KR20030055635A - Method of polymerization and copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst - Google Patents

Method of polymerization and copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst Download PDF

Info

Publication number
KR20030055635A
KR20030055635A KR1020010085673A KR20010085673A KR20030055635A KR 20030055635 A KR20030055635 A KR 20030055635A KR 1020010085673 A KR1020010085673 A KR 1020010085673A KR 20010085673 A KR20010085673 A KR 20010085673A KR 20030055635 A KR20030055635 A KR 20030055635A
Authority
KR
South Korea
Prior art keywords
compound
group
cyclopentadiene
based ligand
ligand
Prior art date
Application number
KR1020010085673A
Other languages
Korean (ko)
Other versions
KR100830317B1 (en
Inventor
정승환
양춘병
홍보기
이원
Original Assignee
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성종합화학주식회사 filed Critical 삼성종합화학주식회사
Priority to KR1020010085673A priority Critical patent/KR100830317B1/en
Publication of KR20030055635A publication Critical patent/KR20030055635A/en
Application granted granted Critical
Publication of KR100830317B1 publication Critical patent/KR100830317B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64006Bidentate ligand
    • C08F4/6401Neutral ligand
    • C08F4/64013NN
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • C08F4/6555Pretreating with metals or metal-containing compounds with aluminium or compounds thereof and magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: A method for polymerizing and copolymerizing ethylene by using a catalyst chelated with a cyclopentadiene-based ligand and a carbodiimide-based ligand is provided, to enable ethylene to be (co)polymerized by using only generally-used cocatalyst components and to obtain an ethylene polymer or copolymer having a narrow distribution of molecular weight and a uniform distribution of copolymer composition. CONSTITUTION: The method comprises the step of polymerizing or copolymerizing ethylene in the presence of a catalyst component of a transition metal compound of group IV chelated with a cyclopentadiene-based ligand and a carbodiimide-based ligand, and an organometallic compound cocatalyst of group II or III. The catalyst component of a transition metal compound of group IV chelated with a cyclopentadiene-based ligand and a carbodiimide-based ligand, is prepared by reacting a Grignard compound of dialkyl magnesium with an alkoxy aluminium to obtain an alkoxy aluminium-magnesium compound; reacting the obtained alkoxy aluminium-magnesium compound with a cyclopentadiene-based ligand and reacting the obtained one with a carbodiimide-based ligand; and reacting the obtained one with a transition metal of group IV. Preferably the cyclopentadiene-based ligand is represented by C5H(5-x)Rx, wherein R is an alkyl group, an alkenyl group, a phenyl group or a heteroatom-containing alkyl group, and X is an integer of 0-5; and the carbodiimide-based ligand is represented by the formula 1, wherein W, Y and Z are independently an alkyl group, a phenyl group or a heteroatom-containing alkyl group.

Description

시클로펜타디엔계열 및 카르보디이미드계열 리간드의 킬레이트 화합물 촉매를 이용한 에틸렌 중합 및 공중합방법{METHOD OF POLYMERIZATION AND COPOLYMERIZATION OF ETHYLENE USING CYCLOPENTADIENE AND CARBODIIMDE LIGAND CHELATED CATALYST}Ethylene polymerization and copolymerization method using a chelating compound catalyst of cyclopentadiene-based and carbodiimide-based ligands

본 발명은 에틸렌의 중합방법 및 에틸렌과 알파-올레핀과의 공중합 방법에 관한 것이며, 보다 상세하게는 시클로펜타디엔계열 및 카르보디이미드계열의 리간드에 의해 킬레이트결합된 제 Ⅳ족 전이금속 화합물을 촉매로 이용하는 에틸렌 중합 및 에틸렌/알파-올레핀 공중합 방법에 관한 것이다.The present invention relates to a polymerization method of ethylene and a copolymerization method of ethylene and an alpha-olefin, and more particularly, a group IV transition metal compound chelate-bonded by a cyclopentadiene-based and carbodiimide-based ligand as a catalyst. Ethylene polymerization and ethylene / alpha-olefin copolymerization method to be used.

전이금속 화합물을 촉매로 하여 올레핀을 중합하는 올레핀 중합 반응에 있어서, 전이금속 화합물의 반응 환경을 변화시킴으로써 생성되는 폴리머의 특성을 향상시키고자 하는 노력이 지속되어 왔다. 특히 전이금속 화합물의 리간드를 시클로펜타디엔 리간드로 변화시킨 메탈로센 화합물을 이용하여 전이금속 화합물이 올레핀과 반응하는 반응 환경을 조절하고자 하는 노력은 상당한 진전을 이루고 있다.In olefin polymerization reactions in which olefins are polymerized using a transition metal compound as a catalyst, efforts have been made to improve the properties of polymers produced by changing the reaction environment of transition metal compounds. In particular, efforts to control the reaction environment in which the transition metal compound reacts with the olefin using the metallocene compound obtained by converting the ligand of the transition metal compound into the cyclopentadiene ligand have made significant progress.

1980년대 들어 메탈로센 화합물을 이용한 균일계 촉매는 알파-올레핀과의 우수한 (공)중합 특성으로 인하여, 충격 강도, 투명성 등에서 우수한 특성을 나타내어 각광을 받기 시작하였다.In the 1980's, homogeneous catalysts using metallocene compounds began to attract the spotlight due to their excellent (co) polymerization properties with alpha-olefins.

특히 시클로펜타디에닐기에 전자적 또는 입체 공간적인 환경을 조절하는 인데닐기(indenyl), 시클로헵타디엔기(cycloheptadiene), 플루오레닐기(fluorenyl)와 같은 특수한 치환기를 갖는 메탈로센 화합물을 합성함으로써, 입체규칙성 및 폴리머의 분자량 크기를 조절할 수 있는 메탈로센 촉매가 개발되어, 그 활용 분야를 넓혀가고 있다.In particular, by synthesizing a metallocene compound having special substituents such as indenyl, cycloheptadiene, and fluorenyl, which controls an electronic or steric spatial environment in a cyclopentadienyl group, Metallocene catalysts that can regulate the regularity and molecular weight size of polymers have been developed and are expanding their applications.

최근에는, 메탈로센 화합물을 무기 담지체에 담지시켜 비균일계 촉매로 제조함으로써, 우수한 공중합체를 생성하면서도 폴리머의 입자 성상을 조절할 수 있는 촉매의 개발이 활발히 진전되고 있다. 예를 들어, 미국 특허 제5,439,995호 및 미국 특허 제5,455,316호 등에는 지르코노센 및 티타노센 화합물을 마그네슘 또는 실리카 화합물에 담지시켜, 입자 성상이 우수하고 공중합 특성이 우수한 비균일계 촉매의 제조를 발표하였다.In recent years, by developing a metallocene compound on an inorganic carrier to produce a non-uniform catalyst, development of a catalyst capable of controlling the particle properties of a polymer while producing an excellent copolymer has been actively progressed. For example, US Pat. No. 5,439,995 and US Pat. No. 5,455,316 disclose the preparation of non-uniform catalysts having excellent particle properties and excellent copolymerization properties by supporting zirconocene and titanocene compounds on magnesium or silica compounds. It was.

그러나 현재까지 알려진 메탈로센 촉매는, 복잡한 유기금속화학적 합성이 요구되고 올레핀 중합시 조촉매로서 값 비싼 메틸알루미녹산(MAO) 또는 보론화합물을 조촉매로 사용해야 하는 단점이 있어, 보다 합성이 용이한 화합물에 대한 욕구가 지속되고 있는 한편, 메탈로센 촉매에 의해 제조된 폴리머는 분자량 분포가 좁아서(Mw/Mn = 2~5) 폴리머의 가공 측면에서 불리한 면을 갖고 있다.However, metallocene catalysts known to date have the disadvantage of requiring complex organometallic synthesis and using expensive methylaluminoxane (MAO) or boron compounds as cocatalysts in the polymerization of olefins. While the desire for compounds continues, polymers produced by metallocene catalysts have a narrow molecular weight distribution (Mw / Mn = 2-5), which has disadvantages in terms of processing of the polymer.

최근 들어서는, 비메탈로센 촉매(non-metallocene catalyst) 또는 초메탈로센 촉매(beyond metallocene catalyst) 혹은 유기금속성 촉매(Organometallic catalyst)로 불리우는 전이금속 화합물을 촉매 성분으로 하는바이덴테이트(bidentate) 또는 트리덴테이트(tridentate)된 킬레이트 화합물을 사용하여 메탈로센 화합물처럼 합성이 까다롭지 않으면서도, 좁은 분자량 분포를 갖는 폴리머를 생성하는 촉매를 개발하려는 노력이 이루어지고 있다.In recent years, a bidentate having a transition metal compound called a non-metallocene catalyst or a supermetallocene catalyst or an organometallic catalyst as a catalyst component or Efforts have been made to develop catalysts that use tridentated chelate compounds to produce polymers with narrow molecular weight distributions, while not as complex as metallocene compounds.

