KR20030067867A - The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate - Google Patents

The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate Download PDF

Info

Publication number
KR20030067867A
KR20030067867A KR1020020007361A KR20020007361A KR20030067867A KR 20030067867 A KR20030067867 A KR 20030067867A KR 1020020007361 A KR1020020007361 A KR 1020020007361A KR 20020007361 A KR20020007361 A KR 20020007361A KR 20030067867 A KR20030067867 A KR 20030067867A
Authority
KR
South Korea
Prior art keywords
polybutylene succinate
solution
fine particles
solvent
emulsion
Prior art date
Application number
KR1020020007361A
Other languages
Korean (ko)
Inventor
김범준
홍기정
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020020007361A priority Critical patent/KR20030067867A/en
Publication of KR20030067867A publication Critical patent/KR20030067867A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Abstract

PURPOSE: A method for preparing polybutylene succinate spherical particulate from polybutylene succinate polymer is provided, to enable the particle size and its distribution to be controlled from micrometer to nanometer scale. CONSTITUTION: The method comprises the steps of preparing a first solution containing polybutylene succinate polymer and a second solution containing an emulsion dispersant; mixing the first solution and the second solution with stirring to prepare an emulsion; and evaporating a solvent from the emulsion to precipitate polybutylene succinate spherical particulate. Preferably the solvent of the first solution comprises at least one selected from the group consisting of methylene chloride, chloroform, formic acid, concentrated sulfuric acid and concentrated nitric acid, and the ratio of polybutylene succinate and a solvent is 1:3-30; and the solvent of the second solution comprises at least one selected from the group consisting of a polymer-based three-dimensional emulsion dispersant comprising gelatin, arabic rubber, dextrin, casein, protein, poly(vinyl alcohol), sodium alginate and albumin, and a sorbitan ester-based low molecular weight electrostatic emulsion dispersant comprising sorbitan monooleate, and the concentration of the dispersant is 0.05-10 % (w/l).

Description

폴리부틸렌석시네이트 구상미립자의 제조방법{The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate}The manufacturing method of globular fine grain of polybutylene succinate}

본 발명은 폴리부틸렌석시네이트 구상 미립자의 제조방법에 관한 것으로, 보다 상세하게는 평균입경 및 입도분포 등을 제어할 수 있는 폴리부틸렌석시네이트 구상미립자의 제조방법에 관한 것이다.The present invention relates to a method for producing polybutylene succinate spherical fine particles, and more particularly, to a method for producing polybutylene succinate spherical fine particles that can control the average particle size and particle size distribution.

현재 범용적으로 사용되고 있는 플라스틱, 주로 폴리에틸렌테레프탈레이트, 폴리프로필렌, 폴리에틸렌, 그 외 엔지니어링플라스틱 등이 부식저항성, 높은 강도 등과 같은 물리적, 화학적 성질로 인해 이미 다양한 제품으로 사용되고 있다. 그러나 포장용, 생활용 및 농업용 플라스틱은 사용 후 폐기되면 회수하여 재사용하는 방법 외는 거의 대부분이 방치되고 있어 이로 인한 환경오염, 즉 난분해성으로 인한 매립지의 안정화 저해, 매립용량 과대소요 및 내부 분해성물질의 분해지연, 토질악화 및 토양오염 등을 유발한다. 더욱이 쓰레기 배출에 있어서 쓰레기 중 플라스틱 함량이 많으며 매립의존도가 높은 국내 상황에 비추어 볼 때, 분해성 고분자의 개발 및 적용이 절실히 요구되고 있는 실정이다.Plastics, which are currently used in general, mainly polyethylene terephthalate, polypropylene, polyethylene, and other engineering plastics are already used in various products due to their physical and chemical properties such as corrosion resistance and high strength. However, most of the packaging, living and agricultural plastics are left unused except for the method of recovery and reuse when they are discarded after use. , Soil deterioration and soil pollution. Moreover, in view of the domestic situation in which wastes contain a large amount of plastic and have high landfill dependence, the development and application of degradable polymers are urgently required.

카프로락톤의 고리개환중합에 의한 높은 분자량대의 고분자제조가 알려지면서 생분해가 가능한 지방족 폴리에스터를 이용한 석유화학제품, 필름 및 성형품 등의 제조가 꾸준히 시도되었으나, 최종 생산고분자의 경우 낮은 용융점과 생산시 높은 비용이 요구된다는 단점으로 인해 그 용도가 몇몇 의료용 섬유 등의 한정적인 용도로만 사용되었을 뿐, 산업적 분야, 자동차 부품, 가정제품 등에 널리 사용되지못하고 있다.Although the production of high molecular weight polymers by ring-opening polymerization of caprolactone has been known, the production of petrochemicals, films, and molded products using biodegradable aliphatic polyesters has been steadily attempted. Due to the disadvantage of the cost, the use is used only for a limited use such as some medical fibers, but is not widely used in industrial fields, automobile parts, household products, and the like.

