KR20020067070A - Super power Aluminum of Scrip use Manufacturing - Google Patents

Super power Aluminum of Scrip use Manufacturing Download PDF

Info

Publication number
KR20020067070A
KR20020067070A KR1020010007402A KR20010007402A KR20020067070A KR 20020067070 A KR20020067070 A KR 20020067070A KR 1020010007402 A KR1020010007402 A KR 1020010007402A KR 20010007402 A KR20010007402 A KR 20010007402A KR 20020067070 A KR20020067070 A KR 20020067070A
Authority
KR
South Korea
Prior art keywords
fiber
scrap
aluminum
hardening
super
Prior art date
Application number
KR1020010007402A
Other languages
Korean (ko)
Inventor
김영호
Original Assignee
김영호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영호 filed Critical 김영호
Priority to KR1020010007402A priority Critical patent/KR20020067070A/en
Publication of KR20020067070A publication Critical patent/KR20020067070A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A method for manufacturing super-high strength aluminum using scrap is provided to reduce raw material cost by recycling scraps of all series of aluminum as raw material, and improve mechanical properties by simultaneously selectively adding metal constituents and performing rapid cooling treatment process. CONSTITUTION: The method for manufacturing super-high strength aluminum using scrap comprises the processes of forming rectangular shaped fiber by drip-feeding a solution prepared by melting scrap in a melting furnace from a nozzle(12-2) and scattering the scrap molten solution using centrifugal force of a rotation cone(13) rotating in a rotation speed of about 100 to 500 revolutions per minute; and manufacturing aluminum fiber by first age-hardening the formed rectangular shaped fiber in a low temperature chamber(16), wherein the method further comprises a separation process of gravitationally storing non-fiberized scrap in the manufactured aluminum into a scrap storage container(22-1) and moving fiber to a fiber hardening part(23) by heating air sent from a fan(19) to a temperature of about 80 to 100 deg.C using a burner(20) and supplying the heated air into the low temperature chamber(16); a cooling process of constantly maintaining temperature of the fiber hardening part(23) by installing a cooling water chamber around the fiber hardening part(23); and a storage process of storing a second age-hardening completed fiber prepared by quenching operation for about 2 to 5 hours required for natural hardening into a fiber storage container(25-1), wherein a pressure reduction barrel(26) and a filter(27) are installed in the storage container(25-1) to prevent the fiber from being discharged into the outside.

Description

스크랩을 이용한 초강력 알루미늄 제조방법{ Super power Aluminum of Scrip use Manufacturing}Super Power Aluminum of Scrip use Manufacturing

종래에 고강도 알루미늄은 항공기용, 각종 기계용, 기타 건축용 등은 두랄루민이라 통칭하는 2000계열, 고강도로 불리는 7000계열을 말하는데 이 계열은 다른 원소를 첨가하는 방법으로서 Al-Cu계, Al-Cu-Mg계 외의 Al-Mg-Si계, Al-Zn-Mg계 등 으로 구분한다. 또한 전연 다른 개념의 알루미늄등 경금속 재료의 강화 방법으로는 알루미늄에 알루미나 섬유나 탄소섬유 등 고온재료인 섬유를 포함시키는 복합성재료로서 현저하게 강도를 높일 수 있어 고강도 알루미늄이 요구되는 각종 기계류, 항공기, 자동차 분야 등에 이용이 시도되고 있다.Conventionally, high strength aluminum refers to the 2000 series, which is commonly referred to as duralumin, and the 7000 series, which are called high strength, for aircraft, various machinery, and other constructions. This series is a method of adding other elements such as Al-Cu, Al-Cu-Mg. Other than Al-Mg-Si type, Al-Zn-Mg type, etc. In addition, as a method of reinforcing light metal materials, such as aluminum, which is a different concept, it is a composite material in which aluminum contains fibers such as alumina fibers or carbon fibers, such as high-temperature materials, which can significantly increase the strength. Applications have been attempted in the field.