예컨대 일본 공개특허 소63-191811호에는 티탄할라이드 화합물의 할라이드 리간드를 TBP 리간드(6-tert-butyl-4-methylphenoxy)로 치환한 화합물을 촉매 성분으로 하여 에틸렌 및 프로필렌을 중합한 결과가 보고되어 있는데, MAO를 조촉매로 사용하여 에틸렌 및 프로필렌을 중합한 결과, 고활성이면서도 분자량이 높은(평균 분자량 = 3,600,000 이상) 폴리머가 형성된 것으로 기재되어 있다.For example, Japanese Patent Application Laid-Open No. 63-191811 reports a result of polymerizing ethylene and propylene using a compound in which a halide ligand of a titanium halide compound is substituted with a TBP ligand (6- tert- butyl-4-methylphenoxy) as a catalyst component. The polymerization of ethylene and propylene using MAO as a cocatalyst resulted in the formation of a polymer with high activity and high molecular weight (average molecular weight = 3,600,000 or more).

한편, 미국 특허 제5,134,104호에는 TiCl4의 할라이드 리간드를 부피가 큰 아민 리간드로 바꾼 디옥틸아민티탄할라이드(C8H17)2NTiCl3화합물을 촉매 성분으로 한 올레핀 중합용 촉매를 발표하였다.U.S. Patent No. 5,134,104 discloses a catalyst for olefin polymerization using a dioctylaminetitanium halide (C 8 H 17 ) 2 NTiCl 3 compound as a catalyst component in which a halide ligand of TiCl 4 is replaced with a bulky amine ligand.

또, 미국의 J. Am. Chem. Soc 제117호 3008면에는 전이금속의 입체적 공간을 제한할 수 있는 킬레이트 화합물로, 티탄이나 지르코니움 전이금속에 1,1'-바이-2,2'-나프톡시 리간드(1,1'-bi-2,2'-naphthol)를 킬레이트 결합시킨 화합물 및 그 유도체를 사용한 올레핀 중합용 촉매를 발표하였고, 일본 공개특허 평6-340711호 및 유럽특허 EP 제0606125A2호에서는 티탄할라이드 및 지르코니움할라이드 화합물의 할라이드 리간드를 킬레이트된 페녹시기로 치환하여 고분자량의 폴리머를 생성하면서도 분자량 분포가 좁은 킬레이트 올레핀 중합용 촉매를 발표하였다.In addition, American J. Am. Chem. Soc No. 117 3008 is a chelating compound that can limit the steric space of transition metals. It is a 1,1'-bi-2,2'-naphthoxy ligand (1,1'-) to a titanium or zirconium transition metal. bi-2,2'-naphthol) has been disclosed a catalyst for olefin polymerization using a compound chelate-bonded and derivatives thereof. In Japanese Patent Laid-Open No. 6-340711 and EP 0606125A2, titanium halide and zirconium halide are disclosed. A catalyst for chelating olefin polymerization with a narrow molecular weight distribution while producing a high molecular weight polymer by replacing a halide ligand of a compound with a chelated phenoxy group is disclosed.

한편, 최근 들어서는, 아민계열의 킬레이트된 전이금속 화합물을 이용한 비메탈로센(Non-metallocene)계 올레핀 중합용 촉매가 주목을 받고 있다. Organometallics 1996, 15, 2672 및 Chem. Commun.1996, 2623에는 여러 가지 형태의 디아미드(diamide)화합물을 킬레이트 결합시킨 티탄화합물을 합성하여 올레핀 중합용 촉매로 활용한 예를 소개하고 있으며, J. Am. Chem. Soc., 1998, 120, 8640에는 디아미드에 의해 킬레이트결합된 티탄 화합물 및 지르코니움 화합물을 이용한 프로필렌 중합반응이 소개되어 있다. 또 Organometallics 1998, 17, 4795에는 [(아릴-NCH2CH2)2O] 및 [(아릴-NCH2CH2)2S]에 의해 킬레이트된 티탄 또는 지르코니움을 이용한 중합용 촉매가 소개되어 있고, Organometallics 1998, 17, 4541에는 [N,N-디페닐-2,4-펜타디이민] 리간드에 의해 킬레이트 결합된 티탄, 바나디움, 크롬 화합물을 이용한 올레핀 중합용 촉매가 소개되어 있다. 또한 J. Am. Chem. Soc., 1996, 118, 10008에는 (아릴NCH2CH2CH2N아릴)에 의해 킬레이트결합된 티탄 화합물이 올레핀 중합용 촉매로 소개되어 있다. 또한 미국 특허 제5,502,128호에는 아미디네이트 (amidinate) 리간드에 의해 킬레이트 결합된 티탄 지르코니움 화합물을 이용한 sPS 중합 방법이 소개되어 있으며, Organometallics 1999, 18, 2046에는 포핀이미드 (phophinimide)계열의 아미드 화합물에 의해 결합된 티탄 또는 지르코니움 화합물을 이용한 고활성의 비메탈로센 촉매가 소개되어 있다.On the other hand, in recent years, a catalyst for non-metallocene-based olefin polymerization using an amine-based chelate transition metal compound attracts attention. Organometallics 1996, 15, 2672 and Chem. Commun. 1996 and 2623 show examples of synthesizing titanium compounds chelate-bonded with various types of diamide compounds and using them as catalysts for olefin polymerization. J. Am. Chem. Soc., 1998, 120, 8640 introduce propylene polymerization using titanium compounds and zirconium compounds chelate bonded by diamide. Organometallics 1998, 17 and 4795 also introduced catalysts for polymerization using titanium or zirconium chelated by [(aryl-NCH 2 CH 2 ) 2 O] and [(aryl-NCH 2 CH 2 ) 2 S]. In addition, Organometallics 1998, 17, 4541 introduce a catalyst for olefin polymerization using titanium, vanadium, and chromium compounds chelate bonded by [N, N-diphenyl-2,4-pentadiimine] ligand. See also J. Am. Chem. Soc., 1996, 118, 10008 introduce a titanium compound chelated by (aryl NCH 2 CH 2 CH 2 Naryl) as a catalyst for olefin polymerization. U.S. Patent No. 5,502,128 also discloses a sPS polymerization method using a titanium zirconium compound chelate-bonded by an amidinate ligand, and phosphoimide-based amides in Organometallics 1999, 18 and 2046 Highly active nonmetallocene catalysts using titanium or zirconium compounds bound by compounds have been introduced.

그러나 상기한 킬레이트된 티탄 및 지르코니움 화합물을 이용한 비메탈로센계열의 올레핀 중합용 촉매는, 값비싼 MAO 또는 보론(Boron)화합물을 조촉매로 사용하는 균일계 촉매로 개발되어 있어, 이를 극복하면서 촉매를 활성화시키는 방법의 개발이 요구되고 있다.However, the catalyst for non-metallocene-based olefin polymerization using the chelated titanium and zirconium compounds has been developed as a homogeneous catalyst using expensive MAO or boron compounds as cocatalysts, and overcomes this. While the development of a method for activating the catalyst is required.

본 발명은, 상기와 같은 문제점을 해결하여, 독특한 합성 방법에 의해 제조된 카르보디이미드계열 및 시클로펜타디엔계열의 리간드에 의해 킬레이트 결합된 전이금속 화합물을 촉매 성분으로 하고, 일반적인 조촉매로 널리 사용되는 유기금속 화합물을 조촉매로 사용하여, 좁은 분자량분포를 가지면서도, 균일한 공중합체 조성분포를 갖는 에틸렌 중합 및 공중합 방법을 제공하는 것을 목적으로 한다.The present invention solves the problems described above, and is widely used as a catalyst as a catalyst component using a transition metal compound chelate-bonded by a ligand of a carbodiimide series and a cyclopentadiene series produced by a unique synthesis method It is an object of the present invention to provide an ethylene polymerization and copolymerization method having a narrow molecular weight distribution and a uniform copolymer composition distribution using an organometallic compound.