종래의 생분해성 수지로는 주식회사 코오롱에서 천연고분자에 지방족 폴리에스터를 공중합한 분해성 수지(대한민국 특허공개 제95-18124)를, 주식회사 대림산업에서는 기존 폴리올레핀 수지, 지방족 폴리에스터에 광분해성 유도화합물, 무기충전제를 함유한 분해성 수지(대한민국 특허공개 제96-22744)를, 삼성종합화학에서는 생분해성을 갖는 지방족 폴리에스터에 광분해성을 부여하는 케톤기를 함유한 폴리에스터(대한민국 특허공개 제95-18116)를, 제일합섬에서는 에틸렌과 지방족 폴리에스터에 전분을 함유한 생분해성 수지(대한민국 특허공개 제95-18214)와 열가소성 수지를 기본으로 하여 천연고분자, 자동산화제, 광증감제, 가소제, 착색제 등을 첨가한 생분해성 수지(대한민국 특허공개 제95-10984)를, 한국과학기술원에서는 젖산을 주 반복단위로 하는 저분자량 폴리에스터 헤테로사이클릭 화합물 등의 사슬확장제를 첨가한 생분해성 폴리에스터(대한민국 특허공개 제95-23663)를, 미생물성 지방족 폴리에스터와 화학합성 지방족 폴리에스터의 공중합체(대한민국 특허공개 제 96-22669)를 각각 개발하였다.Conventional biodegradable resins include degradable resins obtained by copolymerizing aliphatic polyesters with natural polymers from Kolon Co., Ltd. (Korean Patent Publication No. 95-18124), and photodegradable inducing compounds and aliphatic polyesters in Daelim Industries. Degradable resins containing fillers (Korean Patent Publication No. 96-22744), and Samsung General Chemicals has incorporated ketone group-containing polyesters that give photodegradability to biodegradable aliphatic polyesters (Korean Patent Publication No. 95-18116). In Cheil Synthetic Fiber, natural polymers, automatic oxidizers, photosensitizers, plasticizers, colorants, etc. are added based on biodegradable resins containing starch in ethylene and aliphatic polyester (Korean Patent Publication No. 95-18214) and thermoplastic resins. Biodegradable resins (Korean Patent Publication No. 95-10984), and Korea Advanced Institute of Science and Technology A biodegradable polyester (Korean Patent Publication No. 95-23663) to which a chain extender such as a molecular weight polyester heterocyclic compound is added is used. A copolymer of a microbial aliphatic polyester and a chemical synthetic aliphatic polyester (Korean Patent Publication No. 96- 22669), respectively.

본 발명자는 디카르복실산과 글리콜을 원료로 하여 생분해성 고분자를 제조함에 있어서, 결합제로 마그네슘염이 디카르복실산 100몰%에 대하여 0.1∼5몰% 첨가되며 탈글리콜 반응촉매로 티타늄화합물이 수지 전체에 대하여 0.01∼1중량% 첨가되며, 열안정제로서 트리메틸포스페이트가 수지전체에 대하여 0.01∼1.0중량% 첨가되는 것을 특징으로 하여, 얻어진 고분자는 비교적 짧은 내구사용연한이 요구되는 포장용 필름, 쓰레기 수거용 필름, 농업용 필름 등에 사용하고자 하는 목적으로생분해성 고분자의 제조방법(대한민국 특허공개 제99-025900)을 개발한 바 있다.MEANS TO SOLVE THE PROBLEM In manufacturing a biodegradable polymer using dicarboxylic acid and glycol as a raw material, 0.1-5 mol% of magnesium salts are added with respect to 100 mol% of dicarboxylic acids as a binder, and a titanium compound is resin as a deglycol reaction catalyst. 0.01 to 1% by weight is added to the whole, and trimethyl phosphate is added as 0.01 to 1.0% by weight with respect to the whole resin as a heat stabilizer. Thus, the obtained polymer is a packaging film or a film for collecting waste that requires a relatively short service life. In order to be used for agricultural films, etc., a biodegradable polymer production method (Korean Patent Publication No. 99-025900) has been developed.

본 발명은 상기특허 공개번호 제99-025900호에 의해 제조된 폴리부틸렌석시네이트를 이용하여 화장품용 필러로 사용되어질 구상미립자를 제조하는 것이다. 기계적 분쇄에 의한 미립자화는 얻어진 분말의 입경이 큰데다가 또한 독립된 단분산이 우수한 미립자분말을 제조하는 것이 곤란하다. 게다가, 상기방법으로는 원하는 구상의 입자형태 및 입도분포 등을 제어하는 것도 곤란하다. 이 때문에 단분산성이 우수한 폴리부틸렌석시네이트 구상미립자의 제조방법의 개발이 절실히 요망되고 있다.The present invention is to prepare spherical fine particles to be used as a cosmetic filler using the polybutylene succinate prepared according to the Patent Publication No. 99-025900. Particulation by mechanical pulverization is difficult to produce a fine particle powder having a large particle diameter of the obtained powder and excellent in independent monodispersion. In addition, it is also difficult to control the spherical particle shape, particle size distribution, and the like by the above method. For this reason, the development of the manufacturing method of the polybutylene succinate spherical microparticles | fine-particles excellent in monodispersity is urgently desired.

본 발명은 평균입경 및 입도분포 등을 제어할 수 있는 폴리부틸렌석시네이트 구상미립자의 제조방법을 제공하는 것을 주목적으로 한다. 본 발명의 다른 목적은 화장품 필러용으로 사용가능한 폴리부틸렌석시네이트 구상 미립자를 제공하는 것이다.The present invention is to provide a method for producing polybutylene succinate spherical fine particles that can control the average particle diameter, particle size distribution and the like. Another object of the present invention is to provide polybutylene succinate spherical fine particles usable for cosmetic fillers.

도1은 실시예 1에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 주사전자현미경 사진이고,1 is a scanning electron micrograph of the polybutylene succinate spherical fine particles prepared in Example 1,

도2는 실시예 1에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 입도분포도이고,2 is a particle size distribution diagram of polybutylene succinate spherical fine particles prepared according to Example 1,

도3은 실시예 2에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 주사전자현미경 사진이고,3 is a scanning electron micrograph of the polybutylene succinate spherical fine particles prepared in Example 2,

도4는 실시예 2에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 입도분포도이고,4 is a particle size distribution diagram of polybutylene succinate spherical fine particles prepared in Example 2,

도5는 실시예 3에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 입도분포도이고,5 is a particle size distribution diagram of polybutylene succinate spherical fine particles prepared in Example 3,

도6은 실시예 4에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 입도분포도이고,6 is a particle size distribution diagram of polybutylene succinate spherical fine particles prepared in Example 4,

도7은 비교예 1에 의해 제조된 폴리부틸렌석시네이트 구상미립자의 입도분포도이다.7 is a particle size distribution diagram of polybutylene succinate spherical fine particles prepared in Comparative Example 1.

