KR20020067257A - Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering - Google Patents

Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering Download PDF

Info

Publication number
KR20020067257A
KR20020067257A KR1020010007749A KR20010007749A KR20020067257A KR 20020067257 A KR20020067257 A KR 20020067257A KR 1020010007749 A KR1020010007749 A KR 1020010007749A KR 20010007749 A KR20010007749 A KR 20010007749A KR 20020067257 A KR20020067257 A KR 20020067257A
Authority
KR
South Korea
Prior art keywords
silicon carbide
boron carbide
liquid phase
sintering
carbide
Prior art date
Application number
KR1020010007749A
Other languages
Korean (ko)
Other versions
KR100419778B1 (en
Inventor
우상국
한인섭
이기성
서두원
홍기석
배강
임광현
임병훈
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR10-2001-0007749A priority Critical patent/KR100419778B1/en
Publication of KR20020067257A publication Critical patent/KR20020067257A/en
Application granted granted Critical
Publication of KR100419778B1 publication Critical patent/KR100419778B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: A method for manufacturing silicon carbide-boron carbide composites by liquid phase reaction sintering is provided which can compensate strength/hardness reduction due to free silicone in silicon carbide-boron carbide composite produced by liquid phase reaction sintering. CONSTITUTION: The manufacturing method of silicon carbide-boron carbide composites by liquid phase reaction sintering includes the steps of (i) adding 5-40 wt.% of boron carbide(B4C) to an admixture comprising 80-95 wt.% silicon carbide and 5-20 wt.% carbon powder followed by mixing, wherein the silicon carbide is composed of coarse particle and fine particle in a ratio of 7:3, and the carbon powder is carbon black having mean particle size of less than 1μm; (ii) adding 1-2 wt.% of organic binder to the mixture obtained in the first step followed by granulating above mixture with a sieve having 50-100 mesh size; (iii) pressing the granulated mixture by uniaxial pressing at 300-500Kg/cm¬2; and (iv) sintering process. The sintering process is characterized in that above formed mixture is heated up to 600 deg.C at a temperature rising rate of 1 to 2 deg.C/min under decompressed atmosphere of 10¬-1 to 10¬-2 torr and then holding the temperature for 1 hour; sequentially it is heated to temperature ranges of 1,550 to 1,600°C at a temperature rising rate of 5 deg.C/min and then holding the temperature for a certain period of time; and finally it is heated up to 1,700°C.

Description

액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법{Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering}Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering

본 발명은 액상 반응소결에 의한 복합체 제조방법에 관한 것이며, 특히, 적당량의 탄화붕소를 첨가하여 기계적 특성을 향상시키는 액상 반응소결에 의한 탄화규소-탄화붕소 복합체 제조방법에 관한 것이다.The present invention relates to a method for producing a composite by liquid phase sintering, and more particularly, to a method for producing a silicon carbide-boron carbide composite by phased liquid phase sintering by adding an appropriate amount of boron carbide to improve mechanical properties.

제철업, 제철소의 제강업, 화학공업 등 다양한 산업분야에서 펌프용 밀봉재, 산업용 각종 노즐 및 밸브 부품, 전열관 및 보호관 등으로 금속이나 고분자 제품의대체재료로 반응소결 탄화규소(Reaction-bonded Silicon Carbide)가 사용되고 있다.Reaction-bonded Silicon Carbide is used as a substitute material for metal or polymer products such as pump sealant, industrial nozzles and valve parts, heat pipes and protective pipes in various industries such as steelmaking, steelmaking, chemical industry, etc. It is used.

세라믹스(Ceramics)는 고강도, 고경도 및 내마모성 등의 기계적 특성과 함께 우수한 내산화성, 내부식성, 낮은 열전도성 및 열팽창계수에 의한 높은 내열충격성, 고온강도 등의 열적 특성을 보유하고 있으므로, 선진국에서는 이들을 이용한 소재개발 연구 및 상용화에 많은 투자를 하고 있다. 세라믹스 중에서 탄화규소는 재료의 특성상 강한 공유결합(covalent bonding)을 이루고 있어 소결성이 낮기 때문에, 금속재료와 같은 이론밀도에 달하는 치밀화를 얻기 위해서는 2,000℃ 이상의 높은 온도와 특정한 소성기술로서 소결하는 것이 필수적이다. 이러한 탄화규소의 소결방법으로는 현재 ①. 상압소결(Pressureless Sintering), ②. 열간가압소결(Hot Pressing), ③. 열간등가압소결(Hot Isostatic Pressing) 및 ④. 액상 반응소결(Reaction Sintering)과 같은 다양한 소결방법이 개발되어 있다.Ceramics have high mechanical properties such as high strength, high hardness, and wear resistance, as well as excellent oxidation resistance, corrosion resistance, low thermal conductivity, and thermal properties such as high thermal shock and high temperature strength due to thermal expansion coefficient. It is investing a lot in research and commercialization of material development. Among the ceramics, silicon carbide has strong covalent bonding due to the characteristics of the material, and thus has low sinterability. Therefore, in order to achieve densification reaching the theoretical density as the metal material, it is essential to sinter at a temperature higher than 2,000 ° C. and a specific firing technique. . Sintering method of such silicon carbide is currently ①. Pressureless Sintering, ②. Hot Pressing, ③. Hot Isostatic Pressing and ④. Various sintering methods have been developed, such as reaction sintering.

이들 소결방법은 서로 장단점을 갖고 있는데, ①. 상압소결, ②. 열간가압소결법이나 ③. 열간등가압소결법을 이용한 세라믹 재료의 치밀화 경우에는 기계적, 열적 특성이 ④. 액상 반응소결법에 비해 비교적 우수한 소결체를 제조할 수 있는 장점이 있는 반면 고가의 소성장비를 사용해야 하고 소결공정에서 고가품인 미분(fine powder)의 주원료 및 소결조제(sintering aids)를 사용해야 한다. 또한, 소성온도가 1,800℃ 이상으로 매우 높아 에너지 비용의 상승으로 인한 제품단가가 높아질 뿐만 아니라, 소결 후 수축으로 인해 복잡한 형상이나 정밀 치수를 요하는 제품을 소결하기에 어려운 단점이 있어 상용화 및 양산화에 한계가 있다.These sintering methods have advantages and disadvantages, ①. Atmospheric sintering, ②. Hot pressing sintering method or ③. In case of densification of ceramic material using hot isostatic sintering method, mechanical and thermal characteristics are ④. Compared to the liquid phase sintering method, there is an advantage in producing a relatively good sintered body, but expensive plastic equipment should be used, and main raw material and sintering aids of fine powder, which is expensive in the sintering process, should be used. In addition, since the firing temperature is very high above 1,800 ° C, not only does the product cost increase due to an increase in energy cost, but also it is difficult to sinter a product requiring complex shapes or precise dimensions due to shrinkage after sintering, and thus, it is difficult for commercialization and mass production. There is a limit.