본 발명의 에틸렌중합 및 공중합방법은;Ethylene polymerization and copolymerization method of the present invention;

하기 방법, 즉How to

ⅰ) 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄과의 반응을 통해 알콕시알루미늄-마그네슘화합물을 얻고,Iii) alkoxyaluminum-magnesium compound is obtained through the reaction between the dialkyl magnesium form of the Grignard compound and the alkoxy aluminum,

ⅱ) 상기 화합물을 시클로펜타디엔계열의 리간드와 반응시키고, 이를 다시 카르보디이미드계열의 리간드와 반응시킨 다음,Ii) reacting the compound with a cyclopentadiene ligand and reacting it with a carbodiimide ligand,

ⅲ) 이를 주기율표 제 Ⅳ족 전이금속 화합물과 반응시키는 방법에 의해 제조된 시클로펜타디엔계열 리간드 및 카르보디이미드계열 리간드에 의해 킬레이트결합된 주기율표 제 Ⅳ족 전이금속화합물 촉매 성분과;Iii) a periodic table Group IV transition metal compound catalyst component chelated by a cyclopentadiene-based ligand and a carbodiimide-based ligand prepared by a method of reacting it with a Group IV transition metal compound of the periodic table;

주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매의 존재 하에서 에틸렌을 중합 또는 공중합하는 것을 특징으로 한다.The ethylene is polymerized or copolymerized in the presence of a Group II or Group III organometallic compound promoter of the periodic table.

본 발명은 또한, 상기 시클로펜타디엔계열 리간드가 일반식 C5H5-XRX(여기서, R은 알킬, 알케닐, 페닐 또는 헤테로원자를 포함하는 알킬기를 나타내며, X는 0≤X≤5의 정수를 나타낸다.)로 표시되는 것임을 특징으로 한다.The present invention also provides that the cyclopentadiene-based ligand is a general formula C 5 H 5-X R X (wherein R is an alkyl group containing alkyl, alkenyl, phenyl or heteroatom, X is 0≤X≤5 It represents an integer of).

본 발명은 또한, 상기 카르보디이미드계열 리간드가 하기 일반식으로 표시되는 것임을 특징으로 한다.The present invention is also characterized in that the carbodiimide-based ligand is represented by the following general formula.

(여기서, W, Y, Z는 각각 독립적으로, 알킬, 페닐, 또는 헤테로원자를 포함하는 알킬기를 나타낸다)(W, Y, and Z each independently represents an alkyl group containing an alkyl, phenyl, or hetero atom.)

나아가, 본 발명은 상기 주기율표 제 Ⅳ족 전이금속 화합물이 일반식 M(OR)aX4-a(여기서, M은 Ti, Zr 또는 Hf이며, R은 탄화수소기, X는 할로겐원자, 그리고 a는 0≤a≤2의 정수를 나타낸다)를 만족시키는 화합물인 것을 특징으로 한다.Furthermore, in the present invention, the Group IV transition metal compound of the periodic table is a general formula M (OR) a X 4-a , wherein M is Ti, Zr or Hf, R is a hydrocarbon group, X is a halogen atom, and a is It is a compound which satisfy | fills the integer of 0 <= a <= 2).

또한 본 발명의 에틸렌중합 및 공중합방법에 있어서, 상기 유기금속 화합물 조촉매 성분은 MRn(여기서, M은 주기율표 Ⅱ족 또는 ⅢA족 금속원자를 나타내고, R은 탄소수 1 ~ 20의 알킬기를 나타내며, n은 상기 금속원자의 원자가를 나타낸다)의 일반식으로 표시되는 것이다.In the ethylene polymerization and copolymerization method of the present invention, the organometallic compound promoter component is MR n (wherein M represents a group II or IIIA metal atom of the periodic table, R represents an alkyl group having 1 to 20 carbon atoms, n Represents the valence of the metal atom).

이하, 본 발명을 좀 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 에틸렌 중합 및 공중합방법에서 사용되는 카르보디이미드계열 리간드 및 시클로펜타디엔계열의 리간드에 의해 킬레이트결합된 주기율표 제 Ⅳ족 전이금속 화합물 촉매는,The periodic table Group IV transition metal compound catalyst chelated by a carbodiimide ligand and a cyclopentadiene ligand used in the ethylene polymerization and copolymerization method of the present invention is

ⅰ) 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄과의 반응을 통해 알콕시알루미늄-마그네슘화합물을 얻고,Iii) alkoxyaluminum-magnesium compound is obtained through the reaction between the dialkyl magnesium form of the Grignard compound and the alkoxy aluminum,

ⅱ) 상기 화합물을 시클로펜타디엔계열의 리간드와 반응시키고, 이를 다시 카르보디이미드계열의 리간드와 반응시킨 다음,Ii) reacting the compound with a cyclopentadiene ligand and reacting it with a carbodiimide ligand,

ⅲ) 이를 주기율표 제 Ⅳ족 전이금속 화합물과 반응시키는 방법에 의해 제조된다.V) by the method of reacting it with a Group IV transition metal compound of the periodic table.

분설하면,If you break up,

상기 ⅰ)단계의 공정에서 알콕시알루미늄-마그네슘 화합물을 제조하기 위해 사용되는 알콕시알루미늄화합물은, R3-nAl(OR')n(여기서, R, R'는 알킬, n은 1, 2 또는 3)의 일반식으로 표시할 수 있으며, 예컨대 알킬알루미늄과 알코올화합물을 반응시켜 제조한다.The alkoxyaluminum compound used to prepare the alkoxyaluminum-magnesium compound in the process of step iii) is R 3-n Al (OR ') n (wherein R, R' is alkyl and n is 1, 2 or 3). It can be represented by the general formula of, for example, prepared by reacting an alkyl aluminum and an alcohol compound.

알콕시알루미늄 화합물의 제조에 사용되는 상기 알킬알루미늄은 일반식 RnAlX3-n(R은 탄소수 1~20의 알킬, X는 할로겐 또는 히드리드, n은 1, 2 또는 3)을 만족하는 것이 바람직하며, 예컨대 트리에틸알루미늄, 트리이소부틸알루미늄과 같이 탄소수 1 ~ 20의 알킬기를 가진 트리알킬알루미늄 및 이들의 혼합물이 보다 바람직하다. 경우에 따라서는, 에틸알루미늄디클로라이드, 디에틸알루미늄클로라이드, 에틸알루미늄세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 한 개 이상의 할로겐 또는 히드리드기를 갖는 유기알루미늄 화합물을 사용할 수도 있다.The alkyl aluminum used in the preparation of the alkoxy aluminum compound preferably satisfies the general formula R n AlX 3-n (R is alkyl having 1 to 20 carbon atoms, X is halogen or hydride, and n is 1, 2 or 3). For example, trialkylaluminum having an alkyl group having 1 to 20 carbon atoms such as triethylaluminum and triisobutylaluminum and mixtures thereof are more preferable. In some cases, an organoaluminum compound having one or more halogen or hydride groups, such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride, may be used.

상기 알코올로서는 알킬기의 탄소수가 3개 이상인 프로필알코올, 이소프로필알코올, 부틸알코올, 이소부틸알코올, 2-에틸헥산올, 옥탄올 등이 적합하다.As the alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, 2-ethylhexanol, octanol and the like having 3 or more carbon atoms of an alkyl group are suitable.

이 반응에 있어서, 상기 알코올과 상기 알킬알루미늄과의 반응 몰비는 1 : 0.2 ~ 1 : 5.0이 바람직하며, 1 : 0.5 ~ 1 : 2.5가 더욱 바람직하다.In this reaction, the reaction molar ratio of the alcohol and the alkyl aluminum is preferably 1: 0.2 to 1: 5.0, and more preferably 1: 0.5 to 1: 2.5.

한편, 상기 디알킬마그네슘 형태의 그리냐드 화합물은 일반식 MgR2(여기서, R은 탄소 1 ~ 30의 알킬기)로 표시되는 것이며, 예컨대 디부틸마그네슘, 부틸에틸마그네슘, 부틸옥틸마그네슘 등이 바람직하다.Meanwhile, the Grignard compound of the dialkyl magnesium form is represented by the general formula MgR 2 (wherein R is an alkyl group having 1 to 30 carbon atoms), and for example, dibutyl magnesium, butyl ethyl magnesium, butyl octyl magnesium and the like are preferable.

그리고 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄 화합물과의 반응 몰비는 1 : 0.2 ~ 1 : 5.0이 바람직하며, 1 : 0.5 ~ 1 : 2.5이면 더욱 바람직하다.And the reaction molar ratio of the dialkylmagnesium-type Grignard compound and the alkoxyaluminum compound is preferably 1: 0.2 to 1: 5.0, and more preferably 1: 0.5 to 1: 2.5.

상기 반응은 일반식 RH(여기서, R은 탄소수 1~20의 알킬기)를 만족하는 지방족 탄화수소 용매 중에서 이루어지며, 예컨대 헥산, 헵탄 등의 용매 중에서 특히 순조롭게 진행된다.The reaction is carried out in an aliphatic hydrocarbon solvent that satisfies the general formula RH (wherein R is an alkyl group having 1 to 20 carbon atoms), and proceeds particularly smoothly in solvents such as hexane, heptane and the like.