본 발명의 제조방법은 폴리부틸렌석시네이트 고분자로부터 폴리부틸렌석시네이트 구상미립자를 제조하는 방법에 있어서,The production method of the present invention is a method for producing polybutylene succinate spherical fine particles from a polybutylene succinate polymer,

(a) 폴리부틸렌석시네이트 고분자를 포함하는 제 1 용액과 유화분산제를 포함하는 제 2 용액을 각각 조제하는 제 1 공정,(a) a first step of preparing a first solution containing a polybutylene succinate polymer and a second solution containing an emulsion dispersant, respectively;

(b) 제 1 용액과 제 2 용액을 혼합하여 기계적 고속교반에 의해 혼합용액으로부터 유화액을 제조하는 제 2 공정 및,(b) a second step of preparing an emulsion from the mixed solution by mechanical high speed stirring by mixing the first solution and the second solution, and

(c) 제조된 유화액으로부터 용매를 증발시킴으로써 폴리부틸렌석시네이트 구상미립자를 석출시키는 제 3 공정을 포함하는 것을 특징으로 한다.(c) a third step of depositing polybutylene succinate spherical fine particles by evaporating the solvent from the prepared emulsion.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

(1) 제1공정(1) First step

본발명에서는 폴리부틸렌석시네이트 고분자를 원료로서 사용하여 폴리부틸렌석시네이트 구상미립자를 제조한다. 폴리부틸렌석시네이트는 디카르복실산과 글리콜을 원료로 제조된 것으로, 이러한 폴리부틸렌석시네이트 고분자를 이용하여, 우선 제1공정으로서 폴리부틸렌석시네이트 고분자를 포함하는 제1용액과 유화분산제를 포함하는 제2용액을 각각 조제한다. 즉, 본 발명에서는 폴리부틸렌석시네이트 고분자/유기용액과 유화분산수용액은 각각 별개의 용액으로서 조제한다.In the present invention, polybutylene succinate spherical fine particles are produced using polybutylene succinate polymer as a raw material. Polybutylene succinate is made of dicarboxylic acid and glycol as a raw material, and using such a polybutylene succinate polymer, firstly a first solution and an emulsion dispersant containing the polybutylene succinate polymer as a first step Each 2nd solution containing is prepared. That is, in the present invention, the polybutylene succinate polymer / organic solution and the emulsion dispersion aqueous solution are prepared as separate solutions, respectively.

(a) 제1용액(a) First solution

제1용액에 사용하는 용매는 실질적으로 폴리부틸렌석시네이트 고분자가 용해되고, 또한 제2용액과 혼화되지 않는 것이라면 특별히 제한하지 않는다. 예를 들어 메틸렌클로라이드, 클로로포름, 포름산, 농황산, 농질산의 적어도 1종을 포함하는 용매를 사용할 수 있다.The solvent used for the first solution is not particularly limited as long as the polybutylene succinate polymer is substantially dissolved and not mixed with the second solution. For example, a solvent including at least one of methylene chloride, chloroform, formic acid, concentrated sulfuric acid, and concentrated nitric acid can be used.

제1용액에 있어서 폴리부틸렌석시네이트와 용매의 비율은 사용하는 폴리부틸렌석시네이트의 종류, 용매의 종류, 제2용액의 농도 등에 따라서 적절히 설정한다면 좋은데, 보통은 폴리부틸렌석시네이트 : 용매 = 1 : 3∼30 정도, 바람직하게는 1 : 5∼15로 한다.The ratio of polybutylene succinate and solvent in the first solution may be appropriately set according to the type of polybutylene succinate used, the type of solvent, the concentration of the second solution, and the like. Usually, polybutylene succinate: solvent = 1: 3 to 30, preferably 1: 5 to 15.

(b) 제2용액(b) second solution

제2용액으로 사용되는 유화분산제 함유 수용액은 특히 제한되지 않고, 예를 들어 젤라틴, 아라비아고무, 덱스트린, 카제인, 단백질, 폴리비닐알콜, 알긴산소다, 알부민 등의 고분자계 입체적 유화분산제와, 솔비탄모노올레이트 등의 솔비탄에스테르계의 저분자계 정전기적 유화분산제를 사용할 수 있다. 이들은 1종 또는 2종 이상을 사용할 수 있다. 나아가 본 발명에서는 상기 언급된 입체적 분산제 외에 다당류 화합물도 사용할 수 있다. 이들에 의해 얻어지는 폴리부틸렌석시네이트 미립자의 입도분포 특성을 바꿀 수 있다.The emulsion dispersant-containing aqueous solution used as the second solution is not particularly limited. For example, polymer-based three-dimensional emulsion dispersants such as gelatin, gum arabic, dextrin, casein, protein, polyvinyl alcohol, sodium alginate, albumin, and sorbitan mono Low molecular type electrostatic emulsifiers such as sorbitan esters such as oleate can be used. These can use 1 type (s) or 2 or more types. Furthermore, in the present invention, a polysaccharide compound may be used in addition to the above-mentioned steric dispersant. The particle size distribution characteristic of the polybutylene succinate microparticles | fine-particles obtained by these can be changed.

제2용액에 사용되는 용매는 물 이외에 실질적으로 유화분산제가 용해되고, 나아가 생성되는 폴리부틸렌석시네이트 미립자가 용해되지 않는 것이라면 특히 제한되지 않는다. 또한 제1용액의 용매에 용해되는 용매라 할지라도 폴리머의 빈용매와 혼합하여 폴리부틸렌석시네이트가 침전되도록 조정한다면 이들도 사용할 수 있다.The solvent used for the second solution is not particularly limited as long as the emulsion dispersant is substantially dissolved in addition to water, and further, the resulting polybutylene succinate fine particles are not dissolved. Moreover, even if it is a solvent which melt | dissolves in the solvent of a 1st solution, these can also be used if it adjusts so that a polybutylene succinate may precipitate by mixing with the poor solvent of a polymer.