이에 비해 ④. 액상 반응소결법은 미분의 원료 및 고가의 소결조제를 첨가하지 않고, 다른 소결법에 비하여 낮은 온도(1,500∼1,700℃)에서 소결이 가능할 뿐만 아니라, 소결반응이 탄소와 용융 실리콘과의 발열반응에 의해 매우 빠르게 진행되고, 소결시 수축이나 팽창 등의 치수변화가 거의 없이 소결되는 특징이 있어 정밀치수, 복잡한 형상 또는 대형의 제품을 쉽게 소결할 수 있는 장점이 있다. 그에 따른 장점들로서, 생산성 향상과 함께 에너지 비용을 절감할 수 있는 소결방법이다.④ in comparison. The liquid phase sintering method does not add finely divided raw materials and expensive sintering aids, and can be sintered at a lower temperature (1,500 to 1,700 ° C) than other sintering methods, and the sintering reaction is very effective by exothermic reaction between carbon and molten silicon. Fast sintering, there is a feature that sintered with little dimensional change such as shrinkage or expansion during sintering, there is an advantage that can easily sinter precision products, complex shapes or large products. As a result, it is a sintering method which can reduce energy costs with productivity improvement.

그러나, 이런 액상 반응소결법으로 제조된 탄화규소 제품은 소결체 내에 10∼15 vol(부피)% 정도로 필수적으로 존재하는 잔존 실리콘(free silicon)으로 인해 실리콘의 용융온도인 1410℃ 이상에서는 고온강도가 급격히 저하되는 단점이 있다. 또한 탄화규소에 비해 상대적으로 취성(brittleness)이 높은 금속 실리콘이 존재하게 됨에 따라 고온특성 뿐만 아니라 상온에서의 꺾임강도, 경도, 파괴인성 등의 특성이 다른 소결법(①. 상압소결, ②. 열간가압소결법, ③. 열간등가압소결법)에 의해 제조된 탄화규소 제품에 비해 다소 떨어지는 단점이 있다.However, the silicon carbide products produced by the liquid phase sintering method rapidly decrease the high-temperature strength above 1410 ° C, the melting temperature of silicon, due to free silicon, which is essentially present in the sintered body at about 10 to 15 vol (volume)%. There is a disadvantage. In addition, due to the presence of metallic silicon, which has a higher brittleness than silicon carbide, the sintering method has different characteristics such as bending strength, hardness, and fracture toughness at room temperature as well as high temperature characteristics (①. Compared with the silicon carbide products manufactured by the sintering method, ③ hot isostatic pressing sintering method, there are some disadvantages.

따라서, 이러한 액상 반응소결 탄화규소의 단점을 보완하기 위해 탄화규소 복합체 제조에 관한 연구들이 시도되고 있으며, 본 출원인은 본 발명과 관련된 종래의 기술로서, 특허출원번호 제10-1991-009324호(발명의 명칭 : 탄화규소질 세라믹 전열관 소결체의 제조방법)와 특허출원번호 제10-1999-015659호(발명의 명칭 : 액상 반응소결에 의한 탄화규소 세라믹 밀봉재의 제조방법)에 관한 특허를 출원한바 있다.Therefore, researches on the production of silicon carbide composites have been attempted to compensate for the disadvantages of the liquid phase sintered silicon carbide, and the present applicant is a conventional technology related to the present invention, the patent application No. 10-1991-009324 (Invention) Patent No. 10-1999-015659 (Invention name: Manufacturing method of silicon carbide ceramic sealing material by liquid phase reaction sintering) has applied for a patent.

그러나 이들 특허는 순수한 금속 실리콘의 용융침투에 의한 반응소결 탄화규소 소결체이기 때문에 상기한 바와 같이 소결체 내에 잔존 실리콘의 존재로 인해 고온 고강도, 고경도 및 부식성 등 극한분위기 속에서 사용되기 위해서는 기계적, 열적 특성이 다소 부족한 단점이 있어 탄화규소에 비해 특성이 우수한 탄화붕소 등을 복합화하여 제조하는 것이 요구되고 있다.However, since these patents are reaction-sintered silicon carbide sintered bodies by melt permeation of pure metal silicon, the mechanical and thermal properties of these patents are due to the presence of residual silicon in the sintered bodies, so that they can be used in extreme environments such as high temperature, high strength, high hardness, and corrosiveness. Due to this somewhat shortcomings, it is required to manufacture a composite of boron carbide and the like which is superior in properties to silicon carbide.

본 발명은 앞서 설명한 바와 같은 종래 기술의 문제점을 해결하기 위하여 제공된 것으로서, 꺾임강도, 경도, 파괴인성 등의 양호한 기계적 특성을 가지도록 제조하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법을 제공하는 데 그 목적이 있다.The present invention is provided to solve the problems of the prior art as described above, and provides a method for producing a silicon carbide-boron carbide composite by liquid phase sintering to be produced to have good mechanical properties such as bending strength, hardness, fracture toughness, etc. Its purpose is to.

도 1은 본 발명의 한 실시예에 따른 액상 반응소결에 의한 탄화규소-탄화붕소 복합체 제조방법으로 복합체를 제조하는 단면도이다.1 is a cross-sectional view of preparing a composite by a method for producing silicon carbide-boron carbide composite by liquid phase sintering according to an embodiment of the present invention.

♠ 도면의 주요부분에 대한 부호의 설명 ♠♠ Explanation of symbols on the main parts of the drawing ♠

10 : 탄화규소-탄화붕소 복합성형체 20 : 금속 실리콘10: silicon carbide-boron carbide composite body 20: metal silicon

30 : 질화붕소(BN) 코팅층 40 : 흑연기판30: boron nitride (BN) coating layer 40: graphite substrate

앞서 설명한 바와 같은 목적을 달성하기 위한 본 발명에 따르면, 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법에 있어서, 80~95wt(중량)%의 탄화규소와 5~20wt%의 탄소분말의 혼합물 조성에 대하여 5~40wt%의 탄화붕소(B4C)를 첨가하여 혼합하는 단계와, 상기 혼합된 탄화규소와 탄소분말 및 탄화붕소에 성형보조제를 첨가하여 혼합하는 단계와, 상기 성형보조제가 첨가된 혼합재를 가압하여 성형체로 성형하는 단계와, 상기 제조된 성형체를 소성하는 단계를 포함하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법이 제공된다.According to the present invention for achieving the object as described above, in the method for producing a silicon carbide-boron carbide composite by liquid reaction sintering, a mixture of 80 to 95wt% (wt)% silicon carbide and 5 to 20wt% carbon powder Adding and mixing 5 to 40 wt% of boron carbide (B 4 C) with respect to the composition; adding and mixing a molding aid to the mixed silicon carbide, carbon powder, and boron carbide; and the molding aid is added. There is provided a method for producing a silicon carbide-boron carbide composite by liquid phase reaction sintering comprising pressurizing the mixed material to form a molded body and firing the manufactured molded body.