상기한 알콕시알루미늄-마그네슘 화합물의 제조에 있어서의 반응온도로는 온화한 반응조건인 상온 ~ 50℃ 미만이 바람직하며, 반응시간은 1시간 ~ 3시간 사이가 적합하며, 1시간 이상이면 충분한 반응이 이루어진다.As the reaction temperature in the preparation of the alkoxyaluminum-magnesium compound described above, a mild reaction condition is preferably between room temperature and less than 50 ° C, and the reaction time is suitably between 1 hour and 3 hours, and sufficient reaction occurs when it is 1 hour or more. .

ⅱ) 단계의 반응에서는, 상기 ⅰ) 단계의 반응에서 얻어진 알콕시알루미늄-마그네슘 화합물을 시클로펜타디엔계열의 리간드와 반응시킨 다음, 다시 카르보디이미드계열의 리간드와 반응시킨다.In the reaction of step ii), the alkoxyaluminum-magnesium compound obtained in the reaction of step iii) is reacted with a cyclopentadiene-based ligand and then reacted with a carbodiimide-based ligand.

상기 시클로펜타디엔계열 리간드는, 일반식 C5H5-XRX(R은 알킬, 알케닐, 페닐 또는 헤테로원자를 포함하는 알킬기, X는 0≤X≤5의 정수를 나타낸다)을 만족하는 화합물이며, 예컨대 펜타메틸시클로펜타디엔, 인덴, 플루오렌 등의 시클로펜타디엔 유도체를 들 수 있다.The cyclopentadiene-based ligand, satisfies the general formula C 5 H 5-X R X (R is an alkyl group containing alkyl, alkenyl, phenyl or hetero atoms, X represents an integer of 0≤X≤5) Examples of the compound include cyclopentadiene derivatives such as pentamethylcyclopentadiene, indene and fluorene.

또, 상기한 시클로펜타디엔계열 리간드와 알콕시알루미늄-마그네슘 화합물과의 반응은, 헥산, 헵탄 등의 지방족 탄화수소와 같은 비극성 용매 중에서 순조롭게 진행되며, 반응온도는, 온순한 반응조건인 상온 ~ 50℃ 미만이 바람직하다.In addition, the reaction between the cyclopentadiene-based ligand and the alkoxyaluminum-magnesium compound proceeds smoothly in a nonpolar solvent such as aliphatic hydrocarbons such as hexane and heptane, and the reaction temperature is less than room temperature to 50 ° C, which is a mild reaction condition. desirable.

한편, 알콕시알루미늄-마그네슘 화합물과 시클로펜타디엔계열 리간드 화합물의 반응비는 몰비로서 1 : 0.5 ~ 1 : 5.0이 바람직하며, 1 : 0.7 ~ 1 : 2.5이면 더욱 바람직하다. 또한 반응시간은 1~3시간 사이가 적합하며, 1시간 이상이면 충분한 반응이 이루어진다.On the other hand, the reaction ratio of the alkoxyaluminum-magnesium compound and the cyclopentadiene series ligand compound is preferably 1: 0.5 to 1: 5.0 as molar ratio, and more preferably 1: 0.7 to 1: 2.5. In addition, the reaction time is suited for 1 to 3 hours, if more than 1 hour is sufficient reaction.

한편, 카르보디이미드계열의 리간드는 다음의 일반식을 만족하는 화합물이며, 디메틸카르보디이미드, 디시클로헥실카르보디이미드, 1,3-비스트리메틸시릴카르보디이미드 등의 화합물이 특히 적합하다.On the other hand, the ligand of the carbodiimide series is a compound satisfying the following general formula, and compounds such as dimethyl carbodiimide, dicyclohexyl carbodiimide and 1,3-bistrimethylsilylcarbodiimide are particularly suitable.

(여기서, W, Y, Z는 각각 독립적으로, 알킬, 페닐, 또는 헤테로원자를 포함하는 알킬기를 나타낸다)(W, Y, and Z each independently represents an alkyl group containing an alkyl, phenyl, or hetero atom.)

이 카르보디이미드계열의 리간드와의 반응 또한, 상기 시클로펜타디엔계열의 리간드와의 반응과 마찬가지로, 헥산, 헵탄 등의 지방족 탄화수소 용매 중에서 순조롭게 진행되며, 반응온도도 마찬가지로 상온 ~ 50℃ 미만의 온도가 바람직하다.The reaction with the carbodiimide-based ligand also proceeds smoothly in an aliphatic hydrocarbon solvent such as hexane and heptane, similarly to the reaction with the cyclopentadiene-based ligand, and the reaction temperature is similarly lower than room temperature to 50 ° C. desirable.

한편, 카르보디이미드계열의 리간드의 사용량은, 알콕시알루미늄-마그네슘 화합물에 대해 몰비로서 1 : 0.5 ~ 1 : 5.0이 바람직하며, 1 : 0.7 ~ 1 : 2.5이면 더욱 바람직하다. 반응시간은 1 ~ 3시간 사이가 적합하며, 1시간 이상이면 충분한 반응이 이루어진다.On the other hand, the usage-amount of the ligand of a carbodiimide series is preferably 1: 0.5 to 1: 5.0 as molar ratio with respect to the alkoxyaluminum-magnesium compound, and more preferably 1: 0.7 to 1: 2.5. The reaction time is suitably between 1 and 3 hours, and more than 1 hour is sufficient reaction.

ⅲ) 단계에서는, 상기 방법으로 제조된 시클로펜타디엔계열 리간드 및 카르보디이미드계열 리간드를 함유하는 알콕시알루미늄-마그네슘 화합물을 주기율표 제 Ⅳ족 전이금속 화합물과 반응시킴으로써, 액상의 킬레이트된 전이금속 화합물을 제조한다.In step iii), the alkoxyaluminum-magnesium compound containing the cyclopentadiene-based ligand and the carbodiimide-based ligand prepared by the above method is reacted with the Group IV transition metal compound of the periodic table to prepare a liquid chelated transition metal compound. do.

구체적으로는, 상기 ⅱ) 단계에서 제조된 시클로펜타디엔계열 리간드 및 카르보디이미드계열 리간드를 함유하는 알콕시알루미늄-마그네슘 화합물을, 상온에서 주기율표 제 Ⅳ족의 전이금속 화합물에 적가한 후, 65℃ ~ 70℃ 에서 1시간 이상 반응시켜 킬레이트된 주기율표 제 Ⅳ족 전이금속 화합물을 제조한다.Specifically, the alkoxyaluminum-magnesium compound containing the cyclopentadiene-based ligand and the carbodiimide-based ligand prepared in step ii) is added dropwise to the transition metal compound of Group IV of the periodic table at room temperature, and then 65 ° C to Reaction is carried out at 70 ° C. for at least 1 hour to prepare a chelated periodic table Group IV transition metal compound.

이때에 사용되는 카르보디이미드계열의 리간드 및 시클로펜타디엔계열의 리간드를 함유하는 알콕시알루미늄-마그네슘 화합물과 주기율표 제 Ⅳ족 전이금속 화합물의 몰비는, 상기 알콕시알루미늄-마그네슘 화합물 중의 마그네슘 1몰당 전이금속화합물 0.5 ~ 2몰의 비율이 적합하다.The molar ratio of the alkoxyaluminum-magnesium compound containing the carbodiimide series ligand and the cyclopentadiene series ligand used at this time and the Group IV transition metal compound of the periodic table is a transition metal compound per mol of magnesium in the alkoxyaluminum-magnesium compound. A ratio of 0.5 to 2 moles is suitable.

사용되는 주기율표 제 Ⅳ족 전이금속 화합물은, 일반식 M(OR)aX4-a(여기서, M은 Ti, Zr 또는 Hf이며, R은 탄화수소기, X는 할로겐원자, 그리고 a는 0≤a≤2의 정수)를 만족시키는 화합물이며, 예컨대 MCl4, MBr4와 같은 전이금속할라이드 화합물, MCl2(OR)2, MCl3(OR), MBr2(OR)2, MBr3(OR) 등과 같이 적어도 2개 이상의 할라이드기를 함유하는 전이금속 화합물이 적합하다.The periodic table Group IV transition metal compound used is a general formula M (OR) a X 4-a (wherein M is Ti, Zr or Hf, R is a hydrocarbon group, X is a halogen atom, and a is 0 ≦ a). And a transition metal halide compound such as MCl 4 , MBr 4 , MCl 2 (OR) 2 , MCl 3 (OR), MBr 2 (OR) 2 , MBr 3 (OR), and the like. Likewise suitable are transition metal compounds containing at least two halide groups.