본 발명에서는 모든 계열의 알루미늄 스크랩을 재활용하여 초강력 알루미늄을 제조하는 방법으로서 스크랩을 용융로(고주파로 및 전기로)에서 용해시킨 용액의 성분상태에 따라 특수원소을 적정량 첨가한 후 용융액관 노즐을 통하여 Drip-feed 시키면 섬유형태로 비산되는 것을 급랭시킴과 동시에 1차 시효경화가 된 10∼50㎛ 굵기의 섬유형태의 고형체가 되어 섬유경화부를 통과하는 Quenching 작업 과정에서 2차 시효경화(Age hardening) 작용이 이루어져 초강력 알루미늄 섬유가 만들어진다. 이 섬유를 적정한 온도상태에서 가압 성형하여 Quenching 작업과정에서 시효경화 되어 초강력 알루미늄이 되는 것이다..In the present invention, as a method for producing super-strong aluminum by recycling all the aluminum scrap of the series, after adding an appropriate amount of the special element according to the component state of the solution in which the scrap is dissolved in the melting furnace (high frequency furnace and electric furnace), through the melt tube nozzle Drip- When the feed is quenched to be scattered in the form of fiber, the second age hardening action is performed during the quenching process that passes through the fiber hardening part as it becomes a 10 ~ 50 ㎛ thick fiber-shaped solid body that is first-age hardened. It is made of super strong aluminum fiber. The fiber is press-molded at the proper temperature to be age hardened during the quenching process to become super-strength aluminum.

종래에는 일반적인 고강도 알루미늄, 두랄루민등을 제조하는데 있어 합금원소을 용해도 이상의 온도로 가열하여 필요한 형태로 성형시킨 후 초기 고형단계에서 급랭하면 quenching 작용으로 강도가 높은 고형 체가 된다. 이것을 상온의 자연시효 또는 인공시효 상태로 형성시키면 현저하게 경화되어 고강도 알루미늄의 소재가 만들어지고 있다. 그러나 작업과정의 적정온도를 초과하거나 가열시효를 초과하게 되면 경화요소인 각종 화합물의 석출이 완성되어 다시 원상의 연질화가 되며 이 현상을 과 시효 현상이라 한다. 알루미나 섬유나 탄소섬유가 포함되는 복합성 알루미늄 소재의 경우는 그 강도 면에 있어서는 현저하게 강화되어 있는 것으로 나타나 있으나 알루미늄 소재와 알루미나 섬유나 탄소 섬유간의 금속 용융액의 흡습(Wetability)문제로 완전한 복합성 재료를 제조하기가 힘들며 각종기계나 자동차 등의 경우에도 나타나는 현상이겠지만 특히 항공기의 경우 상당히 높은 엔진의 열이나 태양열과 고공에서 -50℃ 이하의 극저온 사이에 심한 온도차의 반복되는 재료의 피로한계와 기계적 진동과 충격으로 인하여 재료 내부에서 알루미늄 소재와 알루미나 섬유나 탄소섬유의 분리 현상이 발생된다고 볼 수 있다. 여기서 본 발명에서는 모든 계열의 알루미늄 스크랩을 사용하며 이 스크랩을 용융로에 최고 1,100℃ 로 용융하고 용융액의 성분 상태에 따라 특수금속과 조건개선과 강화에 필요한 Si를 0.04중량%이하로 첨가하고 이 용융액를 1차적으로 80∼100℃ 정도로 급랭하여 10∼50㎛ 굵기의 경화섬유를 제조하고 2차적으로 2∼5시간 정도의 Quenching 작업을 하면서 동시에 시효경화(Age hardening) 작용을 끝낸 초강력 알루미늄 섬유를 고온가공으로 원하는 형태의 형상을 만든 후 Quenching 작업을 하는 과정에 시효경화 작용이 발생되어 초강력 알루미늄이 되는 것이다.Conventionally, in the manufacture of general high strength aluminum, duralumin, etc., the alloying element is heated to a temperature above the solubility to be formed into a required shape, and then rapidly quenched at an initial solid state to obtain a solid having high strength due to quenching action. When this is formed in the state of natural aging or artificial aging at room temperature, it is hardened remarkably to produce a material of high strength aluminum. However, when the proper temperature is exceeded or the heating aging is exceeded, precipitation of various compounds, which are hardening elements, is completed and the original softening is performed again. This phenomenon is referred to as overaging. The composite aluminum material containing alumina fiber or carbon fiber is remarkably strengthened in terms of its strength, but the complete composite material is produced due to the wettability problem of the metal melt between the aluminum material and the alumina fiber or carbon fiber. It is difficult to do this, and it is a phenomenon that occurs in various machines or automobiles, but in the case of aircraft, the fatigue limit of the material and the mechanical vibration and impact of the repetitive temperature difference between the extremely high engine heat or solar heat and the cryogenic temperature below -50 ℃ at high altitude. Due to this, the separation of the aluminum material and the alumina fiber or carbon fiber can be seen in the material. In the present invention, all types of aluminum scraps are used, and the scraps are melted at a maximum of 1,100 ° C. in a melting furnace, and a special metal and Si required for improvement and reinforcement are added at 0.04% by weight or less, depending on the composition of the melt. Secondly, it is quenched at 80 ~ 100 ℃ to manufacture 10 ~ 50㎛ thick cured fiber, and secondly, it performs Quenching work for about 2 ~ 5 hours and at the same time finishes the super hard aluminum fiber which has finished the age hardening action by high temperature processing. After making the shape of the desired shape, aging hardening occurs in the process of quenching to become super aluminum.

도1: 본 발명에서의 초강력 알루미늄 제조방법에 대한 샤시도1 is a chassis diagram of a method for manufacturing super strong aluminum in the present invention

<도면중 주요부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

11:용융로 12-1:용융액관 12-2: 노즐 13:회전Cone 14:고온챔버11: Melting Furnace 12-1: Melting Tube 12-2: Nozzle 13: Rotating Cone 14: High Temperature Chamber

15:고온 돔(Dormer) 16:저온 챔버(Chamber) 17:센서 18:Cone 모-터15: High temperature dome 16: Low temperature chamber 17: Sensor 18: Cone motor

19:휀 20:버너 21:외부돔 22-1:스크랩저장고 22-2:스크랩회수부19: 20: Burner 21: Outer Dome 22-1: Scrap Storage 22-2: Scrap Collection

23:섬유경화부 24:냉각수챔버 25-1:섬유저장고 25-2:섬유회수부23: fiber curing unit 24: cooling water chamber 25-1: fiber storage 25-2: fiber recovery unit

26:감압통 27:휠터26: pressure reduction cylinder 27: a filter

본 발명의 구성을 도1에 도시한 바와 같이 상세히 설명하면 알루미늄 스크랩을 용융로(11)에 일정량 넣고 1,000∼1,100℃로 가열시켜 고온 용액으로 만들어 용액관(12-1)을 통하여 용액관 끝부분에 부착된 노즐(12-2)에서 일정한 압력으로 용융액을 Drip-feed 한다. 이 노즐(12-2)의 중심부는 회전 Cone(13)의 뾰족한 끝부분에 조준되어 있으며 회전Cone(13)의 회전속도는 100∼500RPM 정도이고 회전속도가 빨라지게 되면 알루미늄 섬유의 굵기는 가늘어지고 회전속도가 느려지면 섬유 굵기는 굵어지게 된다. 회전Cone(13)의 뾰족한 첨두에 노즐(12-2)에서 알루미늄 용융액이 조정된 량으로 Drip-feed 하게 된다. 회전Cone의 직경이 작은 부분에서는 Drip-feed 된 용융액이 하부로 흘러내리게 되지만 원의 직경이 급격히 커지는 원판형 하단부분의 Cone edge 에서는 용융액은 회전 원심력에 의하여 저온챔버(16) 안으로 비산하게 된다. 여기서 회전Cone(13)을 100∼500RPM 정도로 회전시키기 위하여 Cone 모터(18)가 있고 회전Cone(13)을 수용하고 있는 고온챔버(14)는 회전Cone(13)의 Edge 부분만 5mm미만으로 저온챔버(16)에 노출되어 있다. 회전Cone(13)은 고온돔(15)으로 완전히 Cover하고 있고 내부는 500℃ 이상의 온도를 유지하여야 하고 Cone edge 에서 저온챔버(16) 내로 비산된 알루미늄 용융액의 입자모양이 장방형 섬유같이 되고 저온챔버(16)의 상부에서 송풍되는 풍량에 의하여 순간적으로 냉각되면서 경화가 진행된다. 이 송풍에 의하여 섬유가 외부로 유실 되는 것을 방지하기 위하여 감압통(26)에서 압력을 감압시킨후 휠터(27)를 통해 배출시킨다. 저온챔버(16) 내에서 냉각에 필요한 열풍은 버너(20)에서 알루미늄 용융액의 금속 공학적인 시효경화에 필요한 100℃ 정도이며 온도센서(17)에 의하여 제어하게 된다. 이렇게 회전Cone(13) 가장자리(edge)에서 저온챔버 (16) 내로 비산된 알루미늄 합금 섬유는 대략 직경이 10∼50㎛ 전후, 길이는 20mm 정도이고 저온챔버(16)에서 80∼100℃정도의 열풍으로 시효경화 시킨 후 섬유경화부(23)로 통과하게 되며 섬유경화부의 온도를 일정하게 유지하기 위하여 냉각수챔버(24)를 설치한다. 이 섬유경화부(23)을 통과하면서 자연 경화에 소요되는 2∼5시간 정도의 Quenching 작업을 거치면 시효경화(Age hardening) 작용이 완료되어 초강력 알루미늄 합금 섬유가 되어 섬유저장부(25-1)로 저장되었다가 섬유회수부(25-2)를 통해초강력 알루미늄 소재로 사용하는 것이다. 이 과정에서 섬유가 미처 되지 못한 스크랩은 중력에 의하여 스크랩저장고(22-1)에 저장되었다가 일정량이 저장되면 저장회수부(22-2)를 통해 회수하여 원료로 재 사용한다.Referring to the configuration of the present invention in detail as shown in Figure 1 put a certain amount of aluminum scrap in the melting furnace 11 and heated to 1,000 ~ 1,100 ℃ to make a high temperature solution through the solution tube 12-1 to the end of the solution tube Drip-feed the melt at a constant pressure from the attached nozzle 12-2. The center of the nozzle 12-2 is aimed at the pointed end of the rotating cone 13, and the rotating speed of the rotating cane 13 is about 100 to 500 RPM, and as the rotating speed increases, the thickness of the aluminum fiber becomes thinner. When the rotation speed is slow, the fiber thickness becomes thicker. The sharp tip of the rotating cane 13 is drip-feeded to the adjusted amount of the aluminum melt from the nozzle 12-2. In the small diameter of the rotating cane, the drip-fed melt flows to the lower part, but in the cone edge of the disk-shaped lower part where the diameter of the circle rapidly increases, the melt is scattered into the low temperature chamber 16 by the rotation centrifugal force. The high temperature chamber 14, which has a cone motor 18 and accommodates the rotating cane 13 to rotate the rotating cane 13 to about 100 to 500 RPM, has a low temperature chamber of less than 5 mm at the edge of the rotating cane 13 only. Exposed to (16). The rotating cane 13 is completely covered with a high temperature dome 15 and the inside is to maintain a temperature of 500 ° C. or higher, and the particles of the aluminum melt scattered into the low temperature chamber 16 at the cone edge become rectangular fibers and have a low temperature chamber ( Curing proceeds while being instantaneously cooled by the air volume blown from the upper part of 16). In order to prevent the fiber from being lost to the outside by the blowing, the pressure is reduced in the pressure reduction cylinder 26 and then discharged through the filter 27. The hot air required for cooling in the low temperature chamber 16 is about 100 ° C. required for metallurgical age hardening of the aluminum melt in the burner 20 and is controlled by the temperature sensor 17. The aluminum alloy fibers scattered into the low temperature chamber 16 at the edge of the rotating cone 13 have a diameter of about 10 to 50 μm, a length of about 20 mm, and a hot air of about 80 to 100 ° C. in the low temperature chamber 16. After the age hardening to pass through the fiber curing unit 23 and to maintain a constant temperature of the fiber curing unit is installed a cooling water chamber (24). After passing through the fiber hardening part 23 and undergoing a quenching operation of about 2 to 5 hours, which is required for natural hardening, the age hardening effect is completed to become a super strong aluminum alloy fiber to the fiber storage part 25-1. It is stored and used as a super strong aluminum material through the fiber recovery section (25-2). In this process, the scraps that have not undergone fibers are stored in the scrap storage 22-1 by gravity, and when a predetermined amount is stored, the scraps are recovered through the storage recovery unit 22-2 and reused as raw materials.

본 발명에서 시효경과가 끝난 섬유형태의 초강력 알루미늄을 섬유회수부에서 집합하여 판형 및 Solid 형상으로 함에 있어 50㎏/㎠의 프레스 압력으로 1차 저온 가공하고 400∼500℃ 고온에서 150∼300㎏/㎠의 압력을 가하여 필요한 형태로 성형하여 초강력 알루미늄을 제조하는 것이다. 종래에 고 강도 알루미늄 합금인 2000계열, 7000계열의 스크랩은 재활용에 어려운 문제가 많아 폐기하고 있으나 본 발명에서는 모든 계열의 알루미늄 스크랩을 원료로 재활용이 가능하므로 이로 인한 원자재의 가격이 저렴하며 처리공정에서 원자재 성분상태에 따라서 Cu, Mn, Si, Mg, Zn, Zr, Ag, Be 등 특수금속 중 선별하여 첨가하고 급랭 처리공정을 병행함으로서 인장강도, 항복강도, 연신 율이 증가되어 종래에 사용하고 있는 고강도 알루미늄의 성능보다 더 뛰어난 성능을 갖게되어 산업 기기 전반에 사용이 가능한 초강력 알루미늄을 제조할 수 있는 것이다.In the present invention, the super-strength aluminum in the form of aged fiber is collected in the fiber recovery part to form a plate and a solid shape, and the first low-temperature processing is performed at a press pressure of 50 kg / cm 2 and 150 to 300 kg / at a high temperature of 400 to 500 ° C. Applying a pressure of cm 2 to form the required shape to produce super-strong aluminum. Conventionally, scraps of 2000 series and 7000 series, which are high strength aluminum alloys, have many problems that are difficult to recycle, but in the present invention, all series aluminum scraps can be recycled as a raw material, thereby resulting in low cost of raw materials and processing. Depending on the state of the raw materials, Cu, Mn, Si, Mg, Zn, Zr, Ag, Be are selected and added to special metals, and the quenching process is performed in parallel to increase tensile strength, yield strength and elongation. The performance is superior to that of high-strength aluminum, making it possible to manufacture super-strength aluminum that can be used throughout industrial equipment.

초강력 알루미늄과 종래의 고강도 알루미늄과 비교하여 보면 다음과 같다.Compared with super strong aluminum and conventional high strength aluminum is as follows.

Al종류Al type 인장강도(㎏/㎟)Tensile Strength (㎏ / ㎠) 항복강도(㎏/㎟)Yield strength (㎏ / ㎠) 연신률(%)Elongation (%) 1070, 1080계열1070, 1080 series 99 2121 3030 2024계열2024 series 4848 3333 1919 7000계열7000 series 53.553.5 4747 1717 SUSSUS 5353 2828 4040 초강력 AlSuper Al 7070 1212 4040

이상에서 보는바와 같이 인장강도 는 두랄루민, 고강도 알루미늄, SUS 보다강력하면서도 특성은 그대로 유지한 상태이다.As seen above, the tensile strength is stronger than duralumin, high strength aluminum, and SUS, but the characteristics are maintained.

Claims (4)

스크랩을 용융로에 용융시켜 용융된 액을 노즐(12-2)에서 Drip-feed 하여 100∼ 500RPM 정도로 회전하는 회전Cone(13) 원심력을 이용하여 비산시켜 장방형 형태의 섬유가 형성하고 이것을 저온챔버(16)내에서 1차 시효경화 시키는 것을 특징으로 하는 스크랩을 이용한 초강력 알루미늄 제조방법.The scrap is melted in the melting furnace and the molten liquid is drip-feeded from the nozzle 12-2, and scattered using a rotating centrifugal force (13) rotating at about 100 to 500 RPM to form a rectangular fiber, which is formed into a low temperature chamber (16). Ultra-strong aluminum manufacturing method using a scrap characterized in that the first age hardening in). 1항에 의하여 제조된 알루미늄 섬유를 휀(19)에서 보내주는 바람을 버너(20)로 80∼100℃ 정도 가열시켜 저온챔버(16)내로 보내면 풍속에 의하여 섬유화 되지 않은 스크랩은 중력에 의하여 스크랩저장고(22-1)로 저장되고 섬유만 섬유경화부 (23)로 이동하는 분리 과정When the aluminum fiber produced in paragraph 1 is sent to the low temperature chamber 16 by heating the wind from the wind turbine 19 to the burner 20, the scrap not fiberized by the wind speed is scrap storage by gravity. Separation process stored as (22-1) and moving only the fiber to the fiber hardening part (23) 섬유경화부(23)주위에 냉각수챔버(24)를 설치하여 온도를 일정하게 유지하는 냉각 과정Cooling process to maintain a constant temperature by installing a cooling water chamber 24 around the fiber hardening portion (23) 자연 경화에 소요되는 2∼5시간 정도의 Quenching 작업으로 2차 시효경화(Age hardening) 작용이 끝난 섬유를 섬유저장고(25-1)에 저장하는 과정The process of storing the finished fiber in the fiber storage (25-1) after the second aging hardening (quenching) for 2 to 5 hours required for natural hardening. 상기 과정에서 섬유가 외부로 배출되는 것을 방지하기 위하여 감압통(26)과 휠터(27)를 설치하는 것을 특징으로 하는 스크랩을 이용한 초강력 알루미늄 제조방법.Ultra-strong aluminum manufacturing method using a scrap, characterized in that for installing the pressure reduction cylinder (26) and the filter (27) in order to prevent the fibers from being discharged to the outside. 2항에 의하여 제조한 섬유를 1차적으로 35∼50㎏/㎠의 압력에서 판형으로 냉간 가공한 후 2차적으로 온도;400∼500℃, 압력;150∼300㎏/㎠ 에서 필요한 형상으로 성형하여 Quenching 작업을 거치면서 시효경화 작용을 일으켜 초강력 알루미늄으로 제조하는 것을 특징으로 하는 스크랩을 이용한 초강력 알루미늄 제조방법.The fiber prepared according to claim 2 is first cold-formed into a plate at a pressure of 35 to 50 kg / cm 2, and then secondarily molded into a required shape at a temperature of 400 to 500 ° C. and a pressure of 150 to 300 kg / cm 2. Method for producing super-strong aluminum using scrap, characterized in that the aging hardening process through the quenching work to produce a super-strong aluminum. 1항에서 모든 계열의 알루미늄 스크랩을 원료로 사용함에 있어서In the case of using aluminum scrap of all series as raw material 스크랩을 용융한후 용융된 용액의 성분상태에 따라 Cu, Mn, Mg, Zn, Zr, Ag, Be 등 특수금속중 선택하여 적정량 첨가하고 조건개선과 강화에 필요한 Si를 0.04중량% 이하로 첨가하여 성능을 향상시키는 것을 특징으로 하는 스크랩을 이용한 초강력 알루미늄 제조방법.After melting the scrap, select the appropriate amount among special metals such as Cu, Mn, Mg, Zn, Zr, Ag, Be, etc. according to the component state of the molten solution, and add Si to 0.04% by weight or less. Ultra-strong aluminum manufacturing method using a scrap, characterized in that to improve the performance.
KR1020010007402A 2001-02-15 2001-02-15 Super power Aluminum of Scrip use Manufacturing KR20020067070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010007402A KR20020067070A (en) 2001-02-15 2001-02-15 Super power Aluminum of Scrip use Manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010007402A KR20020067070A (en) 2001-02-15 2001-02-15 Super power Aluminum of Scrip use Manufacturing

Publications (1)

Publication Number Publication Date
KR20020067070A true KR20020067070A (en) 2002-08-22

Family

ID=27694406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010007402A KR20020067070A (en) 2001-02-15 2001-02-15 Super power Aluminum of Scrip use Manufacturing

Country Status (1)

Country Link
KR (1) KR20020067070A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043406A (en) * 1983-08-16 1985-03-08 Fujikura Ltd Production of metallic short fiber
KR960033614A (en) * 1996-07-04 1996-10-22 천영조 Method and apparatus for producing needle-like aluminum powder for sound-absorbing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043406A (en) * 1983-08-16 1985-03-08 Fujikura Ltd Production of metallic short fiber
KR960033614A (en) * 1996-07-04 1996-10-22 천영조 Method and apparatus for producing needle-like aluminum powder for sound-absorbing material

Similar Documents

Publication Publication Date Title
KR100349566B1 (en) Magnesium alloy casting material for plastic processing, magnesium alloy member using the same and manufacturing method thereof
CN113462938B (en) Preparation method of high-strength gradient microalloyed aluminum alloy material
CN102776412A (en) Moderate-strength high-tenacity titanium alloy wire for electron beam fuse stack rapid manufacturing member
JPH0819496B2 (en) Method for manufacturing aluminum alloy parts that retains high fatigue strength even after being kept at high temperature for a long time
CN86106682A (en) White cast-iron and cast steel bimetal composite casting
CN104004955B (en) The manufacture method of high performance jetting steel
JPH11104800A (en) Material for plastic working light metal alloy and manufacture of plastic working member
CN110722152A (en) Large-size fine-grain molybdenum rod and preparation method thereof
CN110042288A (en) A kind of space flight aluminium alloy U-shaped frame frame section and preparation method thereof
KR20020067070A (en) Super power Aluminum of Scrip use Manufacturing
CN115652156B (en) Mg-Gd-Li-Y-Al alloy and preparation method thereof
CN116377306A (en) Method for preparing castings by utilizing ceramic particle reinforced aluminum matrix composite waste
CN110157929A (en) Mg in a kind of improvement magnesium alloy2The method of Si reinforcing phase constitution and pattern
CN1796024A (en) Magnesium alloy piston of engine and preparation method
CN115161528B (en) Preparation method of Mg-RE-based high-temperature-resistant high-performance magnesium alloy
WO2006134405A1 (en) Method of manufacturing aluminium-based composite material
CN117778846A (en) High-surface-quality rare earth magnesium alloy bar and preparation method thereof
CN118460893A (en) Heat treatment-free aluminum alloy material for aluminum alloy automobile hub and preparation method thereof
CN117778730A (en) Smelting method capable of improving mechanical properties of regenerated magnesium alloy
CN117660820A (en) Sm-containing structural and functional integrated magnesium alloy and preparation method thereof
Zhang et al. 6 High-Entropy Fibers
CN118109724A (en) Waste aluminum-based heat treatment-free aluminum alloy and preparation method and application thereof
JPS6367535B2 (en)
KR100252277B1 (en) The manufacturing method for composite material
CN116536515A (en) Use method of A356 recovered aluminum for aluminum automobile parts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application