KR20030023290A - 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지 - Google Patents

탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지 Download PDF

Info

Publication number
KR20030023290A
KR20030023290A KR1020010056438A KR20010056438A KR20030023290A KR 20030023290 A KR20030023290 A KR 20030023290A KR 1020010056438 A KR1020010056438 A KR 1020010056438A KR 20010056438 A KR20010056438 A KR 20010056438A KR 20030023290 A KR20030023290 A KR 20030023290A
Authority
KR
South Korea
Prior art keywords
polymer
organic
electrolyte
carbon
electrolyte solution
Prior art date
Application number
KR1020010056438A
Other languages
English (en)
Inventor
오완석
이상원
김광섭
최상훈
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020010056438A priority Critical patent/KR20030023290A/ko
Priority to JP2002257063A priority patent/JP2003163032A/ja
Priority to US10/232,315 priority patent/US20030113634A1/en
Priority to CN02142971A priority patent/CN1407649A/zh
Publication of KR20030023290A publication Critical patent/KR20030023290A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 고온 방치 또는 충방전 싸이클 진행시 발생하는 가스에 의한 전지의 스웰링 현상을 억제시킬 수 있으며, 전지의 내부 저항을 감소시킬 수 있는 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기 전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬 2차 전지를 제공한다. 상기 탄소-탄소 이중결합을 가진 카보네이트로는 비닐렌 카보네이트 및 그 유도체가 바람직하다.

Description

탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기 전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬 2차 전지{Organic liquid electrolytes containing carbonates having carbon-carbon double bond and polymer electrolytes and lithium secondary batteries manufactured by employing the same}
본 발명은 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬 2차 전지에 관한 것으로서, 보다 상세하게는 고온 방치 또는 충방전 싸이클 진행시 발생하는 가스에 의한 전지의 스웰링 현상을 억제시킬 수 있으며, 전지의 내부 저항을 감소시킬 수 있는 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬 2차 전지에 관한 것이다.
일반적으로 비수계 리튬 2차 전지는 애노드, 하나 이상의 유기용매에 용해된 리튬염으로부터 제조된 리튬 전해질 및 일반적으로 전이금속의 칼코제나이드(chalcogenide)인 전기화학적 활물질의 캐소드를 포함한다. 방전되는 동안에 애노드로부터 나온 리튬이온은 전기 에너지를 방출함과 동시에 리튬이온을 흡수하는 캐소드의 전기화학적 활물질로 액체 전해질을 통해 이동한다. 충전되는동안에는 이온의 흐름이 역전되어 리튬이온은 전기화학적 캐소드 활물질로부터 나와 전해질을 통해 리튬 애노드내로 되돌아가 도금된다. 비수계 리튬 2차 전지는 미국 특허 제 4,472,487호, 제 4,668,595호, 제 5,028,500호, 제 5,441,830호, 제 5,460,904호 및 제 5,540,741호에 개시되어 있다.
덴드라이트 및 스폰지 리튬 성장의 문제를 해결하기 위해 리튬 금속 애노드를 리튬이온이 삽입(intercalation)되어 LixC6가 형성되는 코크스 또는 흑연과 같은 카본 애노드로 대체되었다. 이러한 전지가 작동하는 경우에는 리튬 금속 애노드를 가진 전지에서와 같이 리튬은 카본 애노드로부터 나와 전해질을 통해 리튬이 흡수되는 캐소드로 이동한다. 재충전되는 동안에는 리튬은 애노드로 되돌아와서 카본 내로 다시 삽입된다. 전지 내에 리튬 금속이 존재하지 않기 때문에, 가혹한 조건에서 조차도 애노드가 녹는 일은 없다. 또한, 리튬이 도금되는 것이 아니라 삽입에 의해 애노드 내로 재통합되기 때문에 덴드라이트 및 스폰지 리튬 성장은 일어나지 않는다.
이와 같은 리튬 2차 전지용 전해질은 크게 액체 전해질, 겔형 고분자 전해질 및 고체 고분자 전해질의 3가지로 나누어서 연구되어 왔다.
최근 폴리에틸렌 산화물계 중합체와 리튬염을 복합화한 고분자 전해질이 주목을 받고 있는데, 미국특허 제4303784호에는 이온전도성을 나타내는 폴리에틸렌 옥사이드와 리튬염의 복합물과 이를 이용한 전지를 개시하고 있다. 이 폴리에틸렌 산화물계 중합체는 리튬염과 착제를 형성하고, 중합체쇄의 열운동에 의하여 이온 전도를 발현할 수 있다고 알려져 있다. 따라서, 세퍼레이터의 공극과 같은 전해액을 통과시키는 공극은 2차 전지에 기본적으로 필요한 구성은 아닌 것이 되었다. 그러나, 이온전도도에 있어서 만족할만한 정도는 아니다.
최근 폴리아크릴로니트릴 또는 폴리플루오로비닐리덴 등과 같은 열가소성 고분자에 용매 및 유기 전해액을 가한 겔형 폴리머 전해질에 의해 이온전도도가 향상되었다는 것이 보고되고 있다(J. Appl. Electrochem., No. 5, p 63-69 (1995)). 또한, 미국특허 제4792504호에는 이온전도도가 양호한 고분자 전해질로서 폴리에틸렌옥사이드의 가교 네트워크 중에 리튬염과 비프로톤성 용매로 된 전해액이 함침된 고분자 전해질이 개시되어 있다.
이러한 고분자 전해질의 경우에는 비수계 유기용매와 리튬염으로 이루어진 유기 전해액을 리튬 이온 전지에 있어서와 동일하게 사용하고 있기 때문에 유기전해액, 캐소드 및 애노드 사이의 적합성을 고려하여야 한다. 특히, 결정질 카본 애노드를 사용할 경우에는 애노드 표면에서 유기 전해액과의 부반응에 의하여 비가역용량이 발생하게 된다. 이것은 흑연 평면들 사이로 인터칼레이션된 유기 용매가 전기화학적으로 환원되어 발생되는 것이다.
또한, 유기 용매, 예를 들어 프로필렌카보네이트는 애노드와 반응하여 분해되면서 이산화탄소 가스를 발생시켜 전지의 외장 용기를 부풀게 하는 문제점이 있다.
따라서, 본 발명이 이루고자 하는 첫 번째 기술적 과제는 리튬 2차 전자가 부푸는 현상을 방지하고, 리튬 2차 전지의 내부 저항을 감소시킬 수 있는 유기 전해액을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 두 번째 기술적 과제는 상술한 바와 같은 효능을 가진 유기 전해액을 이용하여 폴리머 매트릭스 내 유기 전해액이 함침된 고분자 전해질, 및 열중합성 고분자 또는 이들의 모노머와 유기 전해액의 혼합물을 중합시켜 제조되는 겔-형 고분자 전해질을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 세 번째 기술적 과제는 상술한 고분자 전해질과 겔-형 고분자 전해질을 이용하여 제조되는 리튬 2차 전지를 제공하는 것이다.
상기 첫 번째 기술적 과제를 달성하기 위해서 본 발명은, 종래의 리튬 2차 전지에 널리 사용되던 비수계 유기용매와 리튬염으로 이루어진 유기 전해액에 있어서, 상기 비수계 유기용매에 탄소-탄소 이중결합을 갖는 카보네이트를 비수계 유기용매 총 중량에 대하여 0.01 내지 6중량% 더 포함시키는 것을 특징으로 한다.
일반적으로 사용되는 유기 전해액은 리튬염을 유기용매에 용해시킨 이온전도체로서, 리튬이온의 전도성, 전극에 대한 화학적 및 전기화학적 안정성이 우수하여야 한다. 그리고 사용가능한 온도 범위가 넓어야 하는 동시에, 제조단가가 낮아야 한다. 따라서, 이온전도도와 유전율이 높으면서 점도가 낮은 유기용매를 사용하는 것이 적절하다.
그러나, 상기와 같은 조건을 만족시킬 수 있는 단일의 유기용매가 존재하지 않기 때문에 일반적으로 유기전해액 중의 유기용매의 조성은 고유전율 용매와 저점도 용매의 2성분계(USP 5437945, USP 5639575)로 이루어져 있거나, 여기에 빙점이낮은 제3의 유기용매를 더 포함하는 3성분계(USP 5474862, USP 5639575)로 이루어져 있다. 본 발명은 이와 같은 2분성분계 유기용매 및 3성분계 유기용매에 탄소-탄소 이중결합을 갖는 카보네이트를 더 포함시킨 것을 특징으로 하며, 이와 같이 탄소-탄소 이중결합을 갖는 카보네이트를 더 포함시킴으로써 리튬보다 1볼트 이상의 높은 전위에서 음극에서 환원되어 음극표면에 피막을 형성하게 된다. 즉, 전지 제조 후 최초 충전 시에 탄소-탄소 이중결합을 갖는 카보네이트가 리튬 이온의 인터컬레이션 이전 음극의 표면에 물리적인 막을 형성함으로써 다른 일반적인 비수계 유기용매가 음극 표면에서 반응하여 일어나는 전지의 부푸는 현상, 내부 저항 증가 방전 용량 저하 등의 문제를 해결할 수 있다.
이와 같은 탄소-탄소 이중결합을 갖는 카보네이트는 본 발명에서 사용되는 비수계 유기용매 총 중량에 대하여 0.01 내지 6중량%, 바람직하게는 2중량% 포함된다. 탄소-탄소 이중결합을 가는 카보네이트가 0.01중량% 미만으로 포함되면 다른 비수계 용매가 음극표면에서 반응하는 것을 억제할 수 있는 피막을 형성할 수 없으며, 또한, 6중량%를 초과하여 포함되면 녹는점이 높기 때문에 전지의 저온 성능을 떨어뜨릴 우려가 있으며, 상대적으로 다른 비수계 유기용매 함량을 저하시켜 전지의 실질적인 성능을 저하시킬 우려가 있다. 즉, 본 발명에서는 탄소-탄소 이중결합을 갖는 카보네이트를 첨가제 수준으로 사용하는 것이다.
또한, 이와 같은 탄소-탄소 이중결합을 갖는 카보네이트로는 비닐렌 카보네이트 또는 그 유도체인 것이 바람직하다.
본 발명에 따른 유기 전해액의 비수계 유기용매에서 탄소-탄소 이중결합을갖는 카보네이트, 바람직하게는 비닐렌 카보네이트 또는 그 유도체외의 다른 비수계 유기용매는 본 발명에서 종래에 본 발명에서 사용되던 혼합 비수계 유기용매 전부를 포함한다. 예를 들어, 에틸렌 카보네이트, 프로필렌 카보네이트 등과 같은 고리형 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 디메틸에틸 카보네이트 등과 같은 선형 카보네이트 등에서 선택되는 혼합 비수계 유기용매이다.
본 발명에 따른 유기 전해액은 리튬 이온 전지, 즉 유기 전해액을 직접적으로 전해질로 사용하는 리튬 2차 전지에 사용될 수도 있지만, 바람직하게는 폴리머 매트릭스에 유기전해액이 함침된 고분자 전해질이나 열중합성 고분자 또는 이의 모노머와 유기 전해액의 혼합액을 열중합시켜 제조되는 겔-형 고분자 전해질에 사용되는 것이 더욱 바람직하다.
따라서, 본 발명이 이루고자 하는 두 번째 기술적 과제는 공극이 형성된 고분자 매트릭스 및 상기 공극에 함침되며, 리튬염과 비수계 유기용매로 이루어진 유기 전해액으로 이루어진 리튬 2차 전지용 고분자 전해질을 상기 제1 기술적 과제를 달성하기 위하여 제공되는 유기 전해액을 사용하여 제조하는 것이다.
또한, 본 발명이 이루고자 하는 두 번째 기술적 과제의 다른 태양은 비수계 유기용매와 리튬염으로 이루어진 유기전해액 및 열중합성 고분자 또는 이의 모노머로 이루어진 리튬 2차 전지용 겔-형 고분자 전해질을 상기 제1 기술적 과제를 달성하기 위하여 제공되는 유기 전해액을 사용하여 제조하는 것이다.
본 발명에 따르는 유기 전해액, 고분자 전해질 및 겔-형 고분자 전해질에 있어서, 리튬염은 본 발명이 속하는 기술분야에 널리 알려진 것이라면 특별한 제한없이 사용할 수 있으며, 그 함량 역시 통상적인 범위 내에서 사용한다. 본 발명에서 사용가능한 리튬염의 예로는 LiPF6, LiBF4, LiAsF6, LiClO4, CF3SO3Li, LiC(CF3SO2)3, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiNi1-XCoXO2등을 들 수 있다.
본 발명의 셋 번째 기술적 과제는 상술한 바와 같은 본 발명의 유기 전해액, 고분자 전해질 또는 겔-형 고분자 전해질을 이용하여 제조되는 리튬 2차 전지를 제공하는 것으로서, 이와 같은 기술적 과제는 다음의 3가지 태양에 의해 달성된다.
그 첫 번째 태양은 리튬 이온의 흡방출이 가능한 캐소도와 애노드 사이에 고분자 전해질을 삽입하고 라미네이션한 리튬 2차 전지로서, 상기 고분자 전해질이 상기 제1 기술적 과제를 달성하기 위하여 제공되는 유기 전해액이 공극이 형성된 폴리머 매트릭스에 함침되어 있는 고분자 전해질인 것을 특징으로 하는 리튬 2차 전지를 제공하는 것이다.
그 두 번째 태양은 리튬 이온의 흡방출이 가능한 캐소드와 애노드 사이에 세퍼레이터를 삽입하고 와인딩한 전극 조립체에 상기 제1 기술적 과제를 달성하기 위하여 제공되는 유기전해액 및 열중합 고분자 그 모노머의 혼합액을 부가하여 열중합하여 형성된 겔-형 고분자 전해질을 포함하는 리튬 2차 전지를 제공하는 것이다.
그 세 번째 태양은 리튬 이온의 흡방출이 가능한 캐소드 및/또는 리튬 이온의 흡방출이 가능한 애노드 표면에 상기 제1 기술적 과제를 달성하기 위하여 제공되는 유기 전해액 및 열중합 고분자의 혼합액을 코팅하고 열중합하여 겔-형 고분자전해질을 형성시키고 이들을 와인딩하여 제조되는 리튬 2차 전지를 제공하는 것이다.
상술한 바와 같은 본 발명에는 따른 리튬 2차 전지에서 있어서, 캐소드, 애노드, 공극이 형성된 고분자 매트릭스 및 세퍼레이터는 본 발명이 속하는 기술분야에 널리 알려진 방법으로 제조된 것이라면 특별한 제한없이 사용가능하다.
이하, 본 발명을 실시예와 비교예를 통하여 상세히 설명하기로 한다. 이러한 실시예에 의해 본 발명이 제한되는 것이 아님은 명백하다.
하기 실시예 및 비교예에서 사용된 LiPF6은 일본 하시모토 주식회사의 전지시약급 제품을 정제없이 사용하였고, 유기전해액 제조시 사용된 용매는 Merck사의 전지시약급 제품이었으며, 모든 실험은 아르곤 가스(99.9999% 이상) 분위기하에서 실시하였다.
<실시예 1>
전기식 맨틀 속에 고체 상태인 에틸렌카보네이트가 담긴 시약통을 넣은 다음, 70-80℃로 서서히 가열하여 액화시켰다. 이어서, 전해액을 보관할 플라스틱통에 1M LiPF6용액을 만들 수 있는 함량의 LiPF6를 넣은 다음, 에틸메틸카보네이트, 디메틸 카보네이트 및 FB(플루오로벤젠)를 넣고 격렬하게 흔들어주어 상기 리튬 금속염을 용해시켰다.
이때, 에틸렌카보네이트(EC) : 에틸메틸카보네이트(EMC) : 디메틸 카보네이트(DMC):플루오로벤젠(FB)의 중량비는 30:30:30:10으로 조정하였다. 이어서, 비닐렌 카보네이트(VC)를 제조되는 전해액의 총 중량에 대하여 2중량%가 되도록 부가하여 본 발명에 따른 유기 전해액을 제조하였다.
<실시예 2>
상술한 실시예 1에서 에틸렌카보네이트 : 에틸메틸카보네이트 : 디메틸 카보네이트:FB의 중량비를 30:35:25:10으로 조정한 것을 제외하고는 실시예1과 동일한 방법으로 본 발명에 따른 유기 전해액을 제조하였다.
<실시예 3>
전기식 맨틀 속에 고체 상태인 에틸렌카보네이트가 담긴 시약통을 넣은 다음, 70-80℃로 서서히 가열하여 액화시켰다. 이어서, 전해액을 보관할 플라스틱통에 1M LiPF6용액을 만들 수 있는 함량의 LiPF6를 넣은 다음, 에틸메틸카보네이트, 디메틸 카보네이트 및 프로필렌 카보네이트를 넣고 격렬하게 흔들어주어 상기 리튬 금속염을 용해시켰다.
이때, 에틸렌카보네이트(EC) : 에틸메틸카보네이트(EMC) : 디메틸 카보네이트(DMC): 프로필렌 카보이네트(PC)의 중량비는 30:40:20:10으로 조정하였다. 이어서, 비닐렌 카보네이트(VC)를 제조되는 전해액의 총 중량에 대하여 2중량%가 되도록 부가하여 본 발명에 따른 유기 전해액을 제조하였다.
<실시예 4>
상술한 실시예 1에서 에틸렌카보네이트 : 에틸메틸카보네이트 : 디메틸 카보네이트: 프로필렌 카보네이트의 중량비를 30:50:10:10으로 조정한 것을 제외하고는 실시예3과 동일한 방법으로 본 발명에 따른 유기 전해액을 제조하였다.
<비교예 1-4>
상술한 실시예 1 내지 4에서 비닐렌 카보네이트를 더 부가하지 않고 제조된 유기 전해액을 비교예 1 내지 4로 하였다.
<비교예 5-9>
상술한 실시예 1의 유기 전해액에서 첨가제로 비닐렌 카보네이트 대신에 프로판 술톤(Propane sultone) 2중량% 첨가한 것을 비교예 5, 프로판 술톤 1.0중량% 첨가한 것을 비교예 6, 비닐렌 술포네이트(보내주신 자료에 함량이 없습니다) ( )중량% 첨가한 것을 비교예 7, 플루오로 메틸 에테르 0.5중량% 첨가한 것을 비교예 8 및 플루오로 메틸 에테르 1.0중량% 첨가한 것을 비교예 9로 하였다.
<실험예>
상술한 실시예 1-4와 비교예1-9의 유기 전해액을 이용하여 다음과 같은 겔형 고분자 전해질을 함유하는 리튬 2차 전지를 제조하여 각각에 대하여 내부저항, 고온방치(약 85℃에서 방치) 시의 부푸는 정도 등을 측정하였다.
싸이클로-헥사논과 아세톤을 혼합한 유기용매에 결합제로서 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체를 부가하여 볼밀에서 혼합하여 용해하였다. 이 혼합물에 캐소드 활물질로서 LiCoO2와 도전제로서 카본블랙을 부가한 다음, 이를 혼합하여 캐소드 활물질 조성물을 형성하였다.
상기 캐소드 활물질 조성물을 320㎛ 갭의 닥터 블래이드를 사용하여 두께가 147㎛이고 폭이 4.9cm이며, 싸이클로-헥사논과 아세톤을 혼합한 유기용매에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체와 카본블랙을 부가하고 이를 혼합하여 제조한 전처리 조성물을 스프레이 코팅법으로 코팅하여 전처리한 알루미늄 박막상에 코팅 및 건조하여 캐소드 전극판을 만들었다.
한편, 애노드 전극판은 다음 과정에 따라 제조하였다.
N-메틸피롤리돈과 아세톤을 혼합한 유기용매에 결합제로서 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체를 부가하여 볼밀에서 혼합하여 용해하였다. 이 혼합물에 애노드 활물질로서 메조카본파이버(MCF)를 부가한 다음, 이를 혼합하여 애노드 활물질 조성물을 형성하였다.
상기 애노드 활물질 조성물을 420㎛ 갭의 닥터 블래이드를 사용하여 두께가 178㎛이고 폭이 5.1cm이며, N-메틸피롤리돈과 아세톤을 혼합한 유기용매에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체와 카본블랙을 부가하고 이를 혼합하여 제조한 전처리 조성물을 스프레이 코팅법으로 코팅하여 전처리한 구리박막상에 코팅 및 건조하여 애노드 전극판을 만들었다.
한편, 실시예 1-4 및 비교예 1-9의 유기 전해액에 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체 및 무기 충진제로서 실리카를 부가하고 이를 가온하여 겔형 고분자 전해질을 제조하였다.
상기 캐소드 전극판과 애노드 전극판 사이에 상기 겔-형 고분자 전해질을 코팅한 다음, 이를 젤리롤 방식으로 권취하여 전극 조립체를 만들었다. 이 전극 조립체를 파우치안에 넣어 리튬 2차 전지를 완성하였다.
이와 같이 완성된 각각의 리튬 2차 전지에 대하여 내부저항, 스웰링 정도 및 2C 용량을 측정하여 그 결과를 표 1, 표 2 및 표 3에 나타냈다.
온도(℃) 고온 방치 전 고온 방치 후 변화량
내부저항(mohm) OCV(볼트) 두께(mm) 무게(g) 내부저항(mohm) ocv(볼트) 두께(mm) 무게(g) 내부저항(mohm) ocv(볼트) 스웰링(%)
비교예 1 75.0 142.0 4.2 3.9 12.5 230.0 4.2 4.1 12.5 88.0 0.0 6.7
57.0 92.0 4.2 3.8 12.4 151.0 4.2 4.1 12.4 59.0 0.0 6.8
평균 66.0 117.0 4.2 3.9 12.4 190.5 4.2 4.1 12.4 73.5 0.0 6.8
실시예 1 55.0 92.0 4.2 3.7 12.5 125.0 4.2 4.1 12.5 33.0 0.0 8.3
49.0 93.0 4.2 3.9 12.5 131.0 4.2 4.1 12.5 38.0 0.0 5.2
61.0 122.0 4.2 3.9 12.4 175.0 4.2 4.1 12.4 53.0 0.0 5.2