순조로운 반응을 위해서는, 상기 전이금속 화합물들은 THF 등과 같은 에테르계열의 용매와 반응시켜 얻어지는 MCl4(THF)2등과 같은 애덕트(adduct) 형태의 전이금속할라이드 화합물을 사용하는 것이 특히 바람직하다.For a smooth reaction, it is particularly preferable to use an adduct type transition metal halide compound such as MCl 4 (THF) 2 obtained by reacting the transition metal compounds with an ether-based solvent such as THF.

상기 킬레이트된 전이금속 화합물의 제조시에는, 반응 부산물로 마그네슘할라이드 화합물이 생성되는데, 이것은 탄화수소 용매에 용해되지 않으므로 쉽게 분리가 가능하다.In the preparation of the chelated transition metal compound, a magnesium halide compound is produced as a reaction by-product, which is not dissolved in a hydrocarbon solvent and thus can be easily separated.

헵탄, 헥산 등의 비극성 용매에 용해되어 있는 킬레이트된 전이금속 화합물은 매우 안정하며, 탄화수소 용매에 녹아있는 상태로 별도의 분리 공정이 없이 직접 사용할 수 있다. 즉, 이렇게 제조된 킬레이트된 전이금속 화합물은 헥산, 헵탄 등의 비극성 용매에 용해되어 있는 액상의 형태로 조촉매 성분과 함께 올레핀 중합용 촉매 성분으로 사용할 수 있다.Chelated transition metal compounds dissolved in nonpolar solvents such as heptane and hexane are very stable and can be used directly in a hydrocarbon solvent without a separate separation process. That is, the chelated transition metal compound thus prepared may be used as a catalyst component for olefin polymerization together with the cocatalyst component in a liquid form dissolved in a nonpolar solvent such as hexane and heptane.

본 발명에 따른 에틸렌 중합 및 공중합은 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매의 존재 하에서 이루어지는데, 본 발명의 방법에 있어서 사용되는 조촉매 성분은, MRn(여기에서 M은 마그네슘, 칼슘, 아연, 보론, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 탄소수 1 ~ 20의 알킬기를 나타내며, n은 금속 성분의 원자가를 나타낸다)의 일반식으로 표시되는 유기금속 화합물이 바람직하며, 이들 중에서도 특히 바람직한 유기금속 화합물은 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1~6의 알킬기를 가진 트리알킬알루미늄과 이들의 혼합물이다.Ethylene polymerization and copolymerization according to the present invention is carried out in the presence of a Group II or Group III organometallic compound promoter of the periodic table. The promoter component used in the method of the present invention is MR n (where M is magnesium, Periodic Table Group II or IIIA metal components such as calcium, zinc, boron, aluminum, and gallium, R represents an alkyl group having 1 to 20 carbon atoms such as methyl, ethyl, butyl, hexyl, octyl, decyl, and n represents Organometallic compounds represented by the general formula of valences) are preferred, and among these, particularly preferred organometallic compounds are trialkylaluminum having alkyl groups having 1 to 6 carbon atoms such as triethylaluminum and triisobutylaluminum and mixtures thereof to be.

경우에 따라서는, 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 하나 이상의 할로겐 또는 히드리드기를 포함하는 유기알루미늄 화합물도 사용될 수 있다.In some cases, organoaluminum compounds comprising at least one halogen or hydride group such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride may also be used.

상기 올레핀 중합 촉매성분들은, 별도의 반응을 거치지 않고 각각의 촉매 성분을 중합과정에 순차적 또는 동시에 주입하거나, 또는 이들을 혼합하여 주입할 수 있다.The olefin polymerization catalyst components may be injected sequentially or simultaneously with each catalyst component in the polymerization process, or a mixture thereof without undergoing a separate reaction.

본 발명에 따른 에틸렌 중합 및 공중합 공정에 대해 설명한다.The ethylene polymerization and copolymerization process according to the present invention will be described.

본 발명에 따른 에틸렌 중합 및 공중합방법에 있어서는, 상기 방법에 의해 제조된 시클로펜타디엔계열 리간드 및 카르보디이미드계열 리간드에 의해 킬레이트 결합된 주기율표 제 Ⅳ족 전이금속화합물 촉매성분과 상기 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매를 사용하여, 에틸렌의 단독중합 및 에틸렌과 알파-올레핀과의 공중합을 실시한다.In the ethylene polymerization and copolymerization method according to the present invention, a periodic table group IV transition metal compound catalyst component chelate-bonded with a cyclopentadiene-based ligand and a carbodiimide-based ligand prepared by the above method and the group II or the periodic table Using Group III organometallic compound promoters, homopolymerization of ethylene and copolymerization of ethylene and alpha-olefins are carried out.

에틸렌과 공중합하는 상기 알파-올레핀으로는, 탄소수 3 ~ 10 사이의 알파-올레핀이 적합하며, 예컨대 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐 등의 알파 올레핀을 들 수 있다.As the alpha-olefin copolymerized with ethylene, alpha-olefins having 3 to 10 carbon atoms are suitable, and for example, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene Alpha olefins, such as these, are mentioned.

본 발명에 의한 올레핀 중합방법은, 슬러리 또는 기상중합방법에 의해 수행하는 것이 적합하다.The olefin polymerization method according to the present invention is preferably carried out by a slurry or a gas phase polymerization method.

슬러리중합은, 헥산, 헵탄, 펜탄, 시클로헥산, 벤젠, 톨루엔 등과 같은 지방족 및 방향족 탄화수소를 용매로 사용하여, 50℃ ~ 120℃의 온도에서 수행하는 것이 바람직하다. 슬러리중합에 있어서, 상기 촉매의 투입량은 변화될 수 있으며, 탄화수소 용매 1ℓ당 약 0.005m㏖ ~ 1m㏖의 촉매를 사용하는 것이 바람직하고, 용매 1ℓ당 0.01m㏖ ~ 0.1m㏖을 사용하는 것이 더욱 바람직하다.Slurry polymerization is preferably carried out at a temperature of 50 ℃ to 120 ℃ using an aliphatic and aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene and the like as a solvent. In slurry polymerization, the dosage of the catalyst may vary, preferably about 0.005 mmol to about 1 mmol of catalyst per liter of hydrocarbon solvent, and more preferably 0.01 mmol to 0.1 mmol per liter of solvent. desirable.

한편, 분자량 크기의 조절은 온도 및 올레핀 압력의 조절, 수소압의 조절 등을 통해 이루어질 수 있다. 에틸렌 중합시에 있어서의 에틸렌의 압력은 2 ~ 50 kg중/㎠이 적합하다.On the other hand, the control of the molecular weight size can be made through the control of temperature and olefin pressure, the control of hydrogen pressure and the like. The pressure of ethylene at the time of ethylene polymerization is suitably 2-50 kg / cm <2>.

본 발명의 방법에 의해 제조되는 에틸렌/알파 올레핀 공중합체는 균일한 공중합체 조성분포를 가지며, 분자량 분포가 좁아, 충격강도가 매우 크며, 끈적끈적(sticky)한 저분자량의 폴리머를 함유하고 있지 않기 때문에, 수퍼헥센그레이드(super hexene grade)와 같은 고충격용 LLDPE에 적합하다.The ethylene / alpha olefin copolymer produced by the method of the present invention has a uniform copolymer composition distribution, has a narrow molecular weight distribution, has a very high impact strength, and does not contain a sticky low molecular weight polymer. Therefore, it is suitable for high impact LLDPE such as super hexene grade.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these examples.

(실시예)(Example)

이하의 실시예에 있어서, 촉매 제조에 사용한 탄화수소 용매는 나트륨 존재하에 증류함으로써, 그리고 할로겐화 탄화수소는 칼슘하이드라이드 존재하에서 증류함으로써 수분을 제거한 것을 사용하였다. 또, 촉매 제조를 위한 이하의 모든 반응은 질소 분위기에서 진행하였다.In the following examples, the hydrocarbon solvent used for preparing the catalyst was removed by distillation in the presence of sodium, and the halogenated hydrocarbon was distilled in the presence of calcium hydride. In addition, all the following reactions for catalyst preparation were performed in nitrogen atmosphere.