또한, 본 발명의 상기 80~95wt%의 탄화규소는 상호 상대적으로 큰 입경을 가지는 조립자와 작은 입경을 가지는 미립자를 70wt%(조립자) : 30wt%(미립자)의 혼합비율로 조성된다.In addition, the 80 ~ 95wt% of the silicon carbide of the present invention is composed of a coarse particles having a relatively large particle size and a fine particle having a small particle size of 70wt% (granulator): 30wt% (particulate particles).

또한, 본 발명의 상기 5~20wt%의 탄소분말은 평균 입경이 1㎛ 미만의 카본블랙이다.In addition, the carbon powder of 5 to 20wt% of the present invention is carbon black with an average particle diameter of less than 1㎛.

또한, 본 발명의 상기 성형보조제는 유기바인더로서 상기 혼합된 탄화규소와 탄소분말 및 탄화붕소에 대해 1~2wt%를 첨가 혼합한다.In addition, the molding aid of the present invention as an organic binder is added and mixed 1 ~ 2wt% with respect to the mixed silicon carbide and carbon powder and boron carbide.

또한, 본 발명의 상기 혼합된 탄화규소와 탄소분말 및 탄화붕소에 성형보조제를 첨가하여 혼합한 혼합물을 50~100메시(mesh) 체를 이용하여 과립화하고, 상기 과립화된 혼합물을 가압하여 성형체로 성형한다.In addition, the mixed silicon carbide, carbon powder and boron carbide of the present invention by adding a molding aid to the mixture was granulated using a 50 to 100 mesh (mesh) sieve, and the granulated mixture is pressed to form a molded body Molding

또한, 본 발명의 상기 성형체는 일축가압성형법(Uniaxial Pressing)에 의해 성형되는데, 이 때의 가압력은 300~500Kg/cm2이다.In addition, the molded body of the present invention is molded by a uniaxial pressing method (Uniaxial Pressing), the pressing force at this time is 300 ~ 500Kg / cm 2 .

또한, 본 발명에 따르면, 상기 제조된 성형체를 소성하는 단계에서의 소성조건은 10-1∼10-2토르(torr)의 감압분위기에서 실온으로부터 600℃까지 1∼2℃/분의 가열속도로 승온하여 600℃에서 1시간 유지하고, 600℃에서 열처리가 끝나면 1,550∼1,600℃까지 5℃/분의 가열속도로 승온하여 1,550∼1,600℃에서 소정의 시간 유지시킨 후, 다시 1,700℃까지 승온 유지하여 소성한다.In addition, according to the present invention, the firing conditions in the step of firing the molded body produced at a heating rate of 1 ~ 2 ℃ / min from room temperature to 600 ℃ in a reduced pressure atmosphere of 10 -1 to 10 -2 torr (torr) After heating up at 600 ° C. for 1 hour, after the heat treatment at 600 ° C., the temperature was raised to a heating rate of 5 ° C./min from 1,550 to 1,600 ° C. and maintained at 1,550 to 1,600 ° C. for a predetermined time. Fire.

본 발명의 액상 반응소결에 의한 탄화규소-탄화붕소 복합체 제조방법에 따라 제조된 액상 반응소결 탄화규소-탄화붕소 복합체는 아래와 같은 원리에 의해 꺾임강도, 경도, 파괴인성 등의 양호한 특성을 가진다.The liquid phase sintered silicon carbide-boron carbide composite prepared according to the method for producing silicon carbide-boron carbide composites by the liquid phase sintering of the present invention has good characteristics such as bending strength, hardness, and fracture toughness according to the following principle.

1,500∼1,700℃의 소결온도와 감압분위기에서 용융시킨 금속 실리콘(Si)이 α-SiC와 탄소분말 및 탄화붕소로 구성된 성형체 내의 기공을 통해 모세관 현상으로 침투해 들어가 탄소성분과 용융침투된 실리콘이 화학식 1과 같이 반응하여 미립의 β-SiC를 생성시킨다.Metallic silicon (Si) melted at sintering temperature of 1,500 ~ 1,700 ℃ and reduced pressure atmosphere penetrates into capillary phenomenon through pores in the formed body composed of α-SiC, carbon powder and boron carbide, Reaction as 1 produces particulate β-SiC.

이런 β-SiC 입자는 출발 모입자인 α-SiC와 복합체 구성을 위해 첨가된 B4C와 함께 결합되고, 나머지 기공에 순수한 실리콘이 충전되는 메커니즘으로 제조되는 치밀한 세라믹 재료이다.These β-SiC particles are dense ceramic materials that are combined with the starting parent particles α-SiC together with B 4 C added for composite composition and filled with pure silicon in the remaining pores.

따라서, 이들 소결체는 강도나 내열성 등의 특성이 우수하여 고온이나 부식성 분위기 하에서 내마모성, 내식성이 요구되는 곳에 광범위하게 사용되고 있다. 일반적으로 액상 반응소결에 의한 탄화규소 특성(밀도, 기공율, 꺾임강도, 비커스 경도, 파괴인성, 내열충격성 등)은 반응에 의해 생성된 β-SiC 양이나 분포 또는 출발원료인 α-SiC와 β-SiC 입자간의 결합력 및 조직의 균일성에 의해 크게 좌우된다. 특히, 고온에서 사용될 경우에는 소결체 내의 2차상(secondary phase)으로 함유된 금속 실리콘에 의해 실리콘의 융점인 1,410℃ 부근에서 고온강도가 급격히 저하되는 문제점이 있기 때문에 금속 실리콘 함유량의 적절한 제어가 탄화규소 제조에 있어서, 중요한 제어요소가 된다.Therefore, these sintered compacts are widely used where they are excellent in characteristics such as strength and heat resistance, and where wear resistance and corrosion resistance are required under high temperature or corrosive atmosphere. In general, silicon carbide characteristics (density, porosity, bending strength, Vickers hardness, fracture toughness, thermal shock resistance, etc.) due to liquid phase sintering are determined by the amount or distribution of β-SiC produced by the reaction or α-SiC and β- It depends greatly on the bonding strength between the SiC particles and the uniformity of the structure. In particular, when used at a high temperature, due to the metal silicon contained in the secondary phase (secondary phase) in the sintered body, there is a problem that the high temperature strength sharply decreases around 1,410 ℃, the melting point of the silicon, so that the proper control of the metal silicon content is made by silicon carbide. It is an important control factor.