제2용액에 있어서 유화분산제의 농도는 사용하는 폴리부틸렌석시네이트의 종류, 제1용액의 농도 등에 따라서 적절히 설정하면 좋은데, 보통은 0.05∼10% (w/ℓ) 정도, 바람직하게는 0.2∼5% (w/ℓ)로 한다. 유화분산제의 농도가 0.05% 이하이면 구상 입자들이 응집, 합일되고, 유화분산제의 농도가 10%이상이면 경제성이 저하되며 이후 후공정에 제거의 번거로움이 있다.The concentration of the emulsifying dispersant in the second solution may be appropriately set depending on the type of polybutylene succinate used, the concentration of the first solution, and the like, but is usually about 0.05 to 10% (w / L), preferably 0.2 to 5% (w / L). If the concentration of the emulsion dispersant is 0.05% or less, the spherical particles are aggregated and coalesced, and if the concentration of the emulsion dispersant is 10% or more, the economic efficiency is lowered, and there is a hassle of removal in the subsequent process.

(2) 제2공정(2) second process

제2공정에서는 제1용액과 제2용액을 혼합하여, 교반수단에 의해 혼합용액으로부터 고분자유화용액을 만든다. 제1용액과 제2용액과의 혼합비율은 폴리부틸렌석시네이트의 종류, 각 용액의 농도 등에 따라 적절히 변경가능한데, 보통은 1 : 1∼20 정도, 바람직하게는 1 : 2∼10로 되도록 혼합하면 좋다.In the second step, the first solution and the second solution are mixed to form a polymer emulsion solution from the mixed solution by the stirring means. The mixing ratio of the first solution and the second solution can be appropriately changed depending on the type of polybutylene succinate, the concentration of each solution, etc., but usually it is mixed in a range of about 1: 1 to 20, preferably 1: 2 to 10. Do it.

제1용액과 제2용액의 혼합비율이 1:1 이하이면 유화입자의 형성이 불가능하고, 제1용액과 제2용액의 혼합비율이 1:20 이상이면 반응조의 크기가 커져서 수율이 떨어지게 된다.If the mixing ratio of the first solution and the second solution is 1: 1 or less, it is impossible to form the emulsified particles. If the mixing ratio of the first solution and the second solution is 1:20 or more, the size of the reaction tank becomes large and the yield decreases.

상기 제2공정의 교반수단은 교반기에 의한 기계적 교반으로, 호모믹서에 의해 교반속도를 조절함으로써 평균입경의 미세화가 가능하게 된다. 호모믹서는 공지의 교반장치 및 조작조건을 그대로 채용할 수 있다. 교반기의 회전속도는 소망하는 입경 등에 따라 적절히 설정하면 좋으며 보통은 1,000∼20,000 rpm 정도, 바람직하게는 2,000∼10,000 rpm으로 하면 좋다. 교반기의 회전속도가 1,000rpm 이하이면 형성된 유화입자의 크기가 너무 커져서 원하는 입경을 얻을 수 없게 되고, 교반기의 회전속도가 20,000rpm 이상이면 교반기에 과부하가 걸려 경제성이 떨어진다.The stirring means of the second step is mechanical stirring by a stirrer, it is possible to refine the average particle diameter by adjusting the stirring speed by a homomixer. A homomixer can employ | adopt a well-known stirring apparatus and operation conditions as it is. The rotational speed of the stirrer may be appropriately set in accordance with the desired particle size and the like, and is usually about 1,000 to 20,000 rpm, preferably 2,000 to 10,000 rpm. If the rotational speed of the stirrer is less than 1,000rpm, the size of the emulsion particles formed is too large to obtain the desired particle size, if the rotational speed of the stirrer is more than 20,000rpm overloading the stirrer is inferior in economic efficiency.

상기 제 2 공정의 교반수단의 다른 실시예는 초음파 발생기에 의한 초음파교반으로, 초음파 교반에 의해 교반속도를 조절함으로써 평균입경의 미세화가 가능하게 된다. 초음파 교반은 공지의 교반장치 및 조작조건을 그대로 채용할 수 있다. 초음파 발생기의 주파는 소망하는 입경 등에 따라 적절히 설정하면 좋으며 보통은 20∼130 KHz 정도, 바람직하게는 30∼80 KHz로 하면 좋다. 초음파 교반은 기계적 교반에 비해 더욱 미세한 교반을 수행할 수 있으며, 상기 초음파 교반 및 기계적 교반 외에도 적용 가능한 다른 여러 가지 교반수단을 이용할 수 있다.Another embodiment of the stirring means of the second process is the ultrasonic stirring by the ultrasonic generator, it is possible to refine the average particle diameter by adjusting the stirring speed by ultrasonic stirring. Ultrasonic stirring can employ | adopt a well-known stirring apparatus and operation conditions as it is. The frequency of the ultrasonic generator may be appropriately set in accordance with the desired particle size and the like, and may usually be about 20 to 130 KHz, preferably 30 to 80 KHz. Ultrasonic agitation can perform finer agitation than mechanical agitation, and other various agitation means can be used in addition to the ultrasonic agitation and mechanical agitation.

제2공정에 있어서의 온도는 특히 제한되지 않고 보통 10∼30℃ 정도, 바람직하게는 15∼25℃로 하면 좋다. 게다가 교반시간은 폴리부틸렌석시네이트 미립자의 석출이 실질적으로 완료되기까지 행하면 좋으며, 보통은 30∼240분 정도인데 이 범위 외로 하더라도 지장은 없지만, 교반시간이 30분 이하이면 제1용액의 용매가 완전 휘발되지 않고, 교반시간이 240분 이상이면 입자간 응고 발생 가능성이 높아질 우려가 있다.The temperature in the second step is not particularly limited and may be usually about 10 to 30 ° C, preferably 15 to 25 ° C. In addition, the stirring time may be performed until the precipitation of the polybutylene succinate fine particles is substantially completed. Usually, it is about 30 to 240 minutes, but there is no problem even if it is outside this range, but if the stirring time is 30 minutes or less, the solvent of the first solution If it is not completely volatilized and stirring time is 240 minutes or more, there exists a possibility that the possibility of particle coagulation may increase.