(실시예 1)(Example 1)

[인덴 및 디시클로헥실카르보디이미드 리간드에 의해 킬레이트된 티탄 화합물(A-1)의 제조][Preparation of Titanium Compound (A-1) Chelated with Indene and Dicyclohexylcarbodiimide Ligand]

800m㏖의 트리에틸알루미늄을 헥산에 희석시켜 800㎖가 되게 한 다음, 1ℓ용량의 플라스크에 넣고, 상온의 냉각수에 의해 플라스크의 온도가 상온을 유지하도록 하면서, 2-에틸헥산올 2400m㏖을 1시간에 걸쳐 서서히 적가한 후, 1시간 동안 교반하여 무색 투명한 용액을 제조하였다. 상기 2-에틸헥산올의 적가에 의해 가스가 생성되는 것이 관찰되었다.After diluting 800 mmol of triethylaluminum in hexane to make 800 ml, it was placed in a 1 L flask, and the temperature of the flask was kept at room temperature by cooling water at room temperature, while 2400 mmol of 2-ethylhexanol was kept for 1 hour. After slowly dropping over, it was stirred for 1 hour to prepare a colorless transparent solution. It was observed that gas was generated by the dropwise addition of 2-ethylhexanol.

상기 제조된 용액에 디부틸마그네슘의 1.0M 헵탄용액 400㎖를 주입하고, 1시간 동안 교반하여, 알콕시알루미늄-마그네슘 화합물을 제조하였다.400 ml of 1.0M heptane solution of dibutylmagnesium was injected into the solution prepared above, and stirred for 1 hour to prepare an alkoxyaluminum-magnesium compound.

상기 용액을 3ℓ용량의 플라스크에 넣고, 인덴 400m㏖을 주입하여 1시간 동안 교반한 후, 다시 82.4g의 디시클로헥실카르보디이미드(400mmol)를 주입한 후, 상온에서 1시간 동안 교반하였다.The solution was placed in a 3 L flask, injected with 400 mmol of indene, stirred for 1 hour, and then 82.4 g of dicyclohexylcarbodiimide (400 mmol) was added thereto, followed by stirring at room temperature for 1 hour.

이렇게 제조된 화합물을 133.684 g의 TiCl4(THF)2(400m㏖)와 상온에서 6시간 동안 반응시켰다. 반응에 의해 초기에 밝은 노란색이었던 TiCl4(THF)2고체가 서서히 붉은 색으로 변하면서, 흰색의 마그네슘할라이드 고체가 생성되었다.The compound thus prepared was reacted with 133.684 g of TiCl 4 (THF) 2 (400 mmol) for 6 hours at room temperature. By reaction, the initially bright yellow TiCl 4 (THF) 2 solid gradually turned red, producing a white magnesium halide solid.

교반을 멈추고 20분 정도 기다리면, 바닥부분에 흰색 고체가 가라앉는데, 상층의 붉은 용액을 밑부분의 흰색 고체로부터 분리하여 다른 플라스크에 옮겨, 액상의 킬레이트된 티탄화합물 촉매 성분(A-1)을 얻었다.After stopping the stirring for 20 minutes, the white solid settles at the bottom. The red solution of the upper layer is separated from the white solid at the bottom and transferred to another flask to remove the liquid chelated titanium compound catalyst component (A-1). Got it.

[에틸렌 중합 반응][Ethylene polymerization reaction]

충분히 질소 치환된 내용적 2ℓ의 오토클레이브에, 실온에서 중합 용매인 헥산을 1000㎖를 가한 후, 오토클레이브내의 질소를 에틸렌으로 치환하였다.To a fully nitrogen-substituted 2 liter autoclave, 1000 ml of hexane as a polymerization solvent was added at room temperature, and then nitrogen in the autoclave was substituted with ethylene.

상온에서 3m㏖의 트리옥틸알루미늄을 주입하고, 위에서 제조한 킬레이트된 티탄화합물 촉매 성분(A-1) 0.05m㏖을 주입하였다.3 mmol of trioctyl aluminum were injected at room temperature, and 0.05 mmol of the chelated titanium compound catalyst component (A-1) prepared above was injected.

60℃에서 수소를 1.5Kg중/㎠로 가하고, 온도를 80℃로 승온한 후, 에틸렌으로 가압하여 총압력을 6Kg중/㎠로 유지하였다.Hydrogen was added at 1.5 Kg / cm 2 at 60 ° C., the temperature was raised to 80 ° C., and then pressurized with ethylene to maintain a total pressure of 6 Kg / cm 2.

중합은 1시간 동안 진행하였다.The polymerization proceeded for 1 hour.

중합이 완료된 후, 중합된 폴리머를 헥산으로부터 분리하여 건조하였다.After the polymerization was completed, the polymerized polymer was separated from hexane and dried.

중합 결과, 310g의 폴리에틸렌이 회수되었으며, 얻어진 폴리머는 M.I.(g/10min)가 0.9, MFRR이 22.1로 나타나, 분자량 분포가 좁은 폴리머가 얻어졌음을 확인할 수 있었다.As a result of the polymerization, 310 g of polyethylene was recovered, and the obtained polymer had M.I. (g / 10min) of 0.9 and MFRR of 22.1, indicating that a polymer having a narrow molecular weight distribution was obtained.

[에틸렌 / 1-헥센 공중합 반응][Ethylene / 1-hexene copolymerization reaction]

내용적 2ℓ의 오토클레이브에, 진공 펌프를 연결하여 산소 및 수분을 제거한 다음, 에틸렌 가스로 채웠다. 상기 진공 펌프 연결 및 에틸렌 가스 퍼지를 3회 이상 반복하여 반응기 내부를 에틸렌 가스로 퍼지시켰다.To a 2 liter autoclave, a vacuum pump was connected to remove oxygen and moisture and then charged with ethylene gas. The vacuum pump connection and ethylene gas purge were repeated three more times to purge the reactor interior with ethylene gas.

상기 오토클레이브내에 중합 용매로서 헥산을 900㎖ 주입하고, 1-헥센을 90㎖ 투입하여 10분간 교반하였다.900 ml of hexane was injected into the autoclave as a polymerization solvent, 90 ml of 1-hexene was added and stirred for 10 minutes.

다시, 상온에서 3m㏖의 트리옥틸알루미늄을 주입하고 위에서 제조한 킬레이트된 티탄 화합물 촉매성분(A-1) 0.05m㏖을 주입하였다.Again, 3 mmol of trioctyl aluminum was injected at room temperature, and 0.05 mmol of the chelated titanium compound catalyst component (A-1) prepared above was injected.

60℃에서 수소를 1.5 Kg중 / ㎠로 가하고 온도를 80 ℃로 승온한 후, 에틸렌으로 가압하여 총압력을 6Kg중/㎠로 유지하였다.Hydrogen was added at 1.5 Kg / cm 2 at 60 ° C. and the temperature was raised to 80 ° C., and then pressurized with ethylene to maintain the total pressure at 6 Kg / cm 2.

중합은 20분 동안 진행하였다.The polymerization proceeded for 20 minutes.

중합 후 에탄올 용액을 투입하여 반응을 중단시켰으며, 산성 알코올 용액을 첨가하여 제조된 폴리머를 분리해 내었다.After the polymerization, the reaction was stopped by adding an ethanol solution, and an acidic alcohol solution was added to separate the prepared polymer.

분리된 폴리머는 M.I.가 1.0 이었으며, MFRR은 23.1 이었다.The isolated polymer had an M.I. of 1.0 and an MFRR of 23.1.

분리한 폴리머의 특성을 표 1에 나타내었다.The properties of the separated polymers are shown in Table 1.

표 1에 있어서, 낮은 MFRR 값은 생성된 폴리머의 분자량 분포가 좁다는 것을 의미하며, 동일한 양의 공중합체를 함유하는 폴리머의 DSC 분석을 통하여 얻어지는 Tm값으로부터 공중합체 조성 분포를 확인할 수 있다.In Table 1, a low MFRR value means that the molecular weight distribution of the resulting polymer is narrow, and the copolymer composition distribution can be confirmed from the Tm value obtained through DSC analysis of a polymer containing the same amount of copolymer.

(실시예 2)(Example 2)

[플루오렌에 의해 킬레이트된 티탄 화합물(A-2)의 제조][Production of Titanium Compound (A-2) Chelated by Fluorene]

인덴 대신 플루오렌 리간드를 사용한 것을 제외하고는, 실시예 1에서와 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-2)을 제조하였다.A chelated titanium compound catalyst component (A-2) was prepared in the same manner as in Example 1 except that a fluorene ligand was used instead of indene.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 촉매성분(A-2)을 사용하여, 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과는 표 1에 기재하였다.Using the catalyst component (A-2) prepared above, ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1. The polymerization results are shown in Table 1.

(실시예 3)(Example 3)

[펜타메틸시클로펜타디엔에 의해 킬레이트된 티탄화합물(A-3)의 제조][Production of Titanium Compound (A-3) Chelated by Pentamethylcyclopentadiene]

인덴 대신 펜타메틸시클로펜타디엔을 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트화된 티탄화합물 촉매 성분(A-3)을 제조하였다.A chelated titanium compound catalyst component (A-3) was prepared in the same manner as in Example 1 except that pentamethylcyclopentadiene was used instead of indene.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 촉매성분(A-3)을 사용하여, 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과는 표 1에 기재하였다.Using the catalyst component (A-3) prepared above, ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1. The polymerization results are shown in Table 1.

(실시예 4)(Example 4)

[1,3-비스트리메틸시릴카르보디이미드에 의해 킬레이트된 티탄 화합물 (A-4)의 제조][Production of Titanium Compound (A-4) Chelated by 1,3-Bistrimethylsilylcarbodiimide]

디시클로헥실카르보디이미드 대신 1,3-비스트리메틸시릴카르보디이미드 리간드를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 킬레이트된 티탄 화합물 촉매 성분(A-4)을 제조하였다.A chelated titanium compound catalyst component (A-4) was prepared in the same manner as in Example 1 except that the 1,3-bistrimethylsilylcarbodiimide ligand was used instead of the dicyclohexylcarbodiimide.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

위에서 제조한 촉매성분(A-4)을 사용하여, 실시예 1에서와 동일한 방법으로 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과는 표 1에 기재하였다.Using the catalyst component (A-4) prepared above, ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1. The polymerization results are shown in Table 1.

(비교예 1)(Comparative Example 1)

[촉매의 제조][Production of Catalyst]

19.2g의 마그네슘 금속을 1ℓ용량의 플라스크에 넣고, 디부틸에테르 20㎖를 주입하였다.19.2 g of magnesium metal was placed in a 1 L flask, and 20 ml of dibutyl ether was injected.

온도를 80℃로 올린 다음, 요오드 2g과 클로로부탄 50㎖를 혼합한 용액에서 5㎖를 취하여 주입함으로써 마그네슘 표면을 활성화시켰다.After raising the temperature to 80 ° C., 5 ml of the solution of 2 g of iodine and 50 ml of chlorobutane was taken and injected to activate the magnesium surface.

다시, 20㎖의 클로로벤젠을 200㎖의 디부틸에테르와 함께 주입하고, 90℃의 온도에서 400㎖의 클로로벤젠을 적가하여 반응을 지속하였다. 90℃에서의 반응을 5시간 이상 지속하여 그리냐드 시약의 제조를 완성하였다.Again, 20 ml of chlorobenzene was injected with 200 ml of dibutyl ether, and 400 ml of chlorobenzene was added dropwise at a temperature of 90 deg. The reaction at 90 ° C. was continued for at least 5 hours to complete the preparation of the Grignard reagent.

액상의 그리냐드 시약을 고체 성분으로부터 분리해 내어, 분리된 상층 용액 부분 중의 120㎖(100m㏖ Mg함량)를 1ℓ용량의 플라스크에 넣은 다음, 40℃의 온도에서 사염화탄소 20㎖를 서서히 적가하고, 온도를 80℃로 승온하여 1시간 이상 반응시킴으로써 구형의 마그네슘할라이드를 제조하였다. 다시 상층 용액을 따라 내고, 헥산으로 3회 세척하여, 고체의 마그네슘할라이드 담지체 성분을 분리해내었다.The liquid Grignard reagent was separated from the solid component, 120 ml (100 mmol Mg) in the separated supernatant portion were placed in a 1 L flask, and 20 ml of carbon tetrachloride was slowly added dropwise at a temperature of 40 DEG C. The spherical magnesium halide was manufactured by heating up at 80 degreeC and making it react for more than 1 hour. The supernatant solution was again decanted and washed three times with hexane to separate the solid magnesium halide carrier component.

이렇게 제조된 담지체에 헥산을 300㎖ 주입한 후, TiCl430㎖를 주입하고 60℃에서 1시간 가열하였다. 반응이 완료된 후에, 60℃에서 상층 용액을 따라내고, 헥산으로 3회 세척하여, 촉매의 제조를 완성하였다.300 mL of hexane was injected into the carrier thus prepared, and 30 mL of TiCl 4 was injected and heated at 60 ° C. for 1 hour. After the reaction was completed, the supernatant solution was decanted at 60 ° C. and washed three times with hexane to complete the preparation of the catalyst.

티탄 담지율은 3.5% 이었다.The titanium loading rate was 3.5%.

[에틸렌 중합 반응 및 공중합 반응][Ethylene polymerization reaction and copolymerization reaction]

촉매 성분 A-1 대신에 위에서 제조한 촉매를 사용한 것을 제외하고는, 실시예 1에서와 동일한 방법에 의해, 에틸렌중합 및 에틸렌/1-헥센의 공중합반응을 실시하였다. 중합 결과는 표 1에 기재하였다.Ethylene polymerization and copolymerization of ethylene / 1-hexene were carried out in the same manner as in Example 1, except that the catalyst prepared above was used instead of the catalyst component A-1. The polymerization results are shown in Table 1.

(비교예 2)(Comparative Example 2)

[Ti 촉매 성분의 제조][Preparation of Ti Catalyst Component]

82.4g의 디시클로헥실카르보디이미드(400m㏖)를 톨루엔 용액 400㎖에 용해한 후, TiCl440㎖(400m㏖)를 주입하고 90℃에서 4시간 반응시켰다. 반응이 진전됨에 따라 무색이었던 용액이 진한 갈색을 띄게 되었다. 반응 후에 진공 펌프로 톨루엔을 제거하고, 남은 고체를 헥산으로 충분히 세척하여, 미반응된 카르보디이미드 화합물 및 TiCl4를 제거하여, 갈색의 용액 상태의 Ti 촉매 성분을 얻었다.After dissolving 82.4 g of dicyclohexylcarbodiimide (400 mmol) in 400 ml of toluene solution, 40 ml (400 mmol) of TiCl 4 were injected and reacted at 90 ° C for 4 hours. As the reaction progressed, the colorless solution became dark brown. After the reaction, toluene was removed with a vacuum pump, and the remaining solid was sufficiently washed with hexane to remove the unreacted carbodiimide compound and TiCl 4 to obtain a Ti catalyst component in a brown solution.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

촉매 성분 A-1 대신에 위에서 제조한 Ti촉매 성분을 사용한 것을 제외하고는 실시예 1에서와 동일한 방법에 의해 에틸렌중합 및 에틸렌/1-헥센 공중합반응을 실시하였다. 중합 결과를 표 1에 기재하였다.Ethylene polymerization and ethylene / 1-hexene copolymerization were carried out in the same manner as in Example 1 except that the Ti catalyst component prepared above was used instead of the catalyst component A-1. The polymerization results are shown in Table 1.

(비교예 3)(Comparative Example 3)

[Ti 촉매 성분의 제조][Preparation of Ti Catalyst Component]

실시예 1에서와 동일한 방법에 의해 킬레이트된 티탄화합물 촉매성분(A-1)을 제조하였다.Chelated titanium compound catalyst component (A-1) was prepared in the same manner as in Example 1.

[에틸렌 중합 및 공중합 반응][Ethylene Polymerization and Copolymerization Reaction]

조촉매로서 트리옥틸알루미늄 3m㏖을 주입하는 대신 PMAO 3m㏖을 주입한 것을 제외하고는, 실시예 1에서와 동일한 방법에 의해 에틸렌중합 및 에틸렌/1-헥센 공중합반응을 실시하였다. 중합 결과는 표 1에 나타내었다.Ethylene polymerization and ethylene / 1-hexene copolymerization were carried out in the same manner as in Example 1, except that 3 mmol of PMAO was injected instead of 3 mmol of trioctyl aluminum as a cocatalyst. The polymerization results are shown in Table 1.