이에 따라 본 발명의 액상 반응소결 탄화규소-탄화붕소 복합체의 제조방법에있어서도 실리콘과 탄소의 반응에 의해 새롭게 생성된 β-SiC 입자와 B4C 입자간의 결합력이 복합체 특성에 영향을 미치며, 특히 B4C 입자의 첨가에 의해 2차상 금속 실리콘의 함유량을 최소화시키면서 치밀한 소결체를 제조하는 것이 탄화규소-탄화붕소 복합체 제조에 있어서 가장 중요한 제어요소가 된다.Accordingly, in the method for producing the liquid phase sintered silicon carbide-boron carbide composite of the present invention, the binding force between β-SiC particles and B 4 C particles newly generated by the reaction of silicon and carbon affects the composite properties, and in particular, B The production of a dense sintered body while minimizing the content of secondary metal silicon by the addition of 4 C particles is the most important control element in the production of silicon carbide-boron carbide composites.

본 발명의 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법에서는 80∼95wt(중량)%의 탄화규소 분말과 5∼20wt%의 탄소 분말을 기본 출발원료로 하고, 이런 기본 출발원료에 대하여 5∼40wt%의 탄화붕소(B4C) 분말을 첨가하여 복합체 조성을 만들고, 이들 세 가지 분말을 결합시킬 수 있는 성형보조제로 유기바인더를 사용한다. 여기에서 탄화붕소의 첨가량을 40wt%까지로 한정한 이유는 탄화붕소의 첨가량이 50wt%를 초과하게 되면 탄화규소 복합체가 아니라 탄화붕소가 주성분인 복합체가 제조되기 때문이다.In the method for producing a silicon carbide-boron carbide composite by the liquid phase sintering of the present invention, 80 to 95 wt% of silicon carbide powder and 5 to 20 wt% of carbon powder are used as basic starting materials. The composite composition is made by adding ˜40 wt% of boron carbide (B 4 C) powder, and an organic binder is used as a molding aid capable of combining the three powders. The reason why the addition amount of boron carbide is limited to 40 wt% is that when the addition amount of boron carbide exceeds 50 wt%, a complex composed of boron carbide as a main component is manufactured, not a silicon carbide composite.

이때, 80~95wt%의 탄화규소 분말은 조립(coarse powder)과 미립(fine powder)의 2성분 조합으로 첨가하고, 5~20wt%의 탄소 분말은 카본블랙으로 첨가하며, 탄화붕소 분말은 단일 입도의 분말을 사용한다. 여기에서 카본블랙의 첨가량을 5~20wt%로 한정한 이유는 다음과 같다. 카본블랙의 첨가량이 5wt% 이하로 너무 적을 경우에는 용융실리콘과의 반응에 의해 생성되는 β-SiC를 형성하기 위한 탄소가 부족하여 용융된 실리콘이 성형체 내로 침투하는 모세관력이 작게 형성되어 반응 후 소결체 내에 기공이 존재하는 단점이 있다. 이에 비해 카본 블랙이 20wt% 이상으로 많게 되면 용융실리콘과 탄소와의 반응이 급격한 발열반응(약 2000℃ 정도)이기 때문에 반응시 이로 인해 성형체에 균열을 발생시킬 수 있어 최종 제품에 결함으로 존재할 수 있기 때문에 이와 같은 문제점을 해결하기 위해 선정한 조성이다.At this time, 80 to 95 wt% of silicon carbide powder is added as a two-component combination of coarse powder and fine powder, 5 to 20 wt% of carbon powder is added as carbon black, and boron carbide powder is single particle size. Powder is used. Here, the reason for limiting the addition amount of carbon black to 5 to 20wt% is as follows. When the addition amount of carbon black is less than 5wt%, the carbon is insufficient to form β-SiC produced by the reaction with molten silicon, so that the capillary force into which the molten silicon penetrates into the molded body is formed small. There is a disadvantage that pores exist within. In contrast, when carbon black is more than 20wt%, the reaction between molten silicon and carbon is an exothermic reaction (about 2000 ° C.), which may cause cracks in the molded product during the reaction, and thus may exist as a defect in the final product. Therefore, the selected composition to solve such a problem.

이들 분말은 균일한 혼합을 위하여 진동 밀(Vibration Pot Mill)에서 약 60분간 혼합하여 미립의 탄소 분말이 탄화규소 분말 각각의 입자표면에 코팅될 수 있도록 처리한 후, 이 분말을 5ℓ용량의 소형 믹서(시그마 블래이드 믹서(Sigma-blade Mixer))에 성형보조제와 물을 함께 넣고 약 1시간 고르게 혼합한다. 이때 성형보조제로서 사용하는 유기바인더로는 카르복시메틸 셀룰로오즈(Carboxymethyl Cellulose, 이하에서는 'CMC'라고 함)를 이용하고, 그 첨가량은 탄화규소, 탄소 및 탄화붕소 분말이 혼합된 원료량에 대해 1~2wt%이다. 원료와 유기바인더가 혼합된 분말은 50∼100 메시(mesh) 체를 통과시켜 과립화하였으며, 이 분말을 외경 60mm의 금형에 넣고 일축가압성형법(Uniaxial Pressing)에 의하여 300∼500Kg/cm2의 압력으로 가압하여 탄화규소-탄화붕소 복합성형체를 제조한다.These powders were mixed for about 60 minutes in a Vibration Pot Mill for uniform mixing, and treated to allow the fine carbon powder to be coated on the particle surface of each silicon carbide powder. Add the molding aid and water together (Sigma-blade Mixer) and mix evenly for about 1 hour. At this time, as an organic binder used as a molding aid, carboxymethyl cellulose (Carboxymethyl Cellulose, hereinafter referred to as 'CMC') is used, and the addition amount is 1 to 2wt based on the amount of raw material in which silicon carbide, carbon and boron carbide powder are mixed. %to be. The powder mixed with the raw material and the organic binder was granulated by passing through a 50-100 mesh sieve, and the powder was placed in a mold having an outer diameter of 60 mm and pressure of 300 to 500 Kg / cm 2 by uniaxial pressing. Pressurized to produce a silicon carbide-boron carbide composite molded body.