56.0 108.0 4.2 3.8 12.5 154.0 4.2 4.1 12.5 46.0 0.0 7.9
평균 55.3 103.8 4.2 3.8 12.5 146.3 4.2 4.1 12.5 42.5 0.0 6.6
비교예 2 59.0 83.0 4.2 3.8 12.4 125.0 4.2 4.2 12.4 42.0 0.0 8.9
58.0 82.0 4.2 3.9 12.5 124.0 4.2 4.4 12.5 42.0 0.0 14.3
61.0 83.0 4.2 3.9 12.5 126.0 4.2 4.1 12.5 43.0 0.0 6.2
58.0 78.0 4.2 3.9 12.5 116.0 4.2 4.2 12.5 38.0 0.0 8.8
평균 59.0 81.5 4.2 3.8 12.5 122.8 4.2 4.2 12.5 41.3 0.0 9.6
실시예 2 51.0 83.0 4.2 3.8 12.3 114.0 4.2 4.0 12.3 31.0 0.0 6.9
64.0 116.0 4.2 3.8 12.5 167.0 4.2 4.1 12.5 51.0 0.0 7.3
54.0 86.0 4.2 3.8 12.5 115.0 4.2 4.1 12.5 29.0 0.0 8.4
52.0 83.0 4.2 3.8 12.6 110.0 4.1 4.1 12.6 27.0 0.0 6.3
평균 55.3 92.0 4.2 3.8 12.5 126.5 4.2 4.1 12.5 34.5 0.0 7.2
온도(℃) 고온 방치 전 고온 방치 후 변화량
내부저항(mohm) ocv(볼트) 두께(mm) 무게(g) 내부저항(mohm) ocv(볼트) 두께(mm) 무게(g) 내부저항(mohm) ocv(볼트) 스웰링(%)
비교예 3 61.0 88.0 4.2 3.8 12.5 131.0 4.2 4.3 12.5 43.0 0.0 12.4
58.0 90.0 4.2 3.8 12.4 141.0 4.2 4.2 12.4 51.0 0.0 8.9
62.0 95.0 4.2 3.8 12.4 135.0 4.2 4.1 12.4 40.0 0.0 9.5
59.0 87.0 4.2 3.8 12.4 133.0 4.2 4.2 12.4 46.0 0.0 11.4
평균 60.0 90.0 4.2 3.8 12.4 135.0 4.2 4.2 12.4 45.0 0.0 10.6
실시예 3 52.0 83.0 4.2 3.8 12.5 109.0 4.2 4.1 12.5 26.0 0.0 6.6
53.0 84.0 4.2 3.8 12.5 115.0 4.2 4.1 12.5 31.0 0.0 7.9
53.0 87.0 4.2 3.9 12.6 118.0 4.2 4.1 12.6 31.0 0.0 5.1
평균 52.7 84.7 4.2 3.8 12.5 114.0 4.2 4.1 12.5 29.3 0.0 6.5
비교예 4 70.0 133.0 4.2 3.8 12.5 232.0 4.2 4.5 12.5 99.0 0.0 19.8
67.0 113.0 4.2 3.8 12.5 192.0 4.2 4.9 12.5 79.0 0.0 30.9
평균 68.5 123.0 4.2 3.8 12.5 212.0 4.2 4.7 12.5 89.0 0.0 25.3
실시예 4 52.0 78.0 4.2 3.8 12.5 115.0 4.2 4.0 12.5 37.0 0.0 6.7
56.0 80.0 4.2 3.8 12.6 117.0 4.2 4.0 12.6 37.0 0.0 5.0
51.0 78.0 4.2 3.8 12.6 112.0 4.2 4.0 12.6 34.0 0.1 6.1
53.0 81.0 4.2 3.8 12.6 116.0 4.2 4.1 12.6 35.0 0.0 9.0
52.0 82.0 4.2 3.8 12.5 117.0 4.2 4.0 12.5 35.0 0.0 7.4
평균 52.8 79.8 4.2 3.8 12.6 115.4 4.2 4.0 12.6 35.6 0.0 6.8
첨가 종류 및 함량 화성 시 두께(mm) 내부저항(mohm) 2C 효율(%)
실시예 1 비닐렌 카보네이트 2.0중량% 4 120 80
비교예 5 프로판 술톤 2.0중량% 6 250 57
비교예 6 프로판 술톤 1.0중량% 6 195 66
비교예 7 비닐렌 술포네이트 ( )중량% 6 173 75
비교예 8 플루오로 메틸에테르 1.0중량% 6 450 55
비교예 9 플루오로 메틸에테르 2.0중량% 6 330 61
상술한 표 1 내지 3에서 보는 바와 같이 동일한 유기 전해액에 비닐렌 카보네이트를 첨가만을 달리한 경우 및 첨가제의 종류를 달리한 경우 모두에 있어서 본 발명에 따른 리튬 2차 전지가 내부 저항이 감소되었고, 스웰링 정도가 적었다.
상기한 바와 같이, 본 발명에 따르는 유기 전해액을 이용하여 고분자 전해질 및 이를 채용한 리튬 2차 전지를 제조한 경우에는 내부저항이 감소되고 고온 방치 시에 부푸는 정도가 적다라는 장점을 가지고 있다.

Claims (8)

  1. 리튬염 및 비수계 유기용매로 이루어진 리튬 2차 전지용 유기 전해액에 있어서,
    상기 비수계 유기용매가 유기용매 총 중량에 대하여 탄소-탄소 이중결합을 갖는 카보네이트를 0.01 내지 6중량% 더 포함하는 것을 특징으로 하는 유기 전해액액.
  2. 제1항에 있어서, 상기 탄소-탄소 이중결합을 갖는 카보네이트의 함량이 2중량%인 것을 특징으로 하는 유기 전해액.
  3. 제1항 또는 2항에 있어서, 상기 탄소-탄소 이중결합을 갖는 카보네이트가 비닐렌 카보네이트 및 그 유도체인 것을 특징으로 하는 유기 전해액.
  4. 공극이 형성된 고분자 매트릭스 및 상기 공극에 함침되며, 리튬염과 비수계 유기용매로 이루어진 유기 전해액으로 이루어진 리튬 2차 전지용 고분자 전해질에 있어서,
    상기 유기 전해액이 전술한 항 중 어느 한 항의 유기 전해액인 것을 특징으로 하는 고분자 전해질.
  5. 비수계 유기용매와 리튬염으로 이루어진 유기전해액 및 열중합성 고분자 또는 이의 모노머로 이루어진 리튬 2차 전지용 겔-형 고분자 전해질에 있어서,
    상기 유기 전해액이 전술한 제 1항 내지 3항 중 어느 한 항의 유기 전해액인 것을 특징으로 하는 겔-형 고분자 전해질.
  6. 리튬 이온의 흡방출이 가능한 캐소도와 애노드 사이에 고분자 전해질을 삽입하고 라미네이션한 리튬 2차 전지에 있어서, 상기 고분자 전해질이 전술한 5항의 고분자 전해질인 것을 특징으로 하는 리튬 2차 전지.
  7. 리튬 이온의 흡방출이 가능한 캐소드와 애노드 사이에 세퍼레이터를 삽입하고 와인딩한 전극 조립체에 리튬염과 비수계 유기용매로 이루어진 유기 전해액 및 열중합 고분자 또는 그 모노머의 혼합액을 부가하여 열중합하여 형성된 겔-형 고분자 전해질을 포함하는 리튬 2차 전지에 있어서, 상기 유기 전해액이 전술한 제 1항 내지 3항 중 어느 한 항의 유기 전해액인 것을 특징으로 하는 리튬 2차 전지.
  8. 리튬 이온의 흡방출이 가능한 캐소드 및/또는 리튬 이온의 흡방출이 가능한 애노드 표면에 리튬염과 비수계 유기용매로 이루어진 유기 전해액 및 열중합 고분자 또는 그 모노머의 혼합액을 코팅하고 열중합하여 겔-형 고분자 전해질을 형성시키고 이들을 와인딩하여 제조되는 리튬 2차 전지에 있어서,
    상기 유기 전해액이 전술한 제 1항 내지 3항 중 어느 하나의 유기 전해액인 것을 특징으로 하는 리튬 2차 전지.
KR1020010056438A 2001-09-13 2001-09-13 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지 KR20030023290A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020010056438A KR20030023290A (ko) 2001-09-13 2001-09-13 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지
JP2002257063A JP2003163032A (ja) 2001-09-13 2002-09-02 炭素−炭素2重結合を有したカーボネートを含有する有機電解液と、これを利用して製造される高分子電解質及びリチウム2次電池
US10/232,315 US20030113634A1 (en) 2001-09-13 2002-09-03 Organic electrolytic solutions containing ethylenically unsaturated compounds, and polymer electrolytes and lithium batteries using the same
CN02142971A CN1407649A (zh) 2001-09-13 2002-09-13 含有烯化不饱和化合物和聚合物电解质的有机电解液以及采用此有机电解液的锂电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010056438A KR20030023290A (ko) 2001-09-13 2001-09-13 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지

Publications (1)

Publication Number Publication Date
KR20030023290A true KR20030023290A (ko) 2003-03-19

Family

ID=19714231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010056438A KR20030023290A (ko) 2001-09-13 2001-09-13 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지

Country Status (4)

Country Link
US (1) US20030113634A1 (ko)
JP (1) JP2003163032A (ko)
KR (1) KR20030023290A (ko)
CN (1) CN1407649A (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282346B2 (ja) * 2001-09-13 2013-09-04 三菱化学株式会社 非水系電解液二次電池
JP4830244B2 (ja) * 2001-09-14 2011-12-07 三菱化学株式会社 非水系電解液二次電池及び電解液
AU2003221334A1 (en) * 2002-03-08 2003-09-22 Mitsubishi Chemical Corporation Nonaqueous electrolyte and lithium-ion secondary battery containing the same
JP4945879B2 (ja) * 2002-08-21 2012-06-06 三菱化学株式会社 非水系電解液二次電池および非水系電解液
US20070148555A1 (en) * 2004-05-11 2007-06-28 Adeka Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery using the same
JP4795019B2 (ja) * 2005-01-26 2011-10-19 パナソニック株式会社 非水電解質二次電池
EP2320512B1 (en) * 2007-03-27 2012-09-12 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
CN101656332B (zh) * 2008-08-23 2012-10-31 上海比亚迪有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
DE102018209933A1 (de) 2018-06-20 2019-12-24 Robert Bosch Gmbh Schadstoffbindender Elektrolyt für elektrochemische Zellen
EP3963651A1 (en) * 2019-05-02 2022-03-09 Medtronic, Inc. Electrolyte additive in primary batteries for medical devices
CN113871712B (zh) * 2021-09-24 2024-01-26 远景动力技术(江苏)有限公司 锂离子电池电解液及其制备方法和锂离子电池
CN115395095A (zh) * 2022-08-25 2022-11-25 浙江吉利控股集团有限公司 防止金属刺穿引发电池热失控的复合电解液、电池和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053537A (ko) * 1999-01-22 2000-08-25 니시무로 타이죠 비수전해질 이차전지
JP2000277148A (ja) * 1999-01-20 2000-10-06 Sanyo Electric Co Ltd ポリマー電解質電池
JP2001126763A (ja) * 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
KR20020002200A (ko) * 2000-05-16 2002-01-09 이데이 노부유끼 비수 전해질 2차 전지를 충전하기 위한 충전 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442512A1 (fr) * 1978-11-22 1980-06-20 Anvar Nouveaux materiaux elastomeres a conduction ionique
US4472487A (en) * 1983-11-30 1984-09-18 Allied Corporation Battery having polymeric anode coated with reaction product of oxirane compound
EP0205856B1 (en) * 1985-05-10 1991-07-17 Asahi Kasei Kogyo Kabushiki Kaisha Secondary battery
US4792504A (en) * 1987-09-18 1988-12-20 Mhb Joint Venture Liquid containing polymer networks as solid electrolytes
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
JP3059832B2 (ja) * 1992-07-27 2000-07-04 三洋電機株式会社 リチウム二次電池
US5441830A (en) * 1992-10-29 1995-08-15 Moulton; Russell D. Electrically-conducting adhesion-promoters on conductive plastic
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
US5475862A (en) * 1993-01-19 1995-12-12 Telefonaktiebolaget L M Ericsson Improved registration in cellular radio telecommunications systems
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5540741A (en) * 1993-03-05 1996-07-30 Bell Communications Research, Inc. Lithium secondary battery extraction method
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte
EP1089371B1 (en) * 1999-09-30 2017-11-08 Sony Corporation Gel electrolyte and gel electrolyte cell
US7008728B2 (en) * 2001-04-09 2006-03-07 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277148A (ja) * 1999-01-20 2000-10-06 Sanyo Electric Co Ltd ポリマー電解質電池
KR20000053537A (ko) * 1999-01-22 2000-08-25 니시무로 타이죠 비수전해질 이차전지
JP2001126763A (ja) * 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
KR20020002200A (ko) * 2000-05-16 2002-01-09 이데이 노부유끼 비수 전해질 2차 전지를 충전하기 위한 충전 방법

Also Published As

Publication number Publication date
CN1407649A (zh) 2003-04-02
US20030113634A1 (en) 2003-06-19
JP2003163032A (ja) 2003-06-06

Similar Documents

Publication Publication Date Title
KR100515298B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
CN101682082B (zh) 非水电解质及包含该非水电解质的二次电池
US7217480B2 (en) Organic electrolytic solution and lithium battery using the same
KR100378014B1 (ko) 리튬 이차 전지용 전극 및 리튬 이차 전지
US7241536B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7678504B2 (en) Lithium secondary battery and a method for preparing the same
KR100399785B1 (ko) 겔형 고분자 전해질을 포함하는 권취형 리튬 2차 전지용세퍼레이터 및 그 제조방법
KR100362283B1 (ko) 리튬 2차 전지의 제조방법
KR100603303B1 (ko) 효율적인 성능을 갖는 리튬 전지
US7998623B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
KR100612272B1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100573109B1 (ko) 유기 전해액 및 이를 채용한 리튬 전지
KR20020002194A (ko) 비수전해질 이차전지
KR20080082276A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
EP2736113A2 (en) Non-aqueous electrolyte and lithium secondary battery using same
US9325035B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR100515331B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR20030023290A (ko) 탄소-탄소 이중결합을 가진 카보네이트를 함유하는 유기전해액 및 이를 이용하여 제조되는 고분자 전해질 및 리튬2차 전지
KR100683666B1 (ko) 유기전해액 및 이를 채용한 리튬 전지
KR100529089B1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR20050005356A (ko) 리튬 이차 전지용 고분자 전해질 및 이를 포함하는 리튬이차 전지
KR100417084B1 (ko) 새로운 전해액 첨가제와 이를 이용하는 리튬 이온 전지
KR20080087343A (ko) 리튬 이차 전지
JP2002056895A (ja) 非水電解質電池
JP2002056893A (ja) 非水電解質電池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application