에틸렌 중합 및 에틸렌/1-헥센 공중합 결과Ethylene Polymerization and Ethylene / 1-hexene Copolymerization Results 에틸렌 중합 반응Ethylene polymerization 에틸렌/1-헥센 공중합 반응Ethylene / 1-hexene Copolymerization Reaction 활성(a) Active (a) M.I.(b)(g/10min)MI (b) (g / 10min) MFFRMFFR M.I.(b)(g/10min)MI (b) (g / 10min) MFFRMFFR ΔH(J/g)ΔH (J / g) Tm(℃)Tm (℃) 실시예 1Example 1 53005300 0.90.9 22.122.1 1.01.0 23.123.1 105.8105.8 122.1122.1 실시예 2Example 2 53005300 0.70.7 23.223.2 1.51.5 22.422.4 106.3106.3 122.3122.3 실시예 3Example 3 48004800 0.60.6 21.321.3 1.91.9 19.419.4 110.3110.3 123.2123.2 실시예 4Example 4 46004600 0.30.3 21.121.1 1.51.5 19.919.9 106.3106.3 122.2122.2 비교예 1Comparative Example 1 35003500 0.60.6 30.730.7 1.21.2 30.130.1 105.6105.6 125.0125.0 비교예 2Comparative Example 2 25002500 0.40.4 27.727.7 1.01.0 24.424.4 115.2115.2 125.5125.5 비교예 3Comparative Example 3 32003200 1.21.2 22.822.8 0.60.6 24.324.3 123.8123.8 123.1123.1

(a) 활성단위 : g-PE/(m㏖-Ti×hr)(a) Active unit: g-PE / (mmol-Ti × hr)

(b) ASTM D1238, 190℃, 2.16㎏(b) ASTM D1238, 190 ° C., 2.16 kg

이상의 실시예에서도 알 수 있는 바와 같이, 본 발명의 방법에 의해 제조된 (공)중합체는, 조촉매로서 일반적으로 사용되는 알킬알루미늄과 같은 조촉매 성분만을 사용하여 (공)중합이 가능하며, 제조된 (공)중합체는 좁은 분자량 분포, 균일한 공중합체 조성 분포를 갖는다.As can be seen from the above examples, the (co) polymers prepared by the method of the present invention can be (co) polymerized using only cocatalyst components such as alkylaluminum which are generally used as cocatalysts. The (co) polymers have a narrow molecular weight distribution and a uniform copolymer composition distribution.

Claims (5)

ⅰ) 디알킬마그네슘 형태의 그리냐드 화합물과 알콕시알루미늄과의 반응을 통해 알콕시알루미늄-마그네슘화합물을 얻고,Iii) alkoxyaluminum-magnesium compound is obtained through the reaction between the dialkyl magnesium form of the Grignard compound and the alkoxy aluminum, ⅱ) 상기 화합물을 시클로펜타디엔계열의 리간드와 반응시키고, 이를 다시 카르보디이미드계열의 리간드와 반응시킨 다음,Ii) reacting the compound with a cyclopentadiene ligand and reacting it with a carbodiimide ligand, ⅲ) 이를 주기율표 제 Ⅳ족 전이금속 화합물과 반응시키는 방법에 의해 제조된 시클로펜타디엔계열 리간드 및 카르보디이미드계열 리간드에 의해 킬레이트 결합된 주기율표 제 Ⅳ족 전이금속화합물 촉매성분과;Iii) a periodic table Group IV transition metal compound catalyst component chelate-linked by a cyclopentadiene-based ligand and a carbodiimide-based ligand prepared by a method of reacting it with a Group IV transition metal compound of the periodic table; 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물 조촉매의 존재 하에서 이루어지는 것을 특징으로 하는 에틸렌 중합 및 공중합 방법.Ethylene polymerization and copolymerization method, characterized in that in the presence of the Group II or III organometallic compound promoter of the periodic table. 제1항에 있어서, 상기 시클로펜타디엔계열 리간드는 일반식 C5H5-XRX(여기서, R은 알킬, 알케닐, 페닐 또는 헤테로원자를 포함하는 알킬기를 나타내며, X는 0≤X≤5의 정수를 나타낸다)로 표시되는 것임을 특징으로 하는 에틸렌 중합 및 공중합방법.The cyclopentadiene-based ligand of claim 1, wherein the cyclopentadiene-based ligand is a general C 5 H 5-X R X wherein R represents an alkyl group including alkyl, alkenyl, phenyl or heteroatoms, and X represents 0 ≦ X ≦. Ethylene polymerization and copolymerization method characterized by the above-mentioned. 제 1 항에 있어서, 상기 카르보디이미드계열의 리간드는 하기 일반식으로 표시되는 것임을 특징으로 하는 에틸렌 중합 및 공중합 방법.The method of claim 1, wherein the carbodiimide-based ligand is represented by the following general formula ethylene polymerization and copolymerization method. (여기서, W, Y, Z는 각각 독립적으로, 알킬, 페닐, 또는 헤테로원자를 포함하는 알킬기를 나타낸다)(W, Y, and Z each independently represents an alkyl group containing an alkyl, phenyl, or hetero atom.) 제 1 항에 있어서, 상기 주기율표 제 Ⅳ족 전이금속 화합물은, 일반식 M(OR)aX4-a(여기서, M은 Ti, Zr 또는 Hf이며, R은 탄화수소기, X는 할로겐원자, 그리고 a는 0≤a≤2의 정수를 나타낸다)를 만족시키는 화합물인 것을 특징으로 하는 에틸렌 중합 및 공중합방법.The compound of claim 1, wherein the Group IV transition metal compound of the periodic table is a general formula M (OR) a X 4-a , wherein M is Ti, Zr or Hf, R is a hydrocarbon group, X is a halogen atom, and a represents a compound that satisfies an integer of 0 ≦ a ≦ 2). 제 1 항 내지 제4항 중 어느 한 항에 있어서, 상기 유기금속 화합물 조촉매 성분은 MRn(여기서, M은 주기율표 Ⅱ족 또는 ⅢA족 금속원자를 나타내고, R은 탄소수 1 ~ 20의 알킬기를 나타내며, n은 상기 금속원자의 원자가를 나타낸다)의 일반식으로 표시되는 것임을 특징으로 하는 에틸렌중합 및 공중합 방법.The organometallic compound promoter component according to any one of claims 1 to 4, wherein MR n (wherein M represents a group II or group IIIA metal atom of the periodic table, and R represents an alkyl group having 1 to 20 carbon atoms). and n represents the valence of the metal atom.).
KR1020010085673A 2001-12-27 2001-12-27 Method of polymerization or copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst KR100830317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010085673A KR100830317B1 (en) 2001-12-27 2001-12-27 Method of polymerization or copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010085673A KR100830317B1 (en) 2001-12-27 2001-12-27 Method of polymerization or copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst

Publications (2)

Publication Number Publication Date
KR20030055635A true KR20030055635A (en) 2003-07-04
KR100830317B1 KR100830317B1 (en) 2008-05-16

Family

ID=32213899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010085673A KR100830317B1 (en) 2001-12-27 2001-12-27 Method of polymerization or copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst

Country Status (1)

Country Link
KR (1) KR100830317B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0178890B1 (en) * 1992-10-29 1999-05-01 윤종용 Input data control circuit for moving estimation process
TW370537B (en) * 1996-05-03 1999-09-21 Dsm Nv Process for the preparation of an ethylene/α-olefin copolymer
JP3587689B2 (en) * 1998-07-07 2004-11-10 出光石油化学株式会社 Method for producing ethylene-cyclic olefin copolymer

Also Published As

Publication number Publication date
KR100830317B1 (en) 2008-05-16

Similar Documents

Publication Publication Date Title
US6610627B2 (en) Catalyst for the production of olefin polymers
AU729091B2 (en) Catalyst for the production of olefin polymers
FI112235B (en) Catalyst compositions and a process for preparing polyolefins
US8835577B2 (en) Catalyst systems having a tailored hydrogen response
US6906153B2 (en) Dual-site olefin polymerization catalyst composition
KR100240519B1 (en) Chealate catalyst for polymerising olefin
EP1214357A4 (en) Metallocene compounds and their use for olefin polymerization
US6500906B1 (en) Olefin polymerization chelate catalyst and olefin polymerization method using the same
KR100421552B1 (en) Catalyst and olefin polymerization method using the same
KR100491627B1 (en) Method for polymerization and copolymerization of ethylene using carbodiimide ligand chelated catalyst
KR100830319B1 (en) Method of polymerization or copolymerization of ethylene using carbodiimde ligand chelated catalyst
KR100714847B1 (en) Olefin Polymerization Catalyst and Polymerization Process Using the Same
KR100830317B1 (en) Method of polymerization or copolymerization of ethylene using cyclopentadiene and carbodiimde ligand chelated catalyst
KR100825615B1 (en) Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst
CA3156418A1 (en) Titanium biphenylphenol polymerization catalysts
KR100430849B1 (en) Manufacturing method of new olefin polymerization chelate catalyst
KR100491628B1 (en) Method for polymerization and copolymerization of ethylene using carbodiimide ligand chelated catalyst
KR100427145B1 (en) Chelate catalyst for olefin polymerization and olefin polymerization method using the same
US6872683B2 (en) Method for preparing chelated catalyst for olefin polymerization
KR20050010600A (en) A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same
KR100826080B1 (en) Copolymerization method of ethylene/diene having high melt strength

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee