 게르마늄 농축분말 추출방법 및 그 장치를 제공함에 본 발명의 목적 있다.Method of extracting germanium concentrated powder from mineral water that can obtain high purity germanium with high yield by minimizing impurities content by extracting germanium concentrated mineral water through carbon filter, magnet, ceramic ball and alternating magnetic field generator And an apparatus thereof.

도 1 은 본 발명의 게르마늄 추출장치를 도시한 개략설명도.1 is a schematic explanatory view showing a germanium extraction device of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : 1차 집수조 2 : 2차 집수조1: 1st collection tank 2: 2nd collection tank

3 : 세라믹 저장조 4 : 가열로3: ceramic reservoir 4: heating furnace

5 : 바이오진 필터 6,6' : 교번자장 발생기5: biogene filter 6,6 ': alternating magnetic field generator

7 : 냉각장치 8,8',8" : 체크밸브7: Cooling device 8,8 ', 8 ": Check valve

9,9' : 자석 10 : 카본필터9,9 ': Magnet 10: Carbon filter

11 : 세라믹볼 12 : 가열장치11 ceramic ball 12 heating device

13 : 연결관13: connector

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 은 본 발명의 게르마늄 추출장치를 도시한 개략설명도이다.1 is a schematic explanatory diagram showing a germanium extracting apparatus of the present invention.

본 발명의 게르마늄 추출방법은 게르마늄이 함유된 광천수를 1차집수조에 투입하여 자석과 카본필터로 정화하는 1차 정화공정과;The germanium extraction method of the present invention comprises the first purification step of purifying the mineral water containing germanium into the primary collection tank and purified by a magnet and a carbon filter;

2차 집수조로 다시 투입하여 자석으로 정화하는 2차 정화공정과;A secondary purification step of purifying the magnet by re-inserting it into the secondary water tank;

다수의 세라믹볼이 충전된 세라믹 저장조에 투입하여 세라믹에 의해 정화하는 세라믹 정화공정과;A ceramic purification step of purifying by ceramic by putting in a ceramic reservoir filled with a plurality of ceramic balls;

가열로에 투입하고 110℃이상의 온도로 1시간이상 가열하여 분말화 시키므로서 게르마늄 분말을 추출해내는 가열공정과;A heating step of extracting germanium powder by putting it in a heating furnace and heating the powder at a temperature of 110 ° C. or more for 1 hour or more to powder the powder;

가열시 발생한 수증기를 바이오진필터와 교번자장발생기에 통과시켜 정화하는 수증기 정화공정과;A water vapor purification step of purifying the water vapor generated during heating by passing through the biogene filter and the alternating magnetic field generator;

수증기를 냉각장치에 통과시켜 냉각시켜 배출하는 냉각 및 배출공정으로 이루어 지는 것이다.It consists of a cooling and discharge process of cooling water vapor by passing it through a cooling device.

이와 같은 방법으로 게르마늄을 추출하기 위한 장치는,The apparatus for extracting germanium in this way,

내부에 자석(9)과 카본필터(10)가 설치된 1차 집수조(1)와, 내부에 자석(9')이 설치된 2차 집수조(2)와, 내부에 다수의 세라믹볼(11)이 충전되어 있는 세라믹 저장조(3)와, 하부에 가열장치(12)가 설치된 가열로(4)를 연결관(13)으로 연결하여 구성하되,The primary collection tank 1 having the magnet 9 and the carbon filter 10 installed therein, the secondary collection tank 2 having the magnet 9 'installed therein, and the plurality of ceramic balls 11 filled therein. Consists of the ceramic reservoir 3 and the heating furnace 4 is provided with a heating device 12 in the lower portion by a connecting pipe 13,

1차 집수조(1) 및 가열로(4)의 상부에 연결된 연결관(13)과 가열로(4)로 부터 내용물이 배출되는 연결관(13)상에 체크밸브(8)(8')(8")를 설치하고,Check valves 8 and 8 'on the connecting pipe 13 connected to the upper part of the primary water collecting tank 1 and the heating furnace 4 and the connecting pipe 13 through which contents are discharged from the heating furnace 4). 8 "),

가열로(4)내의 수증기가 배출되는 연결관(13)상에는 바이오진필터(5)와 교번자장발생기(6)(6'), 냉각장치(7)를 순차적으로 설치하여 구성한 것이다.On the connecting pipe 13 through which water vapor in the heating furnace 4 is discharged, the biogene filter 5, the alternating magnetic field generator 6, 6 ', and the cooling device 7 are sequentially installed.

이하, 본 발명의 작용을 살펴본다.Hereinafter, the operation of the present invention.

우선 본 발명의 게르마늄 추출장치를 이용하여 게르마늄을 추출코자 할 때에는 게르마늄이 함유된 광천수를 연결관(13)을 통해 1차 집수조(1)로 유입시켜 1차 집수조(1)내에 설치된 자석(9)과 카본필터(10)로 1차 정화를 하게되는 것이다.First, in order to extract germanium using the germanium extracting apparatus of the present invention, the mineral water in which the germanium-containing mineral water is introduced into the primary sump tank 1 through the connection pipe 13 is installed in the primary sump tank 1. And the primary filter to the carbon filter 10.

1차 정화된 광천수는 다시 2차 집수조(2)로 유입되어 내부에 설치된 자석(9')에 의해 2차 정화되어 세라믹볼(11)이 다수 충전되어 있는 세라믹저장조(3)로 이동되어 세라믹볼(11)에 의해 다시 정화되는 것이다.The first purified mineral water flows back into the secondary water collecting tank 2 and is second purified by the magnet 9 'installed therein, and then moved to the ceramic storage tank 3 in which the ceramic balls 11 are filled. It is purified again by (11).

이와 같이 정화된 광천수는 가열로(4)로 유입되어 가열장치(12)에 의해 110℃ 이상의 온도로 1시간이상 가열되어 광천수내의 개르마늄이 분말상으로 가열로(4)의 바닥에 남게 되므로서 고순도의 게르마늄 분말을 추출하게 되는 것이다.The purified mineral water is introduced into the furnace 4 and heated by the heating device 12 at a temperature of 110 ° C. or more for at least 1 hour so that the germanium in the mineral water remains in the powder form at the bottom of the furnace 4. High purity germanium powder will be extracted.

이때, 가열로(4)에서 광천수의 가열시 증발되는 수증기는 다시 연결관(13)을 통해 배출되어 연결관(13)상에 설치되어 있는 바이오진필터(5)와 교번자장발생기(6)(6')를 통과하면서 여과 및 정화되고, 냉각장치(7)에 의해 다시 냥각되어 액체상태로 배출되는 것이다.At this time, the water vapor evaporated when the mineral water is heated in the heating furnace 4 is discharged through the connecting pipe 13 again and the biogene filter 5 and the alternating magnetic field generator 6 installed on the connecting pipe 13 ( It is filtered and purified as it passes through 6 '), and is struck again by the cooling device 7 and discharged in a liquid state.

상기와 같이 본 발명은 게르마늄이 함유된 광천수를 카본필터와 자석, 세라믹볼, 교번자장 발생기를 통과시켜 게르마늄 농축분말 추출하므로서, 불순물의 함량을 최소화한 고순도의 게르마늄을 고수율로 얻을 수 있는 것이다.As described above, the present invention extracts the germanium concentrated powder through the carbon filter, the magnet, the ceramic ball, and the alternating magnetic field generator, so that germanium with high purity can be obtained with a minimum amount of impurities.

Claims (2)

게르마늄이 함유된 광천수를 1차집수조에 투입하여 자석과 카본필터로 정화하는 1차 정화공정과;A primary purification step of purifying mineral water containing germanium into a primary collection tank and purifying with a magnet and a carbon filter; 2차 집수조로 다시 투입하여 자석으로 정화하는 2차 정화공정과;A secondary purification step of purifying the magnet by re-inserting it into the secondary water tank; 다수의 세라믹볼이 충전된 세라믹 저장조에 투입하여 세라믹에 의해 정화하는 세라믹 정화공정과;A ceramic purification step of purifying by ceramic by putting in a ceramic reservoir filled with a plurality of ceramic balls; 가열로에 투입하고 110℃이상의 온도로 1시간이상 가열하여 분말화 시키므로서 게르마늄 분말을 추출해내는 가열공정과;A heating step of extracting germanium powder by putting it in a heating furnace and heating the powder at a temperature of 110 ° C. or more for 1 hour or more to powder the powder; 가열시 발생한 수증기를 바이오진필터와 교번자장발생기에 통과시켜 정화하는 수증기 정화공정과;A water vapor purification step of purifying the water vapor generated during heating by passing through the biogene filter and the alternating magnetic field generator; 수증기를 냉각장치에 통과시켜 냉각시켜 배출하는 냉각 및 배출공정으로 이루어짐을 특징으로 하는 광천수로부터의 게르마늄 농축분말 추출방법.A method for extracting germanium powder from mineral water, characterized in that it consists of a cooling and discharging step of passing water vapor through a cooling device to cool it and discharge it. 내부에 자석(9)과 카본필터(10)가 설치된 1차 집수조(1)와, 내부에 자석(9')이 설치된 2차 집수조(2)와, 내부에 다수의 세라믹볼(11)이 충전되어 있는 세라믹 저장조(3)와, 하부에 가열장치(12)가 설치된 가열로(4)를 연결관(13)으로 연결하여 구성하되,The primary collection tank 1 having the magnet 9 and the carbon filter 10 installed therein, the secondary collection tank 2 having the magnet 9 'installed therein, and the plurality of ceramic balls 11 filled therein. Consists of the ceramic reservoir 3 and the heating furnace 4 is provided with a heating device 12 in the lower portion by a connecting pipe 13, 1차 집수조(1) 및 가열로(4)의 상부에 연결된 연결관(13)과 가열로(4)로 부터 내용물이 배출되는 연결관(13)상에 체크밸브(8)(8')(8")를 설치하고,Check valves 8 and 8 'on the connecting pipe 13 connected to the upper part of the primary water collecting tank 1 and the heating furnace 4 and the connecting pipe 13 through which contents are discharged from the heating furnace 4). 8 "), 가열로(4)내의 수증기가 배출되는 연결관(13)상에는 바이오진필터(5)와 교번자장발생기(6)(6'), 냉각장치(7)를 순차적으로 설치하여 구성함을 특징으로 하는 광천수로부터의 게르마늄 농축분말 추출장치.On the connecting pipe 13 through which the water vapor in the furnace 4 is discharged, the biogene filter 5, the alternating magnetic field generator 6, 6 ', and the cooling device 7 are sequentially installed. Germanium concentrated powder extraction apparatus from mineral water.
KR1020020008885A 2002-02-19 2002-02-19 Method and device for extracting germanium from mineral water KR20030069000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020008885A KR20030069000A (en) 2002-02-19 2002-02-19 Method and device for extracting germanium from mineral water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020008885A KR20030069000A (en) 2002-02-19 2002-02-19 Method and device for extracting germanium from mineral water

Publications (1)

Publication Number Publication Date
KR20030069000A true KR20030069000A (en) 2003-08-25

Family

ID=32221896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020008885A KR20030069000A (en) 2002-02-19 2002-02-19 Method and device for extracting germanium from mineral water

Country Status (1)

Country Link
KR (1) KR20030069000A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102108A (en) * 1996-09-25 1998-04-21 Shoei Chem Ind Co Manufacture of metallic powder
KR20020087200A (en) * 2001-05-14 2002-11-22 백한기 A method and apparatus for sintering germanium
KR100383077B1 (en) * 2000-08-02 2003-05-12 정명길 Process for preparation germanium water concentration powder and the apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102108A (en) * 1996-09-25 1998-04-21 Shoei Chem Ind Co Manufacture of metallic powder
KR100383077B1 (en) * 2000-08-02 2003-05-12 정명길 Process for preparation germanium water concentration powder and the apparatus
KR20020087200A (en) * 2001-05-14 2002-11-22 백한기 A method and apparatus for sintering germanium

Similar Documents

Publication Publication Date Title
US4008076A (en) Method for processing manganese nodules and recovering the values contained therein
AU598671B2 (en) Process for the recovery of germanium from solutions that contain it
CN111170499A (en) Method for recovering nickel sulfate from nickel electroplating waste liquid
EP4077751A1 (en) Recovery of vanadium from slag materials
RU2356963C2 (en) Extraction method of beryllium from beryllium-bearing spodumene concentrate
AU2012203601B2 (en) Process for producing rare metal
Lebedev Sulfuric acid technology for processing of eudialyte concentrate
CN108531729A (en) A kind of vanadium iron separation method containing vanadium solution
EP1408127B1 (en) Method for recovering germanium and other metals from fly ash generated in an integrated gasification combined cycle-type (igcc) thermal station
JPS634028A (en) Treatment for scrap containing rare earth element and iron
CN103667706B (en) The separating and purifying method of gold in a kind of plation waste material
KR20030069000A (en) Method and device for extracting germanium from mineral water
US9279168B2 (en) Process for recovery of technical grade molybdenum from diluted leaching acid solutions (PLS), with highly concentrated arsenic, from metallurgical residues
RU2263722C1 (en) Method for processing of vanadium-containing slags
KR100427627B1 (en) Method for recovering germanium and alum from a mineral water and product containing the same
CN114277264A (en) Method for extracting and recovering germanium
JPS61284538A (en) Treatment of waste metallic oxide/metal mixture with waste acid
JPH04198017A (en) Purification of scandium oxide
US4431615A (en) Process for the recovery of magnesium and/or nickel by liquid-liquid extraction
JPH04254413A (en) Method for recovering rare earth element
RU2360985C1 (en) Processing method of plumb-microlitic concentrate
JPS6056031A (en) Method for recovering ge, ga and in from substance containing trace of ge, ga and in
RU2293779C2 (en) Method of recovering and concentrating germanium from solutions
US1316351A (en) Process of treating copper ores by lixiviation with an so
JPS637342A (en) Treatment of rare earth cobalt alloy scrap

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application