한편, 탄화규소 분말을 조립과 미립의 2성분으로 조합하여 첨가하는 이유는 조립 분말을 단일 입도로 성형체를 제조할 경우, 성형체 내에 기공이 크게 형성되어 최종 반응소결 온도에서 용융된 금속 실리콘이 빠르게 침투하여 쉽게 소결되는 장점은 있으나, 기공의 크기가 너무 크기 때문에 탄소와 실리콘과 반응 후 기공에 잔류하는 순수한 실리콘의 양이 많게 되어 기계적 및 열적 특성 및 내식성이 저하되는 단점이 있다.On the other hand, the reason why the silicon carbide powder is added in combination of granulated and fine grains is that when the granulated powder is manufactured into a single particle, large pores are formed in the molded body, and the molten metal silicon rapidly penetrates at the final reaction sintering temperature. There is an advantage that it is easily sintered, but because the size of the pores is too large, the amount of pure silicon remaining in the pores after the reaction with carbon and silicon has a disadvantage that the mechanical and thermal properties and corrosion resistance is reduced.

반면에 미립 분말을 단일 입도로 성형체를 제조할 경우에는 성형시 미립에의한 분말의 충전도가 증가하게 되어 기공의 크기가 작게 형성되기 때문에 최종 반응소결 온도에서 용융된 금속 실리콘이 완전히 침투하지 못하는 경우가 발생되어 소결후 소결체 내에 미반응 탄소에 의한 기공이 존재하게 되고, 이로 인해 기계적인 특성이 현저히 저하되는 경우가 발생하게 된다.On the other hand, in the case of manufacturing a molded product with a single particle size of the fine powder, the filling degree of the powder due to the fine particles increases during molding, so that the pore size is formed small, so that the molten metal silicon cannot fully penetrate at the final reaction sintering temperature. In some cases, pores due to unreacted carbon are present in the sintered body after sintering, which causes a significant decrease in mechanical properties.

이에 따라 이러한 문제점을 보완하기 위해서는 조립과 미립의 분말을 일정 비율로 혼합하여 최밀충전에 의한 성형체를 제조해야 용융 실리콘의 침투도 신속하게 진행되면서 소결 후 미반응 탄소의 존재에 의한 기공이 전혀 없는 기계적 및 열적 특성이 우수한 탄화규소 세라믹 밀봉재 성형체를 제조할 수 있다.Accordingly, in order to compensate for this problem, the granulated and granulated powders must be mixed at a predetermined ratio to prepare a molded product by closest filling, and the penetration of molten silicon proceeds rapidly, and there is no pore due to the presence of unreacted carbon after sintering. And a silicon carbide ceramic sealing material excellent in thermal properties.

또한, 탄소 성분으로 카본블랙을 선정한 이유는 흑연에 비해 용융 실리콘과의 반응속도가 매우 빨라 소결 후 미반응 탄소가 남지 않아 전체 제조공정 시간이 단축되는 장점이 있어 선정하였다.In addition, carbon black was selected as the carbon component because the reaction rate with the molten silicon is much faster than that of graphite, so that unreacted carbon is not left after sintering, and thus the overall manufacturing process time is shortened.

그리고, 탄화붕소(B4C) 분말은 조립과 미립의 중간 크기를 갖는 입도를 선정하였으며, 이는 상기한 입자간 최밀 충전효과의 상승에 의한 최종 복합체의 기계적 특성을 향상시키기 위한 것이었다.In addition, the boron carbide (B 4 C) powder was selected to have a particle size having an intermediate size between granulation and granules, which was to improve the mechanical properties of the final composite due to the increase in the close filling effect between the particles.

탄화규소-탄화붕소 복합체의 소결은 성형체를 제조한 후, 질화붕소(Boron Nitrite, BN) 코팅층(도 1의 30)이 도포된 흑연기판(도 1의 40) 위에 각각의 성형체에 필요한 양(성형체 무게의 약 75~80wt%)의 금속 실리콘 분말을 칭량하고 실리콘 분말 위에 탄화규소-탄화붕소 성형체를 올려놓고 소성하였다. 소성조건은 10-1∼10-2토르(torr)의 감압분위기가 유지될 수 있는 진공소결로를 이용하여 실온에서 600℃까지 1∼2℃/분의 느린 속도로 승온시키면서 600℃에서 1시간 유지하여 성형체 내에 포함된 유기바인더를 완전히 연소시켜 성형체 내부로 용융된 금속 실리콘이 원활히 침투될 수 있도록 한다.The sintering of the silicon carbide-boron carbide composite is required to produce the molded body, and then the amount required for each molded body on the graphite substrate (40 in FIG. 1) coated with a boron nitride (Bron Nitrite, BN) coating layer (30 in FIG. 1). About 75-80 wt% of the weight) of the metal silicon powder was weighed and fired by placing a silicon carbide-boron carbide molded body on the silicon powder. The firing conditions were 1 hour at 600 ° C. while raising the temperature at a slow rate of 1 to 2 ° C./min from room temperature to 600 ° C. using a vacuum sintering furnace in which a reduced pressure atmosphere of 10 −1 to 10 −2 tor was maintained. It is maintained so that the organic binder contained in the molded body is completely burned so that the molten metal silicon can easily penetrate into the molded body.

그리고 다시 600℃에서 열처리가 끝나면 1,550∼1,600℃까지 5℃/분의 속도로 비교적 빠르게 승온시키고 1,550∼1,600℃에서 일정시간 유지시킨 후, 다시 1,700℃까지 온도를 상승시켜 일정시간 동안 유지함으로써 탄화규소-탄화붕소 복합체를 제조한다.When the heat treatment is completed again at 600 ° C., the temperature is increased relatively rapidly at a rate of 5 ° C./minute up to 1,550 to 1,600 ° C. and maintained at 1,550 to 1,600 ° C. for a certain time, and then the temperature is raised to 1,700 ° C. and maintained for a predetermined time. Prepare a boron carbide complex.

이때 1,550∼1,600℃에서의 일정 시간동안 유지하는 시간은 용융 침투한 실리콘과 카본블랙이 불완전한 반응에 의한 미반응 탄소를 남기지 않도록 하고, 잔류 기공을 실리콘으로 충전시킴으로써 소결 후 기공이 없는 완전 치밀한 소결체를 제조하기 위한 조건이며 1,700℃에서의 유지시간은 탄소와 실리콘과의 반응에 의해 생성된 β-SiC의 입성장(grain growth) 유도 및 이에 의한 α-SiC, B4C와 충분한 결합을 위한 시간이다.At this time, the time maintained at 1,550 ~ 1,600 ° C for a certain time does not leave unreacted carbon due to incomplete reaction of the silicon and carbon black that have been infiltrated, and the remaining pores are filled with silicon to form a completely compact sintered body without pores after sintering The holding time at 1,700 ° C is a time for inducing grain growth of β-SiC produced by the reaction of carbon and silicon and thereby sufficient bonding with α-SiC and B 4 C. .

이하에서는 본 발명을 다음의 실험예를 통해 설명하고자 한다. 그러나, 본 발명의 기술적 범위를 이들의 실험예로 제한하는 것은 아니다.Hereinafter, the present invention will be described through the following experimental examples. However, the technical scope of the present invention is not limited to these experimental examples.

[실험예]Experimental Example

아래에서, 본 발명에 따른 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법의 양호한 실시예를 첨부한 도면을 참조로 하여 상세히 설명하겠다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the method for producing a silicon carbide-boron carbide composite by the liquid phase sintering according to the present invention will be described in detail.

도면에서, 도 1은 본 발명의 한 실시예에 따른 액상 반응소결에 의한 탄화규소-탄화붕소 복합체 제조방법으로 복합체를 제조하는 단면도이다.In the drawings, Figure 1 is a cross-sectional view for producing a composite by a method for producing a silicon carbide-boron carbide composite by the liquid phase reaction sintering according to an embodiment of the present invention.

평균입경이 각각 44㎛와 3㎛인 조립자와 미립자의 탄화규소 분말의 혼합비율을 70wt%(조립자) : 30wt%(미립자)로 하고, 평균 입경 1㎛ 미만의 카본블랙(Carbon Black)의 혼합비율을 20wt%로 하며, 평균입경 15㎛의 탄화붕소 분말을 첨가, 혼합하여 출발원료로 준비한다. 준비된 출발원료는 진동 밀을 이용하여 상온에서 60분간 탄화규소, 탄소 및 탄화붕소 분말을 균일하게 혼합한 후, 유기바인더인 CMC를 원료의 2.0wt% 만큼 첨가하여 시그마형 블레이드 믹서에서 원료와 유기바인더를 물과 함께 혼합한다.The mixing ratio of coarse particles and fine particles of silicon carbide powder having an average particle diameter of 44 μm and 3 μm, respectively, was 70 wt% (granulated particles): 30 wt% (particulates), and carbon black having an average particle diameter of less than 1 μm The mixing ratio is 20wt%, and boron carbide powder having an average particle diameter of 15 µm is added and mixed to prepare a starting material. The prepared starting material was a mixture of silicon carbide, carbon and boron carbide powder uniformly at room temperature for 60 minutes using a vibration mill, and then the organic binder and the organic binder in a sigma type blade mixer by adding 2.0 wt% of organic binder CMC. Mix with water.

그런 다음 원료와 유기혼합물의 혼합물을 100메시 체를 통과시켜 과립화 한 후, 금형에서 300∼500Kg/cm2의 압력으로 일축가압 성형하여 탄화규소-탄화붕소 복합성형체(10)를 제조한다.Then, the mixture of the raw material and the organic mixture is granulated by passing through a 100 mesh sieve, and uniaxially press-molded at a pressure of 300 to 500 Kg / cm 2 in a mold to prepare the silicon carbide-boron carbide composite body 10.

소성로 내에 성형체의 설치는 10-1∼10-2torr의 감압분위기가 유지되고, 도 1에 도시된 바와 같이, 질화붕소 코팅층(30)이 도포된 흑연 기판(40) 위에 1∼2mm의 입자크기의 금속 실리콘(20)을 놓고 탄화규소-탄화붕소 성형체를 금속 실리콘 위에 올려놓는다. 성형체의 소성은 금속실리콘을 용융시켜 성형체 내에 침투시키기 위해 진공 저항가열로에서 실온에서 800℃까지 2℃/분의 속도로 승온하여 1시간 열처리한 후에, 1,600℃까지 5℃/분의 속도로 승온하고 1시간 동안 유지시킨 후, 다시 1,700℃까지 승온시켜 1시간 동안 유지함으로써 액상 반응소결에 의한 탄화규소-탄화붕소 복합체를 제조하였다.Installation of the molded product in the kiln is maintained in a reduced pressure atmosphere of 10 −1 to 10 −2 torr, and as shown in FIG. 1, a particle size of 1 to 2 mm on the graphite substrate 40 to which the boron nitride coating layer 30 is applied. The metal silicon 20 of the silicon carbide-boron carbide molded body is placed on the metal silicon. The firing of the molded product was carried out by heating at a rate of 2 ° C./minute from room temperature to 800 ° C. in a vacuum resistance heating furnace to melt the metal silicon and infiltrating it into the formed body, and performing a heat treatment for 1 hour, followed by a temperature increase of 5 ° C./minute to 1,600 ° C. After maintaining for 1 hour, the temperature was further raised to 1,700 ° C. and maintained for 1 hour to prepare a silicon carbide-boron carbide composite by liquid phase sintering.

앞에서 설명한 바와 같은 방식으로 아래의 표 1에서와 같이 5가지의 실험예를 준비하는데, 이때 출발원료로서 실험예 1에서는 평균입경 15㎛의 탄화붕소 분말을 전혀 첨가하지 않고, 실험예 2에서는 탄화붕소 분말을 탄화규소 분말에 대해 5wt% 첨가하고, 실험예 3에서는 10wt%의 탄화붕소 분말을, 실험예 4에서는 20wt%의 탄화붕소 분말을, 실험예 5에서는 30wt%의 탄화붕소 분말을 첨가, 혼합한다.In the same manner as described above, five experimental examples are prepared as shown in Table 1 below. In this case, in Example 1, boron carbide powder having an average particle diameter of 15 μm was not added, and in Example 2, boron carbide was used as a starting material. 5 wt% of the powder was added to the silicon carbide powder, 10 wt% of boron carbide powder in Experimental Example 3, 20 wt% of boron carbide powder in Experimental Example 4, and 30 wt% boron carbide powder in Experimental Example 5 were added and mixed. do.

표 1에서와 같은 조성성분으로 액상 반응소결 방법에 의해 탄화규소-탄화붕소 복합체를 제조한다.A silicon carbide-boron carbide composite is prepared by the liquid phase sintering method with the composition as shown in Table 1.

그리고, 상기 실험예 1~5까지의 탄화규소-탄화붕소 복합체의 꺾임강도와 경도 및 파괴인성 예측을 위한 균열개시하중(crack initiation load,Pc) 특성 값을 측정하여 그 결과를 아래의 표 2에 나타내었다.In addition, the crack initiation load ( Pc ) characteristic values for the bending strength, hardness, and fracture toughness of the silicon carbide-boron carbide composites of Experimental Examples 1 to 5 were measured, and the results are shown in Table 2 below. Indicated.