본 발명은 제2공정에 있어서 혼합용액에 폴리부틸렌석시네이트의 빈용매를 더욱 첨가하는 것도 가능하다. 제1용액 또는 제2용액에 사용되는 용매는 종류에 따라서는 폴리부틸렌석시네이트 미립자가 석출되지 않는 (또는 석출되기 어려운) 경우가 있는데, 이 경우에 폴리부틸렌석시네이트의 빈용매를 첨가함으로써 폴리부틸렌석시네이트 미립자를 보다 효율적으로 석출시킬 수 있다. 혼합용액에 첨가하는 빈용매는 특히 한정되어 있지 않으며, 생성되는 폴리부틸렌석시네이트의 종류, 제1용액, 제2용액에 사용되는 용매 등에 따라 적절히 선택하면 좋다.In the second step, the present invention can further add a poor solvent of polybutylene succinate to the mixed solution. The solvent used for the first solution or the second solution may not be precipitated (or difficult to precipitate) depending on the type of solvent. In this case, by adding a poor solvent of polybutylene succinate, Polybutylene succinate microparticles | fine-particles can be precipitated more efficiently. The poor solvent added to the mixed solution is not particularly limited and may be appropriately selected depending on the kind of polybutylene succinate produced, the solvent used for the first solution, the second solution, and the like.

(3) 제3공정(3) Third process

제3공정에 있어서 유화액으로부터 제1액의 유기용매를 가열·증발함으로써 반응계외로 제거하면서 폴리부틸렌석시네이트 구상미립자를 석출시킨다. 유화액에 대한 가열온도는 제1용액에 사용된 용매의 종류에 따라 다르나 보통은 30∼100℃ 정도가 바람직하며, 고온가열로 갈수록 제2용액의 증발량을 감안하여 제2용액의 보충이 필요하게 된다.In the third step, polybutylene succinate spherical fine particles are precipitated while removing the organic solvent of the first liquid from the emulsion by heating and evaporating it out of the reaction system. The heating temperature for the emulsion varies depending on the type of solvent used in the first solution, but usually 30 to 100 ° C. is preferred, and the second solution needs to be replenished in consideration of the evaporation amount of the second solution as the high temperature is heated. .

가열온도가 30℃이하이면 제1용액의 용매가 증발되기 어렵고, 가열온도가 100℃이상이면 제2용액의 용매가 증발되어 생성입자간 응고가 쉽게 발생된다. 가열시점은 유화액이 형성되어지는 10초∼30분 정도, 바람직하게는 1∼15분으로 하면 좋다. 용매증발을 위한 가열은 폴리부틸렌석시네이트 미립자의 석출이 완료되기까지 행하면 좋다.If the heating temperature is 30 ° C or less, the solvent of the first solution is difficult to evaporate. If the heating temperature is 100 ° C or more, the solvent of the second solution is evaporated, and coagulation between the produced particles occurs easily. The heating time is about 10 seconds to 30 minutes, preferably 1 to 15 minutes when the emulsion is formed. The heating for solvent evaporation may be performed until the precipitation of the polybutylene succinate fine particles is completed.

제3공정에서 침전생성된 폴리부틸렌석시네이트미립자는 원심분리법 등의 공지의 방법에 따라 고액분리하여 회수하면 좋다. 제3공정에서 얻어지는 폴리부틸렌석시네이트미립자 (분말)는 구상으로서 생성되는 경우는 일반적으로는 평균입경 0.05∼80㎛ (바람직하게는 0.1∼20㎛)으로 단분산성이 우수한 것이다. 본 발명에 의하면 구상에 대한 부정형상은 0.1% 미만으로 제조할 수 있어 최대의 표면적을 가지게 된다.The polybutylene succinate fine particles precipitated in the third step may be recovered by solid-liquid separation according to a known method such as centrifugation. When polybutylene succinate fine particles (powder) obtained in the third step are produced as spherical particles, the polybutylene succinate fine particles (powder) are generally excellent in monodispersity with an average particle diameter of 0.05 to 80 m (preferably 0.1 to 20 m). According to the present invention, the irregular shape with respect to the spherical shape can be made less than 0.1% to have the maximum surface area.

이하에 실시예를 나타내어, 본 발명의 특징을 보다 명확히 하고자 한다. 또한 본 발명에 있어서 평균입경 및 입도분포는 입도분석기 (Malvern Instruments,UK)를 이용하였고, 입자표면은 주사형전자현미경 (SEM)으로 관찰하였다.Examples will be shown below to further clarify the features of the present invention. In the present invention, the average particle size and the particle size distribution were measured using a particle size analyzer (Malvern Instruments, UK), and the particle surface was observed by scanning electron microscopy (SEM).

실시예 1Example 1

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (폴리부틸렌석시네이트 : 메틸렌클로라이드 = 1 : 3), 제2용액으로서 0.5% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 호모믹서 (2,500 rpm)로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 폴리부틸렌석시네이트미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.10 ml (polybutylene succinate: methylene chloride = 1: 3) dissolved in methylene chloride as a first solution and 20 ml of an aqueous solution containing 0.5% polyvinyl alcohol as a second solution were prepared. Both solutions were then mixed at 25 ° C. to prepare an emulsion with a homomixer (2,500 rpm). The prepared emulsion liquid precipitated polybutylene succinate fine particles by stirring at 40 degreeC for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 폴리부틸렌석시네이트미립자가 단분산상이 우수한 구상입자로 구성되어 있는 것을 확인하였다. 그 관찰결과를 도 1에 나타내었다. 또한 입도분석기에 의한 측정결과, 폴리부틸렌석시네이트 미립자의 평균입경은 1.2㎛였다. 그 측정결과를 도 2에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the polybutylene succinate fine particles were composed of spherical particles having excellent monodisperse phase. The observation result is shown in FIG. In addition, the average particle diameter of the polybutylene succinate microparticles | fine-particles was 1.2 micrometers as a result of the measurement by the particle size analyzer. The measurement result is shown in FIG.

실시예 2Example 2

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (폴리부틸렌석시네이트 : 메틸렌클로라이드 = 1 : 3), 제2용액으로서 0.25% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 호모믹서 (3,000 rpm)로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 폴리부틸렌석시네이트미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에의해 미립자 (분말)를 얻었다.10 ml (polybutylene succinate: methylene chloride = 1: 3) dissolved in methylene chloride as a first solution and 20 ml of a 0.25% polyvinyl alcohol-containing aqueous solution were prepared as a second solution. Both solutions were then mixed at 25 ° C. to prepare an emulsion with a homomixer (3,000 rpm). The prepared emulsion liquid precipitated polybutylene succinate fine particles by stirring at 40 degreeC for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the microparticles | fine-particles (powder) were obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 폴리부틸렌석시네이트미립자가 단분산상이 우수한 구상입자로 구성되어 있는 것을 확인하였다. 그 관찰결과를 도 3에 나타내었다. 또한 입도분석기에 의한 측정결과, 폴리부틸렌석시네이트 미립자의 평균입경은 3.6㎛였다. 그 측정결과를 도 4에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the polybutylene succinate fine particles were composed of spherical particles having excellent monodisperse phase. The observation result is shown in FIG. Moreover, the average particle diameter of the polybutylene succinate microparticles | fine-particles was 3.6 micrometers as a result of the measurement by the particle size analyzer. The measurement results are shown in FIG. 4.

실시예 3Example 3

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (폴리부틸렌석시네이트 : 메틸렌클로라이드 = 1 : 3), 제2용액으로서 0.5% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 초음파 교반(30 KHz)로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 폴리부틸렌석시네이트미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.10 ml (polybutylene succinate: methylene chloride = 1: 3) dissolved in methylene chloride as a first solution and 20 ml of an aqueous solution containing 0.5% polyvinyl alcohol as a second solution were prepared. Both solutions were then mixed at 25 ° C. to prepare an emulsion by ultrasonic stirring (30 KHz). The prepared emulsion liquid precipitated polybutylene succinate fine particles by stirring at 40 degreeC for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 폴리부틸렌석시네이트미립자가 단분산상이 우수한 구상입자로 구성되어 있는 것을 확인하였다. 또한 입도분석기에 의한 측정결과, 폴리부틸렌석시네이트 미립자의 평균입경은 1.45㎛였다. 그 측정결과를 도 5에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the polybutylene succinate fine particles were composed of spherical particles having excellent monodisperse phase. In addition, the average particle diameter of the polybutylene succinate microparticles | fine-particles was 1.45 micrometers as a result of the measurement by the particle size analyzer. The measurement results are shown in FIG. 5.

실시예 4Example 4

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (폴리부틸렌석시네이트 :메틸렌클로라이드 = 1 : 3), 제2용액으로서 0.25% 폴리비닐알콜 함유 수용액 20 ml를 제조하였다. 이어서 25℃에서 양쪽 용액을 혼합하여 초음파 교반(30KHz)으로 유화액을 제조하였다. 제조된 유화액은 40℃에서 60분 교반함으로써 폴리부틸렌석시네이트미립자를 석출하였다. 그 후, 원심법에 의해 석출물을 회수하고 감압건조에 의해 미립자 (분말)를 얻었다.10 ml (polybutylene succinate: methylene chloride = 1: 1) dissolved in methylene chloride as a first solution and 20 ml of a 0.25% polyvinyl alcohol-containing aqueous solution were prepared as a second solution. Both solutions were then mixed at 25 ° C. to prepare an emulsion by ultrasonic stirring (30 KHz). The prepared emulsion liquid precipitated polybutylene succinate fine particles by stirring at 40 degreeC for 60 minutes. Then, the precipitate was collect | recovered by the centrifugal method and the fine particle (powder) was obtained by drying under reduced pressure.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 폴리부틸렌석시네이트미립자가 단분산상이 우수한 구상입자로 구성되어 있는 것을 확인하였다. 또한 입도분석기에 의한 측정결과, 폴리부틸렌석시네이트 미립자의 평균입경은 2.23㎛였다. 그 측정결과를 도 6에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the polybutylene succinate fine particles were composed of spherical particles having excellent monodisperse phase. In addition, the average particle diameter of the polybutylene succinate microparticles | fine-particles was 2.23 micrometers as a result of the measurement by the particle size analyzer. The measurement results are shown in FIG. 6.

비교예 1Comparative Example 1

제1용액으로서 메틸렌클로라이드에 용해시킨 10㎖ (폴리부틸렌석시네이트 : 메틸렌클로라이드 = 1 : 2)을 사용한 것을 제외하고는 실시예 1과 같은 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that 10 ml (polybutylene succinate: methylene chloride = 1: 1) dissolved in methylene chloride was used as the first solution.

석출한 미립자를 주사형전자현미경 (SEM)으로 관찰함으로써, 폴리부틸렌석시네이트미립자가 응집상의 불균일한 입자로 이루어져 있는 것을 확인하였으며, 또한 입도분석에 의한 폴리부틸렌석시네이트 미립자의 평균입경은 27.2㎛였으며, 그 측정결과를 도 7에 나타내었다.By observing the precipitated fine particles with a scanning electron microscope (SEM), it was confirmed that the polybutylene succinate fine particles were composed of agglomerated nonuniform particles, and the average particle diameter of the polybutylene succinate fine particles was 27.2 by particle size analysis. It was μm, and the measurement result is shown in FIG.

본 발명의 제조방법에 의하면 폴리부틸렌석시네이트 구상미립자를 확실히 제조할 수 있다. 또한 본 발명의 제조방법은 각 공정간의 조건을 적절히 조정함으로써 마이크로미터에서 나노미터 영역에 이르기까지 소망하는 입도 및 그 분포형태를 제어할 수 있다.According to the production method of the present invention, polybutylene succinate spherical fine particles can be reliably produced. In addition, the production method of the present invention can control the desired particle size and its distribution form from the micrometer to the nanometer region by appropriately adjusting the conditions between the respective processes.

본 발명에 의해 얻어진 폴리부틸렌석시네이트 구상미립자는 화장품용 고분자첨가제로서 사용되어질 수 있으며, 그 외의 각종 용도에 폭넓게 사용하는 것이 가능하게 된다. 예를 들면 전기·전자재료, 의료용재료, 각종 필터용재료, 크로마토그래피용재료, 스페이서제, 필름첨가제, 복합재료첨가제, 폴리부틸렌석시네이트 바니쉬첨가제 등에도 유용하다.The polybutylene succinate spherical fine particles obtained by the present invention can be used as a polymer additive for cosmetics, and can be widely used for various other applications. For example, it is also useful for electrical / electronic materials, medical materials, various filter materials, chromatography materials, spacer agents, film additives, composite material additives, polybutylene succinate varnish additives, and the like.

Claims (7)

폴리부틸렌석시네이트 고분자로부터 폴리부틸렌석시네이트 구상미립자를 제조하는 방법에 있어서,In the method for producing polybutylene succinate spherical fine particles from a polybutylene succinate polymer, (a) 폴리부틸렌석시네이트 고분자를 포함하는 제 1 용액과 유화분산제를 포함하는 제 2 용액을 각각 조제하는 제 1 공정,(a) a first step of preparing a first solution containing a polybutylene succinate polymer and a second solution containing an emulsion dispersant, respectively; (b) 제 1 용액과 제 2 용액을 혼합하여 교반수단에 의해 혼합용액으로부터 유화액을 제조하는 제 2 공정 및,(b) a second step of preparing an emulsion from the mixed solution by stirring means by mixing the first solution and the second solution, and (c) 제조된 유화액으로부터 용매를 증발시킴으로써 폴리부틸렌석시네이트 구상미립자를 석출시키는 제 3 공정을 포함하는 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.(c) A method for producing polybutylene succinate spherical fine particles comprising a third step of depositing polybutylene succinate spherical fine particles by evaporating the solvent from the prepared emulsion. 제 1 항에 있어서, 상기 제 1 공정의 제 1 용액의 폴리부틸렌석시네이트 고분자는 디카르복실산과 글리콜로부터 제조된 중합체인 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.The method of claim 1, wherein the polybutylene succinate polymer of the first solution of the first step is a polymer prepared from dicarboxylic acid and glycol. 제 1 항에 있어서, 상기 제 1 용액의 용매는 메틸렌클로라이드, 클로로포름, 포름산, 농황산, 농질산의 적어도 1종을 포함하며, 폴리부틸렌석시네이트와 용매의 비율이 1 : 3∼30으로 이루어진 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.The solvent of claim 1, wherein the solvent of the first solution includes at least one of methylene chloride, chloroform, formic acid, concentrated sulfuric acid, and concentrated nitric acid, and the ratio of polybutylene succinate and the solvent is 1: 3 to 30. The manufacturing method of the polybutylene succinate spherical microparticles | fine-particles which are used. 제 1 항에 있어서, 상기 제 2 용액의 용매는 젤라틴, 아라비아고무, 덱스트린, 카제인, 단백질, 폴리비닐알콜, 알긴산소다, 알부민 등의 고분자계 입체적 유화분산제와, 솔비탄모노올레이트 등의 솔비탄에스테르계의 저분자계 정전기적 유화분산제의 적어도 1종을 포함하며, 용액내 분산제의 농도는 0.05∼10% (w/ℓ)인 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.The method of claim 1, wherein the solvent of the second solution is gelatin, gum arabic, dextrin, casein, protein, polyvinyl alcohol, soda alginate, albumin, etc., polymer-based three-dimensional emulsion dispersant and sorbitan such as sorbitan monooleate A method for producing polybutylene succinate spherical fine particles comprising at least one kind of ester-based low molecular weight electrostatic emulsifying dispersant, wherein the concentration of the dispersant in the solution is 0.05 to 10% (w / L). 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 교반수단은 교반기에 의한 기계적 교반이며, 상기 제 1 용액과 제 2 용액과의 혼합비율은 1:1∼20, 교반기의 회전속도는 1,000∼20,000 rpm, 교반시간이 30∼240분인 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.The method according to any one of claims 1 to 4, wherein the stirring means is mechanical stirring by a stirrer, the mixing ratio of the first solution and the second solution is 1: 1-20, and the rotation speed of the stirrer is 1,000. A process for producing polybutylene succinate spherical fine particles, characterized in that the stirring time is 30 to 240 minutes at -20,000 rpm. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 교반수단은 초음파 발생기에 의한 초음파 교반이며, 상기 제 1 용액과 제 2 용액과의 혼합비율은 1:1∼20, 교반시간이 30∼240분인 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.The method according to any one of claims 1 to 4, wherein the stirring means is ultrasonic stirring by an ultrasonic generator, the mixing ratio of the first solution and the second solution is 1: 1-20, and the stirring time is 30- Method for producing polybutylene succinate spherical fine particles, characterized in that 240 minutes. 제 1 항에 있어서, 상기 제 3 공정의 유화액으로부터 제 1 용액의 유기용매를 30∼100 ℃로 가열·증발시킴으로써 폴리부틸렌석시네이트 구상미립자를 석출시키는 것을 특징으로 하는 폴리부틸렌석시네이트 구상미립자의 제조방법.The polybutylene succinate spherical fine particles according to claim 1, wherein the polybutylene succinate spherical fine particles are precipitated by heating and evaporating the organic solvent of the first solution at 30 to 100 ° C from the emulsion of the third step. Manufacturing method.
KR1020020007361A 2002-02-08 2002-02-08 The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate KR20030067867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020007361A KR20030067867A (en) 2002-02-08 2002-02-08 The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020007361A KR20030067867A (en) 2002-02-08 2002-02-08 The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate

Publications (1)

Publication Number Publication Date
KR20030067867A true KR20030067867A (en) 2003-08-19

Family

ID=32221081

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020007361A KR20030067867A (en) 2002-02-08 2002-02-08 The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate

Country Status (1)

Country Link
KR (1) KR20030067867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087812A (en) * 2002-05-10 2003-11-15 주식회사 효성 Manufacturing method of spherical polyamide fine-particles
CN109312079A (en) * 2016-07-22 2019-02-05 积水化成品工业株式会社 What is be made of thermoplastic resin is substantially in spherical resin particle, its manufacturing method and application thereof
WO2023158251A1 (en) * 2022-02-17 2023-08-24 코오롱인더스트리(주) Biodegradable particles, manufacturing method thereof, and cosmetic composition comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966425A (en) * 1982-10-08 1984-04-14 Mitsui Toatsu Chem Inc Preparation of fine particle using biodegradable polymer
JPH0959358A (en) * 1995-08-30 1997-03-04 Unitika Ltd Small spherical aliphatic polyester and its production
JPH1135693A (en) * 1997-07-16 1999-02-09 Mitsui Chem Inc Production of powdery polyester having biodegradability
JP2000302855A (en) * 1999-02-17 2000-10-31 Mitsui Chemicals Inc Method for crystallizing aliphatic polyester
KR20010086811A (en) * 2000-03-03 2001-09-15 김중현 Method of producing biodegradable nanoparticles by emulsification-diffusion method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966425A (en) * 1982-10-08 1984-04-14 Mitsui Toatsu Chem Inc Preparation of fine particle using biodegradable polymer
JPH0959358A (en) * 1995-08-30 1997-03-04 Unitika Ltd Small spherical aliphatic polyester and its production
JPH1135693A (en) * 1997-07-16 1999-02-09 Mitsui Chem Inc Production of powdery polyester having biodegradability
JP2000302855A (en) * 1999-02-17 2000-10-31 Mitsui Chemicals Inc Method for crystallizing aliphatic polyester
KR20010086811A (en) * 2000-03-03 2001-09-15 김중현 Method of producing biodegradable nanoparticles by emulsification-diffusion method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087812A (en) * 2002-05-10 2003-11-15 주식회사 효성 Manufacturing method of spherical polyamide fine-particles
CN109312079A (en) * 2016-07-22 2019-02-05 积水化成品工业株式会社 What is be made of thermoplastic resin is substantially in spherical resin particle, its manufacturing method and application thereof
EP3489281B1 (en) * 2016-07-22 2023-04-19 Sekisui Plastics Co., Ltd. Generally spherical resin particles formed of thermoplastic resin, method for producing same and use of same
WO2023158251A1 (en) * 2022-02-17 2023-08-24 코오롱인더스트리(주) Biodegradable particles, manufacturing method thereof, and cosmetic composition comprising same

Similar Documents

Publication Publication Date Title
TWI429702B (en) Cellulose microparticles with their dispersions and dispersions
EP1302502B1 (en) Process for producing aqueous dispersion of biodegradable polyester
KR101294925B1 (en) Method for producing polymer fine particle
US4071479A (en) Reclamation processing of vinyl chloride polymer containing materials and products produced thereby
KR101409098B1 (en) Process for dispersing solid particles in particulate polymers
US4102846A (en) Stable dispersions of polymer particles containing sub-particles of a solid modifying agent and process for making same
JP6872755B2 (en) Chemically modified cellulose continuous production equipment and methods used in the equipment
DE2356727A1 (en) PROCESS FOR DIGERATING NORMALLY SOLID ADDITIONAL POLYMERS INSOLUBLE IN WATER AND ALKALIA
JP2001527108A (en) Polymers containing nanoscale solid particles dispersed and dispersed therein, methods of making such polymers and uses thereof
CN110776624A (en) Antistatic biodegradable aliphatic-aromatic copolyester nano composite material and preparation method thereof
EP2567936A1 (en) Procedure for the obtainment of nanocomposite materials
KR20030067867A (en) The Manufacturing Method Of Globular Fine Grain Of Polybutylene Succinate
CN100434457C (en) Method for obtaining a polymer in a solution
JP2005002302A (en) Biodegradable polyester-based resin fine particle and method for producing the same
KR100435520B1 (en) The preparation of low molecular weight polyethylene wax particle by emulsion crystallization
KR20050060471A (en) Process for preparing sperical fine particle of antimicrobial polybuthylenesuccinate and antimicrobial fine particle produced by the process
US3790521A (en) Method for making noncolloidal particles like fibers and powders from larger granules of ethylene/carboxylic acid copolymers
KR100589890B1 (en) Thermoplastic resin composition, process for producing the same, and biaxially oriented film comprising the composition
JP3099064B2 (en) Method for producing thermoplastic composite from non-thermoplastic cellulosic natural polymer and molded article thereof
JP5044853B2 (en) Method for producing polyethylene terephthalate resin fine particles and polyethylene terephthalate resin fine particles
JP3689647B2 (en) Crystalline polyester spherical particles and method for producing the same
KR20180007574A (en) Organic zinc supported catalyst, preparation method of the catalyst, and preparation method of poly(alkylene carbonate) resin using the catalyst
KR101008216B1 (en) Manufacturing method of conductive carbon nano tube - polycarbonate compound using solution precipation method
JP2001064399A (en) Preparation of liquid crystalline polyester microsphere
WO2020230395A1 (en) Organic-solvent dispersion of hydrolyzable polymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application