여기에서 꺾임강도는 복합체 6×3×50mm의 크기로 시편을 절단한 후, 하부 넓이 10mm, 상부 넓이 6mm인 4점-꺾임강도 지그(jig)에 시편을 올려놓은 후 만능기를 사용하여 30mm/분의 속도로 파괴시켜 측정하였다.In this case, the bending strength is cut to the size of the composite 6 × 3 × 50mm, and then the specimen is placed on a four-point bending jig having a lower width of 10mm and an upper width of 6mm, and then 30 mm / min using a universal machine. It was measured by breaking at a speed of.

경도는 비커스 압흔법(Vicker's indentation)을 사용하여 하중 P = 1∼3Kg의 범위 내에서 다이아몬드 압자로 경면연마된 표면을 압흔하여 형성된 손상(damage)으로부터 아래의 수학식 1에 의해 경도 H값을 구하였다.Hardness is obtained from the damage formed by indentation of the surface polished with diamond indenter in the range of load P = 1 to 3 kg using Vicker's indentation. It was.

여기에서, H는 경도이고, P는 하중이며, a는 압흔반경이다.Here, H is hardness, P is load, and a is indentation radius.

파괴인성을 비교하기 위한 균열개시하중은 구형 압자 접촉법을 활용, 반경 3.18mm의 초경질 구형 압자로 경면연마된 시편의 표면을 최대 1000N까지 50N의 간격으로 하중을 증가시키면서 압흔하였으며, 이때의 원형 균열(ring crack)이 시작되는 하중을Pc로 정의하였다.The crack initiation load for the comparison of fracture toughness was indented by increasing the load at 50N intervals up to 1000N on the surface of the specimen polished with a superhard spherical indenter with a radius of 3.18mm using a spherical indenter contact method. The load at which (ring crack) starts is defined as Pc .

앞서 상세히 설명한 바와 같이, 본 발명의 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법은 β-SiC 입자가 출발 모입자인 α-SiC와 복합체 구성을 위해 첨가된 B4C와 함께 결합하여 기공에 순수한 실리콘이 충전되는 메커니즘을 가지는 탄화규소-탄화붕소 복합체를 생산하기 때문에, 그로 인해 생산된 복합체가 꺾임강도, 경도, 파괴인성 등에서 양호한 특성을 가진다는 장점이 있다.As described in detail above, the method for producing silicon carbide-boron carbide composites by liquid phase sintering of the present invention combines the pores by combining the β-SiC particles with α-SiC, which is a starting parent particle, and B 4 C added for the composite composition. Since silicon carbide-boron carbide composites having a mechanism in which pure silicon is filled in are produced, there is an advantage that the resulting composites have good characteristics in bending strength, hardness, fracture toughness, and the like.

이상에서 본 발명의 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.Although the technical idea of the method for producing the silicon carbide-boron carbide composite by the liquid phase sintering of the present invention has been described above with the accompanying drawings, it is only illustrative of the best embodiments of the present invention, and the present invention is not limited thereto. no. In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

Claims (7)

액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법에 있어서,In the method for producing silicon carbide-boron carbide composite by liquid phase sintering, 80~95wt(중량)%의 탄화규소와 5~20wt%의 탄소분말의 혼합물에 대하여 5~40wt%의 탄화붕소(B4C)를 첨가하여 혼합하는 단계와,Adding and mixing 5 to 40 wt% of boron carbide (B 4 C) with respect to a mixture of 80 to 95 wt% of silicon carbide and 5 to 20 wt% of carbon powder; 상기 혼합된 탄화규소와 탄소분말 및 탄화붕소에 성형보조제를 첨가하여 혼합하는 단계와,Adding a molding aid to the mixed silicon carbide, carbon powder, and boron carbide and mixing the mixture; 상기 성형보조제가 첨가된 혼합재를 가압하여 성형체로 성형하는 단계와,Pressing the mixture to which the molding aid is added to form a molded body; 상기 성형체를 소성하는 단계를 포함하는 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.Method for producing a silicon carbide-boron carbide composite by sintering the liquid phase, characterized in that it comprises the step of firing the molded body. 제 1 항에 있어서,The method of claim 1, 상기 80~95wt%의 탄화규소는 상호 상대적으로 큰 입경을 가지는 조립자와 작은 입경을 가지는 미립자를 70wt%(조립자) : 30wt%(미립자)의 혼합비율로 조성하는 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.The 80 ~ 95wt% silicon carbide is a liquid phase reaction sintered, characterized in that the coarse particles having a relatively large particle size and the fine particles having a small particle size of 70wt% (assembler): 30wt% (particulate particles) Method for producing silicon carbide-boron carbide composite by 제 1 항에 있어서,The method of claim 1, 상기 5~20wt%의 탄소분말은 평균 입경이 1㎛ 미만의 카본블랙인 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.The 5 to 20wt% carbon powder has a mean particle size of less than 1㎛ carbon black silicon carbide-boron carbide composite manufacturing method by liquid phase sintering. 제 1 항에 있어서,The method of claim 1, 상기 성형보조제는 유기바인더로서 상기 혼합된 탄화규소와 탄소분말 및 탄화붕소에 대해 1~2wt%를 첨가 혼합하는 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.The molding aid is an organic binder, the silicon carbide-boron carbide composite manufacturing method by the liquid phase reaction sintering characterized in that 1 to 2wt% is added to the mixed silicon carbide and carbon powder and boron carbide. 제 1 항에 있어서,The method of claim 1, 상기 혼합된 탄화규소와 탄소분말 및 탄화붕소에 성형보조제를 첨가하여 혼합한 혼합물을 50~100메시(mesh) 체를 이용하여 과립화하고, 상기 과립화된 혼합물을 가압하여 성형체로 성형하는 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.The mixture is added to the mixed silicon carbide and carbon powder and boron by adding a molding aid to granulate the mixed mixture using a 50 to 100 mesh sieve, and pressurize the granulated mixture to form a molded body. Method for producing silicon carbide-boron carbide composite by liquid phase reaction sintering. 제 1 항 또는 제 5 항에 있어서,The method according to claim 1 or 5, 상기 성형체는 일축가압성형법(Uniaxial Pressing)에 의해 성형되는데, 이 때의 가압력은 300~500Kg/cm2인 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.The molded body is molded by a uniaxial pressing method (Uniaxial Pressing), the pressing force at this time is a method of producing a silicon carbide-boron carbide composite by the liquid phase sintering characterized in that 300 ~ 500Kg / cm 2 . 제 1 항에 있어서,The method of claim 1, 상기 제조된 성형체를 소성하는 단계에서의 소성조건은 10-1∼10-2토르(torr)의 감압분위기에서 실온으로부터 600℃까지 1∼2℃/분의 가열속도로 승온하여 600℃에서 1시간 유지하고, 600℃에서 열처리가 끝나면 1,550∼1,600℃까지 5℃/분의 가열속도로 승온하여 1,550∼1,600℃에서 소정의 시간 유지시킨 후, 다시 1,700℃까지 승온 유지하여 소성하는 것을 특징으로 하는 액상 반응소결에 의한 탄화규소―탄화붕소 복합체 제조방법.The firing conditions in the step of firing the produced molded product is heated at a heating rate of 1 ~ 2 ℃ / min from room temperature to 600 ℃ in a reduced pressure atmosphere of 10 -1 to 10 -2 torr (torr) for 1 hour at 600 ℃ After the heat treatment is completed at 600 ℃, the temperature is raised to a heating rate of 5 ℃ / min from 1,550 to 1,600 ℃, and maintained at 1,550 to 1,600 ℃ for a predetermined time, then the liquid temperature characterized in that the temperature is maintained at 1,700 ℃ again and calcined Method for producing silicon carbide-boron carbide composite by reaction sintering.
KR10-2001-0007749A 2001-02-16 2001-02-16 Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering KR100419778B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0007749A KR100419778B1 (en) 2001-02-16 2001-02-16 Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0007749A KR100419778B1 (en) 2001-02-16 2001-02-16 Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering

Publications (2)

Publication Number Publication Date
KR20020067257A true KR20020067257A (en) 2002-08-22
KR100419778B1 KR100419778B1 (en) 2004-02-21

Family

ID=27694578

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0007749A KR100419778B1 (en) 2001-02-16 2001-02-16 Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering

Country Status (1)

Country Link
KR (1) KR100419778B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443012A (en) * 2018-12-13 2019-03-08 郑州钛盾耐磨材料有限公司 A kind of novel concrete preheater inner barrel mounting structure
KR20200019070A (en) 2018-08-13 2020-02-21 에스케이씨솔믹스 주식회사 Manufacturing method of boroncarbide sintered body and shaping die
CN111410538A (en) * 2020-05-08 2020-07-14 潍坊工商职业学院 Toughened silicon carbide ceramic and preparation method thereof
KR20210110472A (en) * 2020-02-28 2021-09-08 한국과학기술연구원 Boron carbide composite and its fabrication method
CN116947500A (en) * 2023-07-26 2023-10-27 昊石新材料科技南通有限公司 High-temperature stable-phase carbide ceramic reinforced silicon carbide coating and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867961B1 (en) * 2007-12-14 2008-11-10 주식회사 월덱스 Alpha;type sic- beta; type sic combined reaction sintering sic material and manufacture method and plasma chamber cathode that use it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3218052A1 (en) * 1982-05-13 1983-11-17 Elektroschmelzwerk Kempten GmbH, 8000 München POLYCRYSTALLINE, PRACTICALLY PORE-FREE SINTER BODY MADE FROM (ALPHA) -SILICON CARBIDE, BORCARBIDE AND FREE CARBON AND METHOD FOR THE PRODUCTION THEREOF
DE19537714A1 (en) * 1995-10-10 1997-04-17 Inst Neue Mat Gemein Gmbh A method for producing a conductive sintered body based on silicon carbide
JPH10291857A (en) * 1997-04-22 1998-11-04 Hitachi Chem Co Ltd High specific resistance sic sintered compact
JPH10297970A (en) * 1997-04-28 1998-11-10 Sekiyu Sangyo Kasseika Center Production of silicon carbide-based sintered compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019070A (en) 2018-08-13 2020-02-21 에스케이씨솔믹스 주식회사 Manufacturing method of boroncarbide sintered body and shaping die
KR20200032062A (en) 2018-08-13 2020-03-25 에스케이씨솔믹스 주식회사 Manufacturing method of boroncarbide sintered body and shaping die
CN109443012A (en) * 2018-12-13 2019-03-08 郑州钛盾耐磨材料有限公司 A kind of novel concrete preheater inner barrel mounting structure
KR20210110472A (en) * 2020-02-28 2021-09-08 한국과학기술연구원 Boron carbide composite and its fabrication method
CN111410538A (en) * 2020-05-08 2020-07-14 潍坊工商职业学院 Toughened silicon carbide ceramic and preparation method thereof
CN116947500A (en) * 2023-07-26 2023-10-27 昊石新材料科技南通有限公司 High-temperature stable-phase carbide ceramic reinforced silicon carbide coating and preparation method thereof

Also Published As

Publication number Publication date
KR100419778B1 (en) 2004-02-21

Similar Documents

Publication Publication Date Title
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
CN101580390B (en) Preparation method of silicon carbide ceramic tubular product
CN101456737B (en) Boron carbide base composite ceramic and preparation method thereof
CN111675541B (en) Preparation method of carbon-containing MAX phase material
EP1513600B1 (en) Fiber reinforced filter for molten metal filtration and method for producing such filters
WO1986005480A1 (en) High density reinforced ceramic bodies and method of making same
CN113121240B (en) Preparation method of high-wear-resistance nitride-combined silicon carbide composite ceramic overcurrent part
WO1993025495A1 (en) Porous silicon carbide
JP2010132549A (en) Ceramic component containing inclusion
US2636825A (en) Refractory carbide and nitride product and method of making
CN112830803A (en) Liquid phase sintering gel injection molding SiC ceramic valve material and preparation method thereof
CN113024257A (en) Liquid phase sintering slip casting SiC ceramic valve material and preparation method thereof
US2887393A (en) Refractory bodies containing boron nitride
US5294382A (en) Method for control of resistivity in electroconsolidation of a preformed particulate workpiece
CN104591738A (en) High-toughness boron carbide ceramic and preparation method thereof
US20030113447A1 (en) Process and compositions for making ceramic articles
EP1284251B1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
US5294264A (en) Method of nitriding refractory metal articles
CN109231990A (en) A kind of preparation method of tungsten carbide-diamond composite
CN108585907B (en) Cr (chromium)2Preparation method of AlC modified self-healing silicon carbide ceramic matrix composite
CN111517798A (en) Carbide-based ceramic material, preparation method and application thereof
KR100299099B1 (en) Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering
KR100838825B1 (en) Sic fiber reinforced reaction bonded sic porous body and its fabrication process
US20030035901A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120207

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee