KR20020056819A - A method for producing ethylene homo- and c0-polymer - Google Patents

A method for producing ethylene homo- and c0-polymer Download PDF

Info

Publication number
KR20020056819A
KR20020056819A KR1020010076519A KR20010076519A KR20020056819A KR 20020056819 A KR20020056819 A KR 20020056819A KR 1020010076519 A KR1020010076519 A KR 1020010076519A KR 20010076519 A KR20010076519 A KR 20010076519A KR 20020056819 A KR20020056819 A KR 20020056819A
Authority
KR
South Korea
Prior art keywords
compound
magnesium
catalyst
chloride
titanium
Prior art date
Application number
KR1020010076519A
Other languages
Korean (ko)
Other versions
KR100476881B1 (en
Inventor
김상열
양춘병
박지용
이원
Original Assignee
유현식
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 삼성종합화학주식회사 filed Critical 유현식
Priority to EP01272946A priority Critical patent/EP1360212A4/en
Priority to PCT/KR2001/002241 priority patent/WO2002053607A1/en
Publication of KR20020056819A publication Critical patent/KR20020056819A/en
Application granted granted Critical
Publication of KR100476881B1 publication Critical patent/KR100476881B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/643Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6493Catalysts containing a specific non-metal or metal-free compound organic containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6497Catalysts containing a specific non-metal or metal-free compound organic containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/656Pretreating with metals or metal-containing compounds with silicon or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: Provided is a method for simply preparing ethylene polymer and copolymer showing bimodal structure in molecular distribution curve and having narrow molecular weight distribution. CONSTITUTION: The method is performed in the presence of (1) preactivated solid complex titanium catalyst, (2) organic metal compound of group II or III in periodic table, and (3) saturated hydrocarbon containing halogen which is infused during polymerization. The preactivated solid complex titanium catalyst is prepared by the steps of (i) catalyzing a magnesium halide and alcohol to form a magnesium solution, (ii) reacting a phosphorus compound as electron donor with silane compound having alkoxy group, (iii) catalyzing a mixture solution of titanium compound and silicon compound and recrystallizing the solution into solid, so as to synthesize a catalyst precursor, (iv) reacting the catalyst precursor with titanium compound to form a solid complex titanium catalyst, and (v) reacting the solid complex titanium catalyst with organic magnesium compound to preactivate the catalyst.

Description

에틸렌 중합체 및 공중합체 제조방법{A METHOD FOR PRODUCING ETHYLENE HOMO- AND C0-POLYMER}Process for producing ethylene polymer and copolymer {A METHOD FOR PRODUCING ETHYLENE HOMO- AND C0-POLYMER}

본 발명은 에틸렌 중합체 및 공중합체의 제조방법에 관한 것으로서, 보다 상세하게는 알코올에 용해시킨 마그네슘 용액에 인 화합물, 실란 화합물, 티타늄 화합물과 실리콘 화합물의 혼합용액 등을 차례로 반응시키고, 다시 티타늄 화합물과 반응시킨 후, 이를 유기 마그네슘 화합물과의 반응으로 전활성시킨 것을 주촉매로 사용하고, 중합시에 할로겐이 함유된 포화탄화수소 화합물을 주입하여 에틸렌 중합체 및 공중합체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an ethylene polymer and a copolymer, and more specifically, to a magnesium solution dissolved in alcohol, a phosphorus compound, a silane compound, a mixed solution of a titanium compound and a silicon compound, and the like are sequentially reacted. After the reaction, a method of preparing an ethylene polymer and a copolymer by injecting a saturated hydrocarbon compound containing a halogen at the time of polymerization using a catalyst that is preactivated by reaction with an organic magnesium compound is used.

알려진 바와 같이 중합 및 공중합을 위한 많은 공정과 촉매가 개발되었다. 특별히, 여러 분야에의 응용을 위해서 평균 분자량은 높으면서, 좁은 분자량 분포를 가지는 특성을 나타내는 중합 및 공중합체의 제조가 요구되고 있다. 높은 평균 분자량과 좁은 분자량 분포 특성을 가지는 중합 및 공중합체는 좋은 기계적 물성을 가지는 장점이 있다.As is known, many processes and catalysts have been developed for polymerization and copolymerization. In particular, for the application in various fields, production of polymerization and copolymers having a high average molecular weight and exhibiting characteristics having a narrow molecular weight distribution is required. Polymerizations and copolymers having high average molecular weights and narrow molecular weight distribution properties have the advantage of having good mechanical properties.

마그네슘을 포함하는 에틸렌 중합 및 공중합용 촉매는 매우 높은 촉매활성을 나타내는 것으로 알려져 있으며, 액상 및 기상 중합용으로도 적합하다. 에틸렌 액상 중합은 벌크 에틸렌이나 이소 펜탄, 헥산과 같은 용매 내에서 이루어지는 중합 공정을 말하며, 이에 사용되는 촉매는 높은 활성이 요구된다. 그리고 이와 더불어 분자량 분포는 에틸렌 중합체의 물성을 결정하는 중요한 변수이며, 특히 좁은 분자량 분포를 가지는 에틸렌 중합체는 사출 가공품에 매우 유리한 중요한 특성이라 할 수 있다.Catalysts for ethylene polymerization and copolymerization containing magnesium are known to exhibit very high catalytic activity and are also suitable for liquid and gas phase polymerization. Ethylene liquid phase polymerization refers to a polymerization process performed in a solvent such as bulk ethylene, isopentane, and hexane, and the catalyst used therein requires high activity. In addition, the molecular weight distribution is an important variable for determining the physical properties of the ethylene polymer, and in particular, the ethylene polymer having a narrow molecular weight distribution may be an important property which is very advantageous for injection-processed products.

제조하는 고분자의 분자량을 높이게 되면, 인장 강도가 높아지는 장점이 있으나, 가공성이 떨어져서 가공시 갈라진 틈이 생기는 등의 문제점이 발생한다. 이의 문제점을 극복하기 위해서는 분자량을 높이면서, 분자량 분포에 고분자량 테일을 도입하면 된다. 특별히 고분자량 테일을 도입하는 방법은 인장 강도를 증가시키면서도, 가공성에 큰 영향을 주지 않기 때문에 이상적인 방법이다.Increasing the molecular weight of the polymer to be prepared, there is an advantage that the tensile strength is increased, but there is a problem such as cracking during processing due to poor workability. In order to overcome this problem, a high molecular weight tail may be introduced into the molecular weight distribution while increasing the molecular weight. In particular, a method of introducing a high molecular weight tail is an ideal method because it does not significantly affect workability while increasing the tensile strength.

본 발명의 목적은 제조된 촉매를 전활성시키고 중합시 할로겐이 함유된 포화탄화수소를 주입하는 간단한 방법으로, 분자량 분포가 좁으면서 분자량 분포곡선에서 이정의 구조를 나타내는 에틸렌 중합 및 공중합체를 높은 수율로 제조하는 방법을 제공하는 것이다.An object of the present invention is a simple method of pre-activating a prepared catalyst and injecting a saturated hydrocarbon containing halogen during polymerization, with a high yield of ethylene polymerization and copolymer having a narrow molecular weight distribution and showing a heterogeneous structure in the molecular weight distribution curve. It is to provide a method of manufacturing.

본 발명에 따른 에틸렌 중합체 및 공중합체의 제조방법은 (1) 다음 공정으로 제조하여 전활성시킨 고체 착물 티타늄 촉매; (ⅰ) 지지체인 할로겐화 마그네슘 화합물과 알코올을 접촉반응시켜 마그네슘 용액을 제조하고, (ⅱ) 전자공여체로서 인 화합물과, 알콕시기를 갖는 실란 화합물을 반응시킨 다음, (ⅲ) 티타늄 화합물과실리콘 화합물의 혼합용액을 접촉 반응시켜 고체로 재결정화하여 촉매 전구체를 합성하고, (ⅳ) 촉매전구체를 티타늄 화합물과 다시 반응시켜 고체 착물 티타늄 촉매를 제조하고, (v) 고체 착물 티타늄 촉매를 유기 마그네슘 화합물과 반응시켜 전활성화시킨다 ; (2) 주기율표 제 Ⅱ족 및 제 Ⅲ족 유기금속 화합물; 그리고 (3) 중합시에 주입되는 할로겐이 함유된 포화탄화수소 화합물의 존재하에서 에틸렌의 중합 또는 공중합을 실시하는 것을 특징으로 한다.Method for producing an ethylene polymer and copolymer according to the present invention comprises (1) a solid complex titanium catalyst prepared by the following process; (Iii) a magnesium solution is prepared by bringing a magnesium halide compound as a support into contact with an alcohol, (ii) reacting a phosphorus compound as an electron donor with a silane compound having an alkoxy group, and then (iii) mixing a titanium compound and a silicon compound. The solution was subjected to contact reaction to recrystallize to solid to synthesize a catalyst precursor, (i) reacting the catalyst precursor with a titanium compound again to prepare a solid complex titanium catalyst, and (v) reacting the solid complex titanium catalyst with an organic magnesium compound Preactivate; (2) organometallic compounds in Groups II and III of the Periodic Table; And (3) polymerizing or copolymerizing ethylene in the presence of a saturated hydrocarbon compound containing halogen injected during polymerization.

본 발명에 이용되는 촉매의 제조를 위해 사용되는 할로겐화 마그네슘 화합물의 종류에는 염화마그네슘, 요오드화마그네슘, 불화마그네슘, 그리고 브롬화마그네슘과 같은 디할로겐화마그네슘; 메틸마그네슘 할라이드, 에틸마그네슘 할라이드, 프로필마그네슘 할라이드, 부틸마그네슘 할라이드, 이소부틸마그네슘 할라이드, 헥실마그네슘 할라이드, 아밀마그네슘 할라이드 등과 같은 알킬마그네슘 할라이드; 메톡시마그네슘 할라이드, 에톡시마그네슘 할라이드, 이소프로폭시마그네슘 할라이드, 부톡시마그네슘 할라이드, 그리고 옥톡시마그네슘 할라이드와 같은 알콕시마그네슘 할라이드; 페녹시마그네슘 할라이드, 그리고 메틸페녹시마그네슘 할라이드와 같은 아릴옥시마그네슘 할라이드를 예로 들 수 있다. 또한 상기의 마그네슘 화합물을 2개 이상 혼합해서 사용하거나, 다른 금속과의 착화합물 형태로 사용하여도 효과적이다. 본 발명에서 사용한 마그네슘 용액은 전술한 할로겐화 마그네슘 화합물을 탄화수소 용매의 존재 또는 부재하에서 알코올 용매를 사용하여 용액으로 제조할 수 있다.Types of magnesium halide compounds used for the preparation of the catalysts used in the present invention include magnesium halides such as magnesium chloride, magnesium iodide, magnesium fluoride, and magnesium bromide; Alkylmagnesium halides such as methylmagnesium halide, ethylmagnesium halide, propylmagnesium halide, butylmagnesium halide, isobutylmagnesium halide, hexylmagnesium halide, amylmagnesium halide and the like; Alkoxymagnesium halides such as methoxymagnesium halide, ethoxymagnesium halide, isopropoxymagnesium halide, butoxymagnesium halide, and octoxymagnesium halide; Examples are aryloxymagnesium halides such as phenoxymagnesium halide and methylphenoxymagnesium halide. It is also effective to use two or more of the above magnesium compounds in a mixed form or in the form of a complex with another metal. The magnesium solution used in the present invention can be prepared into the solution of the above-mentioned magnesium halide compound using an alcohol solvent in the presence or absence of a hydrocarbon solvent.

본 발명에 사용되는 탄화수소 용매의 종류로는 펜탄, 헥산, 헵탄, 옥탄, 데칸, 그리고 케로센과 같은 지방족 탄화수소, 시클로벤젠, 메틸시클로벤젠, 시클로헥산, 그리고 메틸시클로헥산과 같은 지환족 탄화수소, 벤젠, 톨루엔, 크실렌, 에틸벤젠, 큐멘, 그리고 시멘과 같은 방향족 탄화수소를 들 수 있다.Examples of hydrocarbon solvents used in the present invention include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and kerosene, cycloaliphatic hydrocarbons such as cyclobenzene, methylcyclobenzene, cyclohexane, and methylcyclohexane, benzene, Aromatic hydrocarbons such as toluene, xylene, ethylbenzene, cumene, and cymene.

할로겐화 마그네슘 화합물을 마그네슘 화합물 용액으로 전환시 전술한 탄화수소 용매의 존재 또는 부재하에서 알코올이 사용된다. 알코올의 종류로는 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 옥탄올, 데칸올, 도데칸올, 옥타데실알코올, 벤질알코올, 페닐에틸알코올, 이소프로필벤질알코올, 쿠밀알코올과 같은 1 ∼20개의 탄소원자를 함유하는 알코올을 들 수 있고, 바람직한 알코올은 1∼12개의 탄소원자를 함유하는 알코올이 좋다. 알코올의 총량은 마그네슘 화합물 1몰당 약 2.0몰∼10몰의 범위가 바람직하고, 용해 온도는 알코올의 종류에 따라 다르지만, 약 0℃∼150℃, 용해 시간은 약 15분∼5시간, 바람직하기로는 약 30분∼4시간 동안 실시하는 것이 좋다.Alcohols are used in the presence or absence of the aforementioned hydrocarbon solvents in the conversion of the magnesium halide compound to the magnesium compound solution. Examples of the alcohol include 1 to 1, such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecyl alcohol, benzyl alcohol, phenyl ethyl alcohol, isopropyl benzyl alcohol and cumyl alcohol. The alcohol containing 20 carbon atoms is mentioned, The preferable alcohol is an alcohol containing 1-12 carbon atoms. The total amount of alcohol is preferably in the range of about 2.0 mol to 10 mol per mol of the magnesium compound, and the dissolution temperature varies depending on the type of alcohol, but is about 0 ° C to 150 ° C and the dissolution time is about 15 minutes to 5 hours, preferably It is recommended to perform for about 30 minutes to 4 hours.

본 발명에 사용되는 인 화합물은 다음의 일반식으로 대표된다.The phosphorus compound used for this invention is represented by the following general formula.

PXaR1 b(OR2)c나 POXdR3 e(OR4)f,PX a R 1 b (OR 2 ) c or POX d R 3 e (OR 4 ) f ,

여기에서 X는 할로겐 원자이고, R1, R2, R3, R4는 1∼20개의 탄소원자를 가진 탄화수소류로, 알킬, 알케닐, 아릴 등이며, 각각 같거나 다를 수도 있다. 그리고 a + b + c = 3 이며, 0 ≤ a ≤ 3, 0 ≤ b ≤3, 0 ≤ c ≤ 3, d + e + f = 3, 0 ≤ d ≤ 3, 0 ≤ e ≤ 3, 0 ≤ f ≤ 3 이다. 이들의 예에는 삼염화인, 삼브롬화인, 디에틸클로로포스파이트, 디페닐클로로포스파이트, 디에틸브로모포스파이트, 디페닐브로모포스파이트, 디메틸클로로포스파이트, 페닐클로로포스파이트, 트리메틸포스파이트, 트리에틸포스파이트, 트리노말부틸포스파이트, 트리옥틸포스파이트, 트리데실포스파이트, 트리페닐포스파이트, 트리에틸포스페이트, 트리노말부틸포스페이트, 트리페닐포스페이트 등이 있으며, 이외에도 상기식을 만족하는 다른 인화합물도 사용될 수 있다. 이들의 사용량은 마그네슘 화합물 1몰당 0.25몰 이하가 적당하며, 더욱 바람직하게는 1몰당 0.2몰 이하가 적당하다.Here, X is a halogen atom, R 1 , R 2 , R 3 , R 4 are hydrocarbons having 1 to 20 carbon atoms, alkyl, alkenyl, aryl and the like, and may be the same or different. And a + b + c = 3, 0 ≤ a ≤ 3, 0 ≤ b ≤ 3, 0 ≤ c ≤ 3, d + e + f = 3, 0 ≤ d ≤ 3, 0 ≤ e ≤ 3, 0 ≤ f ≦ 3. Examples thereof include phosphorus trichloride, phosphorus tribromide, diethylchlorophosphite, diphenylchlorophosphite, diethylbromophosphite, diphenylbromophosphite, dimethylchlorophosphite, phenylchlorophosphite, trimethylphosphite, tri Ethyl phosphite, tri-normal butyl phosphite, trioctyl phosphite, tridecyl phosphite, triphenyl phosphite, triethyl phosphate, tri- normal butyl phosphate, triphenyl phosphate and the like, and other phosphorus compounds satisfying the above formula May also be used. The amount of these used is preferably 0.25 mol or less per mol of magnesium compound, more preferably 0.2 mol or less per mol.

본 발명에 사용되는 또다른 전자 공여체인 알콕시기를 가지는 실란 화합물은 다음의 일반식으로 대표된다.The silane compound which has an alkoxy group which is another electron donor used for this invention is represented by the following general formula.

RnSi(OR)4-n R n Si (OR) 4-n

여기서 R은 탄소가 1∼12개인 탄화수소, n은 1∼3의 자연수이다. 구체적으로는, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란, 메틸페닐메톡시실란, 디페닐디에톡시실란, 에틸트리메톡시실란, 비닐트리메톡시실란, 메틸트리메톡시실란, 페닐트리메톡시실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 비닐트리에톡시실란, 부틸트리에톡시실란, 페닐트리에톡시실란, 에틸트리이소프로폭시실란, 비닐트리부톡시실란, 에틸실리케이트, 부틸실리케이트, 메틸트리아릴록시실란 등의 화합물이 있다. 이들의 양은 마그네슘 1몰당 0.05∼3몰이 바람직하며, 더욱 바람직하기로는 0.1∼2몰이다.R is a hydrocarbon having 1 to 12 carbons, and n is a natural number of 1 to 3; Specifically, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, methylphenylmethoxysilane, diphenyldiethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane, methyltrimethoxysilane, phenyl Trimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, butyltriethoxysilane, phenyltriethoxysilane, ethyltriisopropoxysilane, vinyltributoxysilane, ethylsilicate , Butyl silicate, methyltriaryloxysilane and the like. The amount thereof is preferably 0.05 to 3 mol, more preferably 0.1 to 2 mol per mol of magnesium.

본 발명에서 사용되는 티타늄 화합물은 다음의 일반식으로 나타낼 수 있다.The titanium compound used in the present invention can be represented by the following general formula.

Ti(OR)aX4-a Ti (OR) a X 4-a

여기서 R은 탄소원자 1∼10개의 알킬기, X는 할로겐 원자, 그리고 a는 0∼4의 정수이다. 상기 일반식을 만족하는 티타늄 화합물의 종류로는 TiCl4, TiBr4, TiI4와 같은 사할로겐화 티타늄, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC2H5)Br3그리고 Ti(O(i-C4H9))Br3와 같은 삼할로겐화 알콕시티타늄, Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(O(i-C4H9))2Cl2그리고 Ti(OC2H5)2Br2와 같은 이할로겐화 알콕시티타늄, Ti(OCH3)4, Ti(OC2H5)4그리고 Ti(OC4H9)4와 같은 테트라알콕시티타늄을 예로 들 수 있다. 또한 이들의 혼합물도 본 발명에 사용될 수 있다. 바람직한 티타늄 화합물은 할로겐 함유 티타늄 화합물이며, 더욱 바람직한 티타늄 화합물은 테트라클로로티타늄이다.Wherein R is an alkyl group of 1 to 10 carbon atoms, X is a halogen atom, and a is an integer of 0 to 4; Types of titanium compounds satisfying the above general formula include titanium tetrahalides such as TiCl 4 , TiBr 4 , TiI 4 , Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (OC 2 H 5 Thalogenated alkoxytitanium such as Br 3 and Ti (O (iC 4 H 9 )) Br 3 , Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (O (iC 4 H) 9 )) dihalogenated alkoxytitanium such as 2 Cl 2 and Ti (OC 2 H 5 ) 2 Br 2 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 and Ti (OC 4 H 9 ) 4 Tetraalkoxy titanium is mentioned. Also mixtures thereof may be used in the present invention. Preferred titanium compounds are halogen-containing titanium compounds, and more preferred titanium compounds are tetrachlorotitanium.

본 발명에서 사용되는 실리콘 화합물은 다음의 일반식으로 표현될 수 있다.The silicone compound used in the present invention can be represented by the following general formula.

RnSiCln-4 R n SiCl n-4

여기서 R은 수소, 또는 탄소수가 1∼10개인 알킬, 알콕시, 할로알킬, 아릴기 또는 탄소수가 1∼8개인 할로시릴, 할로시릴알킬기이며, n은 0∼3의 정수이다. 이를 만족하는 화합물로는 테트라클로로실리콘과 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클로로실란 등과 같은 트리클로로실란, 디메틸디클로로실란, 디에틸디클로로실란, 디페닐디클로로실란, 메틸페닐디클로로실란 등과 같은 디클로로실란, 트리메틸클로로실란 등과 같은 모노클로로실란을 예로 들 수 있으며, 상기한 실리콘 화합물의 혼합물도 본 발명에 사용할 수 있다. 바람직한 실리콘 화합물은 테트라클로로실리콘이다.R is hydrogen or an alkyl, alkoxy, haloalkyl, aryl group having 1 to 10 carbon atoms or a halosilyl or halosilyl alkyl group having 1 to 8 carbon atoms, and n is an integer of 0 to 3; Compounds that satisfy this include trichlorosilane and trichlorosilane such as methyltrichlorosilane, ethyltrichlorosilane and phenyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane, diphenyldichlorosilane and methylphenyldichlorosilane. Monochlorosilanes, such as silane, trimethylchlorosilane, etc. are mentioned, A mixture of the above-mentioned silicone compound can also be used for this invention. Preferred silicone compounds are tetrachlorosilicones.

마그네슘 화합물 용액을 재결정시킬 때 사용하는 티타늄 화합물과 실리콘 화합물의 혼합물의 양은 마그네슘 화합물 1몰당 0.1∼ 200몰이 적당하며, 바람직하게는 0.1몰∼100몰이고, 더욱 바람직한 것은 0.2몰∼80몰이다. 티타늄 화합물과 실리콘 화합물의 혼합비는 몰비로 0.05∼0.95가 적당하며, 더욱 바람직하기로는 0.1∼0.8이다. 마그네슘 화합물 용액과 티타늄 화합물과 실리콘 화합물의 혼합물과의 반응은 충분히 낮은 온도에서 행하여 촉매 입자를 결정화시키는 것이 좋은데, 이것은 반응조건에 따라 재결정된 고체 성분의 모양, 크기가 많이 변화하여 중합체의 부피 밀도(bulk density)에 영향을 주기 때문이다. 바람직하게는 -70℃∼70℃에서 접촉반응을 실시하는 것이 좋고, 더욱 바람직하기로는 -50℃∼50℃에서 수행하는 것이 유리하다. 접촉 반응 후 서서히 반응 온도를 올려서 50℃∼ 150℃에서 0.5∼5시간 동안 반응시킨다.The amount of the mixture of the titanium compound and the silicon compound to be used for recrystallization of the magnesium compound solution is preferably 0.1 to 200 moles per mole of the magnesium compound, preferably 0.1 to 100 moles, and more preferably 0.2 to 80 moles. The mixing ratio of the titanium compound and the silicon compound is preferably 0.05 to 0.95 in molar ratio, and more preferably 0.1 to 0.8. The reaction of the magnesium compound solution with the mixture of the titanium compound and the silicon compound is preferably carried out at a sufficiently low temperature to crystallize the catalyst particles. bulk density). Preferably, the contact reaction is preferably performed at -70 ° C to 70 ° C, and more preferably at -50 ° C to 50 ° C. After the contact reaction, the reaction temperature was gradually raised to react at 50 ° C to 150 ° C for 0.5 to 5 hours.

상기와 같이 제조된 촉매 전구체를 상기에 기술한 일반식 Ti(OR)aX4-a(R은 탄화수소기, X는 할로겐원자, 그리고 a는 0∼4의 자연수)로 나타내어 질 수 있는 티타늄 화합물과 더 반응시키게 된다. 그 중 테트라클로로티타늄이 가장 좋으며, 마그네슘 화합물 1몰당 1몰∼20몰, 더욱 바람직하게는 1몰∼10몰의 양을 반응시키는 것이 좋다. 반응은 40℃∼150℃에서 0.5시간∼5시간 동안 수행한다.Titanium compounds which can be represented by the catalyst precursor prepared as described above by the general formula Ti (OR) a X 4-a (R is a hydrocarbon group, X is a halogen atom, and a is a natural number of 0 to 4). More react with. Among them, tetrachlorotitanium is the best, and it is preferable to react the amount of 1 mol to 20 mol, more preferably 1 mol to 10 mol per mol of the magnesium compound. The reaction is carried out at 40 占 폚 to 150 占 폚 for 0.5 hours to 5 hours.

상기의 과정을 통해서 얻어진 촉매는 RaMgXb(여기서 R은 탄소원자 1∼10개의 알킬, 알케닐, 사이클로알킬, 알키닐기를 가리키고, X는 할로겐이다. a, b는 0∼2의 정수이고, a+b=2의 관계를 갖는다)의 일반식으로 나타내어지는 유기 마그네슘화합물과 반응시켜 전활성화시키게 된다. 구체적인 유기 마그네슘의 종류로는 메틸마그네슘클로라이드, 메틸마그네슘브로마이드, 메틸마그네슘아이오다이드, 에틸마그네슘클로라이드, 에틸마그네슘브로마이드, 프로필마그네슘클로라이드, 부틸마그네슘클로라이드, 펜틸마그네슘브로마이드, 헥실마그네슘브로마이드, 옥틸마그네슘클로라이드, 데실마그네슘브로마이드, 도데실마그네슘브로마이드, 이소프로필마그네슘클로라이드, 이소부틸마그네슘클로라이드, 이소부틸마그네슘브로마이드, 터셔리부틸마그네슘클로라이드, 사이클로펜틸마그네슘클로라이드, 사이클로펜틸마그네슘브로마이드, 사이클로헥실마그네슘클로라이드, 디부틸마그네슘, 디에틸마그네슘, 디옥틸마그네슘 등이 있으며, 이외에도 상기의 일반식을 만족하는 화합물이면 가능하다. 이때 사용되는 유기 마그네슘 화합물은 할로겐화 마그네슘 화합물 1몰당 0.02∼1몰의 양을 사용한다. 바람직하게는 마그네슘 화합물 1몰당 0.1몰∼0.5몰의 비율로 주입하는 것이 좋다. 유기 마그네슘을 본 발명에서 제시한 양 이상으로 사용할 경우에는 촉매의 활성을 급격하게 떨어뜨리거나, 촉매의 형상을 파괴하게 된다. 또한, 반응온도에 따라서도 촉매의 형태가 크게 변하기 때문에 충분히 낮은 온도에서 수행하는 것이 좋다. 바람직하게는 -50℃∼50℃, 더욱 바람직하게는 -20℃∼30℃에서 수행하는 것이 유리하다. 접촉반응 후 서서히 반응온도를 올려서 40℃∼150℃에서 0.5시간∼5시간 동안 반응시킨다.The catalyst obtained through the above process is R a MgX b (where R represents an alkyl, alkenyl, cycloalkyl, alkynyl group having 1 to 10 carbon atoms, X is halogen. A, b is an integer of 0 to 2, and an organic magnesium compound represented by the general formula (a + b = 2). Specific types of organic magnesium include methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, ethylmagnesium chloride, ethylmagnesium bromide, propylmagnesium chloride, butylmagnesium chloride, pentylmagnesium bromide, hexylmagnesium bromide and octylmagnesium chloride. Magnesium bromide, dodecyl magnesium bromide, isopropyl magnesium chloride, isobutyl magnesium chloride, isobutyl magnesium bromide, tertiary butyl magnesium chloride, cyclopentyl magnesium bromide, cyclopentyl magnesium bromide, cyclohexyl magnesium chloride, dibutyl magnesium Magnesium, dioctyl magnesium, etc. are mentioned, In addition, if it is a compound which satisfy | fills the said general formula, it is possible. The organic magnesium compound used at this time is used in an amount of 0.02 to 1 mol per mol of the magnesium halide compound. Preferably it is injected at a ratio of 0.1 mol to 0.5 mol per mol of the magnesium compound. When the organic magnesium is used in an amount greater than the amount suggested in the present invention, the activity of the catalyst is drastically reduced or the shape of the catalyst is destroyed. In addition, since the form of the catalyst changes greatly depending on the reaction temperature, it is preferable to perform at a sufficiently low temperature. It is advantageously carried out at -50 ° C to 50 ° C, more preferably at -20 ° C to 30 ° C. After the contact reaction, the reaction temperature was gradually raised and reacted at 40 ° C. to 150 ° C. for 0.5 hours to 5 hours.

본 발명에서 제시된 촉매는 에틸렌의 중합 및 공중합에 유익하게 사용된다. 공중합 단량체로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센과 같은 탄소수 3개 이상의 α-올레핀이 사용된다.The catalysts presented in this invention are advantageously used for the polymerization and copolymerization of ethylene. As the copolymer monomer, an α-olefin having 3 or more carbon atoms such as propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, and 1-hexene is used.

에틸렌 중합체 및 공중합체 제조를 위한 중합 반응은 주촉매로서 본 발명에 기술된 방법으로 제조된 티타늄 촉매를, 조촉매로서 주기율표 제 Ⅱ족 및 제 Ⅲ족의 유기금속 화합물로 한 촉매계를 사용하여 수행된다.The polymerization reaction for the preparation of ethylene polymers and copolymers is carried out using a catalyst system made of a titanium catalyst prepared by the process described herein as the main catalyst and an organometallic compound of Groups II and III of the Periodic Table as cocatalyst. .

조촉매로 사용되는 유기금속 화합물로서는 MRn의 일반식으로 표기할 수 있는데, 여기에서 M은 마그네슘, 칼슘, 아연, 붕소, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 탄소수 1∼20개의 알킬기를 나타내며, n은 금속 성분의 원자가를 표시한다. 이들 중에서 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1개∼6개의 알킬기를 가진 트리알킬알루미늄과 이들의 혼합물은 보다 더 유익하다. 경우에 따라서는 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 한 개 이상의 할로겐 또는 히드리드기를 갖는 유기알루미늄 화합물도 사용될 수 있다.Organometallic compounds used as cocatalysts may be represented by the general formula of MR n , where M is a periodic table group II or IIIA metal component such as magnesium, calcium, zinc, boron, aluminum, gallium, and R is methyl And an alkyl group having 1 to 20 carbon atoms such as ethyl, butyl, hexyl, octyl and decyl, and n represents the valence of the metal component. Among them, trialkylaluminum having 1 to 6 carbon atoms, such as triethylaluminum and triisobutylaluminum, and a mixture thereof are more advantageous. In some cases, organoaluminum compounds having one or more halogen or hydride groups such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride may also be used.

중합 반응은 유기용매 없이 수행하는 기상 또는 벌크 중합이나, 유기 용매 존재하에서 수행하는 액상 슬러리 중합 방법 모두가 가능하다. 기상중합의 경우 반응계 내, 촉매의 양은 중합 부피 1리터에 대하여 촉매의 티타늄 원자를 기준으로 할 때, 약 0.001∼5밀리몰, 바람직하게는 약 0.001∼1.0밀리몰, 더욱 바람직하게는 약 0.01∼0.5 밀리몰로 하는 것이 좋다. 유기 금속 화합물의 바람직한 농도는 유기금속 원자로 계산하여 촉매 중 티탄 원자의 몰당 약 1∼2000몰이며, 더욱 바람직하게는 약 5∼500몰이 유익하다. 액상 슬러리 중합의 경우에는 헥산, 노르말 헵탄,옥탄, 노난, 데칸 등의 알칸 화합물과 시클로알칸과 같은 방향족 화합물 등의 비극성 유기 용매를 사용하게 되는데, 이 중 헥산이 가장 좋으며, 촉매 활성에 영향을 주지 않도록 사용 전에 정제되어야 한다. 바람직한 고체착물 티타늄 촉매의 중합 반응계상의 농도는 용제 1리터에 대하여 촉매의 티타늄 원자로 약 0.001∼5밀리몰, 바람직하게는 약 0.001∼0.5밀리몰이다.The polymerization reaction can be either a gas phase or bulk polymerization carried out without an organic solvent, or a liquid phase slurry polymerization method carried out in the presence of an organic solvent. In the case of gas phase polymerization, the amount of catalyst in the reaction system is about 0.001 to 5 mmol, preferably about 0.001 to 1.0 mmol, more preferably about 0.01 to 0.5 mmol, based on the titanium atom of the catalyst with respect to 1 liter of polymerization volume. It is good to do. The preferred concentration of the organometallic compound is about 1 to 2000 moles per mole of titanium atoms in the catalyst, calculated from organometallic atoms, more preferably about 5 to 500 moles. In the case of liquid phase slurry polymerization, nonpolar organic solvents such as alkane compounds such as hexane, normal heptane, octane, nonane, and decane and aromatic compounds such as cycloalkane are used, of which hexane is the best and does not affect the catalytic activity. It should be purified before use. The concentration of the preferred solid complex titanium catalyst on the polymerization reaction system is about 0.001 to 5 mmol, preferably about 0.001 to 0.5 mmol, of titanium atoms of the catalyst with respect to 1 liter of solvent.

고분자량 테일이 발현된 분자구조를 갖는 중합체를 얻기 위해서는 중합시에 할로겐이 함유된 포화탄화수소 화합물을 주입하는 것이 필수적이다. 에틸클로라이드, 클로로포름, 터셔리부틸클로라이드, 테트라클로로메탄, 에틸브로마이드, 터셔리부틸아이오다이드, 노르말부틸브로마이드, 노르말부틸아이오다이드, 노르말부틸플루오라이드와 같이 염소 또는 브롬, 플루오르, 요오드의 할로겐을 하나 이상 포함하고, 탄소수가 1∼10인 화합물 또는 혼합물의 사용이 가능하다. 그 중 에틸클로라이드가 가장 바람직하다. 할로겐을 포함한 포화탄화수소 화합물은 반응계 내 주입하는 촉매의 티타늄 원자에 대해 0.5∼20의 몰비로, 더욱 바람직하게는 2∼10의 비율로 주입하였을 시에 촉매 활성과 분자량 분포 측면에서 가장 좋은 효과를 나타내었다. 또한 할로겐을 포함한 포화탄화수소 없이 중합하게 되면, 상대적으로 높은 분자량을 가진 중합품의 비율이 줄어든 중합체를 얻을 수 있다.In order to obtain a polymer having a molecular structure in which a high molecular weight tail is expressed, it is essential to inject a saturated hydrocarbon compound containing a halogen during polymerization. Such as ethyl chloride, chloroform, tertiary butyl chloride, tetrachloromethane, ethyl bromide, tertiary butyl iodide, normal butyl bromide, normal butyl iodide, and normal butyl fluoride It is possible to use compounds or mixtures containing one or more and having 1 to 10 carbon atoms. Among them, ethyl chloride is most preferred. Saturated hydrocarbon compounds containing halogen have the best effect in terms of catalytic activity and molecular weight distribution when injected at a molar ratio of 0.5 to 20, more preferably at a ratio of 2 to 10, relative to the titanium atoms of the catalyst injected into the reaction system. It was. In addition, when the polymerization is carried out without a saturated hydrocarbon containing halogen, it is possible to obtain a polymer having a reduced ratio of a polymer having a relatively high molecular weight.

중합 반응 온도는 일반적으로 약 20∼200℃가 적당하며, 더욱 바람직하기로는 20∼95℃의 높은 온도에서 수행한다. 단량체의 압력은 대기압에서 100기압 사이가 적절하며, 더욱 바람직하기로는 2∼50기압의 압력이 적당하다.The polymerization temperature is generally suitable at about 20-200 ° C., more preferably at a high temperature of 20-95 ° C. The pressure of the monomer is appropriately between atmospheric pressure and 100 atmospheres, more preferably 2 to 50 atmospheres.

중합체의 분자량은 수소 주입양을 통해서 조절하는, 잘 알려진 방법을 이용할 수 있다. 분자량은 이 분야에서 통상적으로 널리 알려진 용융지수(ASTM D 1238)로 나타내고 일반적으로 분자량이 적을수록 그 값이 크게 나타난다. 중합체의 분자량 분포는 GPC(Gel Permeation Chromatography)로 측정하여 얻었으며, 이의 측정방법은 이 분야에서 통상적으로 알려진 방법을 사용하였다.The well-known method of controlling the molecular weight of the polymer through the hydrogen injection amount can be used. The molecular weight is represented by the melt index (ASTM D 1238) commonly known in the art, and generally the lower the molecular weight, the larger the value. The molecular weight distribution of the polymer was obtained by measuring by GPC (Gel Permeation Chromatography), the measurement method of which was commonly used in the art.

실시예 및 비교예Examples and Comparative Examples

본 발명을 다음의 실시예와 비교예를 통하여 더 상세히 설명한다. 그러나 본 발명이 이들 예에 국한되어 있는 것은 아니다.The present invention will be described in more detail with reference to the following examples and comparative examples. However, the present invention is not limited to these examples.

실시예 1Example 1

촉매 제조Catalyst manufacturing

고체 착물 티타늄 촉매성분은 다음의 단계의 과정을 통하여 제조되었다.The solid complex titanium catalyst component was prepared through the following steps.

(ⅰ) 단계 : 마그네슘 용액의 제조(Iii) step: preparation of magnesium solution

질소 분위기의 기계식 교반기가 설치된 1리터 반응기에 MgCl29.5g, 데칸 500ml를 넣고 500rpm으로 교반시킨 후, 2-에틸헥산올 72ml를 투입하고, 온도를 120℃로 올린 다음 3시간 동안 반응시켰다. 반응 후에 얻어진 균일용액을 상온으로 식혔다.9.5 g of MgCl 2 and 500 ml of decane were added to a 1 liter reactor equipped with a mechanical stirrer under a nitrogen atmosphere, and stirred at 500 rpm. Then, 72 ml of 2-ethylhexanol was added, the temperature was raised to 120 ° C., and reacted for 3 hours. The homogeneous solution obtained after the reaction was cooled to room temperature.

(ⅱ) 단계 : 마그네슘 용액과 인 화합물 및 알콕시 실란화합물의 접촉 반응(Ii) step: catalytic reaction of magnesium solution with phosphorus compound and alkoxy silane compound

상온으로 식힌 마그네슘 용액에 트리에틸포스파이트 7.4 ml와 실리콘테트라에톡사이드 15.0ml를 첨가하여 1시간 동안 반응시켰다.To the magnesium solution cooled to room temperature, 7.4 ml of triethylphosphite and 15.0 ml of silicon tetraethoxide were added and reacted for 1 hour.

(ⅲ) 단계 : 티타늄 화합물, 실리콘 화합물의 혼합 용액 처리(Iii) step: treatment of mixed solution of titanium compound and silicon compound

(ⅱ) 단계에서 제조된 용액을 상온으로 조정하고 테트라클로로티타늄 90ml와 테트라클로로실리콘 90ml 혼합용액을 2시간 동안 적가하였다. 적가가 완료되면 1시간에 걸쳐 반응기의 온도를 80℃로 승온시켜 1시간 동안 유지하였다. 교반을 정지한 후 상층의 용액을 분리한 다음 남은 고체층에 데칸 300ml와 테트라클로로티타늄 100ml를 연속으로 주입하고 온도를 100℃로 상승시킨 뒤 2시간 유지하였다. 반응 후 반응기를 실온으로 냉각하고 헵탄 400 ml를 주입하여 세척하였다.The solution prepared in step (ii) was adjusted to room temperature, and a mixture of 90 ml of tetrachlorotitanium and 90 ml of tetrachlorosilicon was added dropwise for 2 hours. When the dropping was completed, the temperature of the reactor was raised to 80 ° C. over 1 hour and maintained for 1 hour. After the stirring was stopped, the solution of the upper layer was separated, and then 300 ml of decane and 100 ml of tetrachlorotitanium were continuously injected into the remaining solid layer, and the temperature was raised to 100 ° C. and maintained for 2 hours. After the reaction, the reactor was cooled to room temperature and washed by pouring 400 ml of heptane.

(ⅳ) 단계 : 티타늄 화합물과의 반응(Iii) Step: Reaction with Titanium Compound

(ⅲ) 단계에서 제조된 슬러리에 헵탄 150ml와 테트라클로로티타늄 150ml를 차례로 주입하였다. 2시간에 걸쳐서 반응기 온도를 95℃까지 상승시킨 후, 4시간 동안 이 온도를 유지한 후, 상온으로 냉각시켰다. 교반기를 정지시키고, 미반응 유리 테트라클로로티타늄 화합물이 제거될 때까지 헥산 400ml를 주입하여 세척하였다. 제조된 고체 촉매의 티타늄 함량은 5.0%이었다.150 ml of heptane and 150 ml of tetrachlorotitanium were sequentially injected into the slurry prepared in step (iii). The reactor temperature was raised to 95 ° C. over 2 hours, then held at this temperature for 4 hours and then cooled to room temperature. The stirrer was stopped and washed by pouring 400 ml of hexane until the unreacted free tetrachlorotitanium compound was removed. The titanium content of the prepared solid catalyst was 5.0%.

촉매의 전활성화Preactivation of catalyst

슬러리 상태의 촉매가 담겨진 반응기의 온도를 20℃로 조정하고, 1몰 디부틸마그네슘 60ml를 1시간에 걸쳐서 적가하였다. 20℃의 온도를 유지한 채, 5시간 동안 교반시켰다.The temperature of the reactor containing the catalyst in the slurry state was adjusted to 20 ° C., and 60 ml of 1 mol dibutylmagnesium was added dropwise over 1 hour. The mixture was stirred for 5 hours while maintaining the temperature of 20 ° C.

중합polymerization

2리터 용량의 고압 반응기를 오븐에 말린 후 뜨거운 상태로 조립했다. 질소와 진공을 교대로 3회 조작하여 반응기 안을 질소 분위기로 만들었다. 드라이 노말 헥산 1000ml를 반응기에 주입하고, 트리이소부틸알루미늄, 에틸클로라이드0.09mmol을 차례로 주입한 후, 티타늄 원자 기준으로 전활성화된 고체 촉매 0.03mmol을 주입하고, 수소 1000ml를 주입하였다. 교반기를 700rpm으로 고정하여 작동시키고, 반응기의 온도를 80℃로 올리고 에틸렌 압력을 80psi로 조정한 다음 한 시간 동안 중합을 실시하였다. 중합이 끝난 후 반응기의 온도를 상온으로 내리고, 중합 내용물에 과량의 에탄올 용액을 가하여 반응을 종결시켰다. 생성된 중합체는 필터로 걸러서 분리 수집하고, 50℃의 진공 오븐에서 6시간 이상 건조하였다.The 2 liter high pressure reactor was dried in an oven and then assembled hot. Nitrogen and vacuum were operated three times in alternation to bring the reactor into a nitrogen atmosphere. 1000 ml of dry normal hexane were injected into the reactor, triisobutylaluminum and 0.09 mmol of ethyl chloride were sequentially injected, followed by 0.03 mmol of a solid catalyst pre-activated on the basis of titanium atoms and 1000 ml of hydrogen. The stirrer was fixed at 700 rpm to operate, the temperature of the reactor was raised to 80 ° C., the ethylene pressure was adjusted to 80 psi, and polymerization was carried out for one hour. After completion of the polymerization, the temperature of the reactor was lowered to room temperature, and an excess ethanol solution was added to the polymerization contents to terminate the reaction. The resulting polymer was collected by filtration and dried in a vacuum oven at 50 ° C. for at least 6 hours.

중합 활성(kg 폴리에틸렌/밀리몰 Ti)은 사용한 촉매량(밀리몰 Ti)당 생성된 중합체의 무게(g)비로 계산하였다. 중합 결과는 용융지수(g/10분), 분자량 분포(Mw/Mn), 고분자량 테일 발현 정도(Mz/Mw)와 함께 표 1에 나타내었다.Polymerization activity (kg polyethylene / millimoles Ti) was calculated as the weight (g) ratio of polymer produced per catalyst amount used (millimoles Ti). The polymerization results are shown in Table 1 together with the melt index (g / 10 min), molecular weight distribution (Mw / Mn) and high molecular weight tail expression (Mz / Mw).

실시예 2Example 2

실시예 1의 촉매 전활성화 과정 중 디부틸마그네슘 1몰 용액 120ml를 주입하였고, 중합 실험 결과는 표 1에 나타내었다.120 ml of a 1 mol solution of dibutylmagnesium was injected during the catalyst preactivation of Example 1, and the results of the polymerization experiments are shown in Table 1.

실시예 3Example 3

실시예 1의 촉매 전활성화 과정 중 디부틸마그네슘 대신에 디에틸마그네슘 1몰 용액 60ml를 주입하였고, 중합 결과는 표 1에 나타내었다.In the catalyst preactivation process of Example 1, 60 ml of diethylmagnesium 1 mol solution was injected instead of dibutylmagnesium, and the polymerization results are shown in Table 1.

실시예 4Example 4

실시예 1의 촉매 전활성화 과정 중 디부틸마그네슘 대신에 부틸마그네슘클로라이드 1몰 용액 60ml를 주입하였고, 중합 결과는 표 1에 나타내었다.In the catalyst preactivation process of Example 1, 60 ml of a 1 mol solution of butyl magnesium chloride was injected instead of dibutyl magnesium, and the polymerization results are shown in Table 1.

실시예 5Example 5

실시예 1의 중합 조건 중 에틸클로라이드 주입량을 0.27mmol로 변경하여 실시하였고, 그 결과는 표 1에 나타내었다.In the polymerization conditions of Example 1, the ethyl chloride injection amount was changed to 0.27 mmol, and the results are shown in Table 1.

실시예 6Example 6

실시예 1의 중합 조건 중 에틸클로라이드 대신에 클로로포름을 0.09mmol 주입하여 실시하였고, 그 결과는 표 1에 나타내었다.0.09 mmol of chloroform was injected in place of ethyl chloride in the polymerization conditions of Example 1, and the results are shown in Table 1.

실시예 7Example 7

실시예 1의 중합 조건 중 에틸클로라이드 대신에 터셔리부틸클로라이드를 0.09mmol 주입하여 실시하였고, 그 결과는 표 1에 나타내었다.0.09 mmol of tertiary butyl chloride was added instead of ethyl chloride in the polymerization conditions of Example 1, and the results are shown in Table 1.

실시예 8Example 8

실시예 1의 중합 조건 중 에틸클로라이드 대신에 디클로로에탄을 0.09mmol 주입하여 실시하였고, 그 결과는 표 1에 나타내었다.0.09 mmol of dichloroethane was injected instead of ethyl chloride in the polymerization conditions of Example 1, and the results are shown in Table 1.

실시예 9Example 9

실시예 1의 중합 조건 중 에틸클로라이드 대신에 디클로로메탄을 0.09mmol 주입하여 실시하였고, 그 결과는 표 1에 나타내었다.0.09 mmol of dichloromethane was substituted for ethyl chloride in the polymerization conditions of Example 1, and the results are shown in Table 1.

실시예 10Example 10

실시예 1의 중합 조건 중 에틸클로라이드 대신에 페닐클로라이드를 0.09mmol 주입하여 실시하였고, 그 결과는 표 1에 나타내었다.In the polymerization conditions of Example 1, 0.09 mmol of phenyl chloride was injected instead of ethyl chloride, and the results are shown in Table 1.

비교예 1Comparative Example 1

실시예 1의 촉매 전활성화 과정을 생략하여 실시하였다. 제조된 촉매의 티타늄 함량은 5.0%이었다. 중합반응은 실시예 1의 조건에서 에틸클로라이드를 주입하지 않고, 실시하였으며 그 결과는 표 1에 나타내었다.The catalyst preactivation process of Example 1 was omitted. The titanium content of the prepared catalyst was 5.0%. The polymerization was carried out without injecting ethyl chloride under the conditions of Example 1, and the results are shown in Table 1.

비교예 2Comparative Example 2

실시예 1의 촉매 전활성화 과정을 생략하여 실시하였다. 제조된 촉매의 티타늄 함량은 5.0%이었다. 중합반응은 실시예 1의 조건으로 실시하였으며, 그 결과는 표 1에 나타내었다.The catalyst preactivation process of Example 1 was omitted. The titanium content of the prepared catalyst was 5.0%. The polymerization reaction was carried out under the conditions of Example 1, the results are shown in Table 1.

비교예 3Comparative Example 3

실시예 1에서 제조된 촉매를 사용하여 에틸클로라이드를 주입하지 않은 조건으로 중합을 실시하였으며, 그 결과는 표 1에 나타내었다.The polymerization was carried out under the condition that ethyl chloride was not injected using the catalyst prepared in Example 1, and the results are shown in Table 1.

유기 마그네슘Organic magnesium 할로겐화 알칸Halogenated alkanes 활성activation MIMI Mw/MnMw / Mn Mz/MwMz / Mw 종류Kinds 주입량(ml)Injection amount (ml) 종류Kinds 농도(mmol)Concentration (mmol) KgPE/g촉매KgPE / g catalyst g/10ming / 10min 실시예 1Example 1 Bu2MgBu 2 Mg 6060 ECEC 0.090.09 4.874.87 2.892.89 6.76.7 9.19.1 실시예 2Example 2 Bu2MgBu 2 Mg 120120 ECEC 0.090.09 4.254.25 2.232.23 7.07.0 10.410.4 실시예 3Example 3 Et2MgEt 2 Mg 6060 ECEC 0.090.09 4.664.66 3.073.07 7.07.0 8.48.4 실시예 4Example 4 BuMgClBuMgCl 6060 ECEC 0.090.09 4.344.34 2.102.10 7.37.3 8.98.9 실시예 5Example 5 Bu2MgBu 2 Mg 6060 ECEC 0.270.27 4.524.52 2.572.57 6.96.9 9.49.4 실시예 6Example 6 Bu2MgBu 2 Mg 6060 CHCl3 CHCl 3 0.090.09 4.794.79 2.812.81 7.37.3 9.09.0 실시예 7Example 7 Bu2MgBu 2 Mg 6060 t-BuClt-BuCl 0.090.09 4.654.65 2.402.40 7.57.5 8.88.8 실시예 8Example 8 Bu2MgBu 2 Mg 6060 DCEDCE 0.090.09 4.464.46 2.462.46 7.57.5 8.18.1 실시예 9Example 9 Bu2MgBu 2 Mg 6060 DCMDCM 0.090.09 4.424.42 2.442.44 7.47.4 8.48.4 실시예 10Example 10 Bu2MgBu 2 Mg 6060 PCPC 0.090.09 4.184.18 2.162.16 7.77.7 8.18.1 비교예 1Comparative Example 1 -- -- -- -- 4.014.01 3.323.32 6.86.8 4.24.2 비교예 2Comparative Example 2 -- -- ECEC 0.090.09 4.234.23 3.123.12 7.17.1 4.54.5 비교예 3Comparative Example 3 Bu2MgBu 2 Mg 6060 -- -- 3.923.92 2.882.88 7.97.9 5.05.0

*) 유기 마그네슘*) Magnesium Organic

Bu2Mg ; 디부틸마그네슘Bu 2 Mg; Dibutylmagnesium

할로겐화알칸Halogenated alkanes

EC ; 에틸클로라이드EC; Ethyl chloride

CHCl3; 클로로포름CHCl 3 ; chloroform

*t-BuCl ; 터셔리부틸클로라이드* t-BuCl; Tertiary butyl chloride

DCE ; 디클로로에탄DCE; Dichloroethane

DCM ; 디클로로메탄DCM; Dichloromethane

PC ; 페닐클로라이드PC; Phenyl chloride

상기와 같이 본 발명의 에틸렌 중합체 또는 공중합체 제조방법에 따라 촉매의 높은 활성 및 좁은 분자량 분포를 유지한 채, 고분자량 테일이 발현되어 이정의 분자 구조를 가지는 중합체를 얻을 수 있으며, 좁은 분자량 분포와 고분자량 테일이 발현된 분자구조를 가지는 중합체는 높은 기계적 물성을 나타내어 사출 등의 제품에 응용되었을 시에 좋은 제품 특성을 나타낼 수 있다.According to the ethylene polymer or copolymer production method of the present invention as described above, while maintaining the high activity and narrow molecular weight distribution of the catalyst, a high molecular weight tail is expressed to obtain a polymer having a heterogeneous molecular structure. A polymer having a molecular structure in which a high molecular weight tail is expressed may exhibit high mechanical properties and thus exhibit good product characteristics when applied to a product such as injection molding.

Claims (9)

(1) 다음 공정에 의해 제조되는 전활성화된 고체 착물 티타늄 촉매; (ⅰ) 할로겐화 마그네슘 화합물과 알코올을 접촉반응시켜 마그네슘 용액을 제조하고, (ⅱ) 전자공여체로서 인 화합물과, 알콕시기를 갖는 실란 화합물을 반응시킨 다음, (ⅲ) 티타늄 화합물과 실리콘 화합물의 혼합용액을 접촉 반응시켜 고체로 재결정화하여 촉매 전구체를 합성하고, (ⅳ) 촉매전구체를 티타늄 화합물과 다시 반응시켜 고체착물 티타늄 촉매를 제조하고, (v) 고체 착물 티타늄 촉매를 유기 마그네슘 화합물과 반응시켜 전활성화 시킨다; (2) 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물; 및 (3) 중합시에 주입되는 할로겐이 함유된 포화탄화수소의 존재하에서 수행되는 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.(1) a preactivated solid complex titanium catalyst prepared by the following process; (Iii) preparing a magnesium solution by bringing a magnesium halide compound into contact with an alcohol, (ii) reacting a phosphorus compound as an electron donor with a silane compound having an alkoxy group, and then (iii) mixing a mixed solution of a titanium compound and a silicon compound. Catalytic reaction to recrystallize to solid to synthesize a catalyst precursor, (i) the catalyst precursor is reacted with a titanium compound again to produce a solid complex titanium catalyst, (v) a solid complex titanium catalyst is reacted with an organic magnesium compound to preactivate Let; (2) organometallic compounds of Group II or Group III of the periodic table; And (3) a method for producing an ethylene polymer or copolymer, characterized in that it is carried out in the presence of halogen-containing saturated hydrocarbons injected during polymerization. 제 1항에 있어서, 인 화합물은 일반식 PXaR1 b(OR2)c또는 POXdR3 e(OR4)f(X는 할로겐 원자이고, R1, R2, R3, R4는 1∼20개의 탄소원자를 가진 탄화수소류로, 알킬, 알케닐 또는 아릴이며, 각각 같거나 다를 수도 있고, a + b + c = 3 이며, 0 ≤ a ≤ 3, 0 ≤ b ≤3, 0 ≤ c ≤ 3, d + e + f = 3, 0 ≤ d ≤ 3, 0 ≤ e ≤ 3, 0 ≤ f ≤ 3)로 표시되는 화합물이고, 알콕시기를 갖는 실란 화합물은 RnSi(OR)4-n(R은 탄소가 1∼12개인 탄화수소, n은 1∼3의 자연수)로 표시되는 화합물인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The compound of claim 1, wherein the phosphorus compound is of the general formula PX a R 1 b (OR 2 ) c or POX d R 3 e (OR 4 ) f (X is a halogen atom, R 1 , R 2 , R 3 , R 4 Is a hydrocarbon having 1 to 20 carbon atoms, which is alkyl, alkenyl or aryl, each may be the same or different, and a + b + c = 3, and 0 ≤ a ≤ 3, 0 ≤ b ≤ 3, 0 ≤ c ≦ 3, d + e + f = 3, 0 ≦ d ≦ 3, 0 ≦ e ≦ 3, 0 ≦ f ≦ 3) and a silane compound having an alkoxy group is represented by R n Si (OR) 4- n (R is a hydrocarbon having 1 to 12 carbons, n is a natural number of 1 to 3) is a compound represented by the ethylene polymer or copolymer production method. 제 2항에 있어서, 인 화합물은 삼염화인, 삼브롬화인, 디에틸클로로포스파이트, 디페닐클로로포스파이트, 디에틸브로모포스파이트, 디페닐브로모포스파이트, 디메틸클로로포스파이트, 페닐클로로포스파이트, 트리메틸포스파이트, 트리에틸포스파이트, 트리노말부틸포스파이트, 트리옥틸포스파이트, 트리데실포스파이트, 트리페닐포스파이트, 트리에틸포스페이트, 트리노말부틸포스페이트 또는 트리페닐포스페이트이고, 알콕시기를 갖는 실란 화합물은 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란, 메틸페닐메톡시실란, 디페닐디에톡시실란, 에틸트리메톡시실란, 비닐트리메톡시실란, 메틸트리메톡시실란, 페닐트리메톡시실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 비닐트리에톡시실란, 부틸트리에톡시실란, 페닐트리에톡시실란, 에틸트리이소프로폭시실란, 비닐트리부톡시실란, 에틸실리케이트, 부틸실리케이트 또는 메틸트리아릴록시실란인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The phosphorus compound according to claim 2, wherein the phosphorus compound is phosphorus trichloride, phosphorus tribromide, diethylchlorophosphite, diphenylchlorophosphite, diethylbromophosphite, diphenylbromophosphite, dimethylchlorophosphite, phenylchlorophosphite, Trimethyl phosphite, triethyl phosphite, trinormal butyl phosphite, trioctyl phosphite, tridecyl phosphite, triphenyl phosphite, triethyl phosphate, tri- normal butyl phosphate or triphenyl phosphate, the silane compound having an alkoxy group Dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, methylphenylmethoxysilane, diphenyldiethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane , Methyl triethoxy silane, ethyl triethoxy silane, vinyl triethoxy silane, butyl triethoxy silane, phenyl trie Sisilran, ethyl tree-isopropoxy silane, vinyl tri-butoxy silane, ethyl silicate, butyl silicate, or methyl hydroxy triaryl silane ethylene polymer or copolymer, characterized in that method. 제 1항에 있어서, 티타늄 화합물과 실리콘 화합물은 각각 일반식 Ti(OR)aX4-a(R은 탄소원자 1∼10개의 알킬기, X는 할로겐 원자, 그리고 a는 0∼4의 정수)과 RnSiCln-4(R은 수소, 또는 탄소수가 1∼10개인 알킬, 알콕시, 할로알킬, 아릴기 또는 탄소수가 1∼8개인 할로시릴 또는 할로시릴알킬기이며, n은 0∼3의 정수)로 표시되는 화합물인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The method of claim 1, wherein the titanium compound and the silicon compound are each represented by the general formula Ti (OR) a X 4-a (R is an alkyl group of 1 to 10 carbon atoms, X is a halogen atom and a is an integer of 0 to 4). R n SiCl n-4 (R is hydrogen or an alkyl, alkoxy, haloalkyl, aryl group having 1 to 10 carbon atoms or a halosilyl or halosilylalkyl group having 1 to 8 carbon atoms, n is an integer of 0 to 3) Ethylene polymer or copolymer production method, characterized in that the compound represented by. 제 4항에 있어서, 티타늄 화합물은 TiCl4, TiBr4, TiI4와 같은 사할로겐화 티타늄, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC2H5)Br3,Ti(O(i-C4H9))Br3와 같은 삼할로겐화 알콕시티타늄, Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(O(i-C4H9))2Cl2, Ti(OC2H5)2Br2와 같은 이할로겐화 알콕시티타늄 또는 Ti(OCH3)4, Ti(OC2H5)4, Ti(OC4H9)4와 같은 테트라알콕시티타늄 또는 이들의 혼합물이고, 실리콘 화합물은 테트라클로로실리콘, 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클로로실란과 같은 트리클로로실란, 디메틸디클로로실란, 디에틸디클로로실란, 디페닐디클로로실란, 메틸페닐디클로로실란과 같은 디클로로실란 또는 트리메틸클로로실란과 같은 모노클로로실란인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The titanium compound according to claim 4, wherein the titanium compound is TiCl 4 , TiBr 4 , titanium tetrahalide such as TiI 4 , Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Trihalogenated alkoxytitanium such as Ti (O (iC 4 H 9 )) Br 3 , Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (O (iC 4 H 9 )) Dihalogenated alkoxytitanium such as 2 Cl 2 , Ti (OC 2 H 5 ) 2 Br 2 or tetraalkoxytitanium such as Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 4 H 9 ) 4 Or a mixture thereof, and the silicone compound is trichlorosilane, such as tetrachlorosilicone, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane, diphenyldichlorosilane, methylphenyldichlorosilane Ethylene polymer or copolymer production method, characterized in that the dichlorosilane or monochlorosilane, such as trimethylchlorosilane. 제 4항에 있어서, 티타늄 화합물은 테트라클로로티타늄이고, 실리콘 화합물은 테트라클로로실리콘인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The method of claim 4, wherein the titanium compound is tetrachlorotitanium and the silicon compound is tetrachlorosilicon. 제 1항에 있어서, 촉매의 전활성화에 사용되는 유기 마그네슘 화합물은 일반식 RaMgXb(여기서 R은 탄소원자 1∼10개의 알킬, 알케닐, 사이클로알킬, 알키닐기를 가리키고, X는 할로겐이고, a, b는 0∼2의 정수이며, a + b = 2의 관계를 갖는다)으로 표시되는 화합물인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The organic magnesium compound according to claim 1, wherein the organic magnesium compound used for preactivation of the catalyst is represented by the general formula R a MgX b wherein R represents an alkyl, alkenyl, cycloalkyl, alkynyl group having 1 to 10 carbon atoms, and X is halogen , a and b are integers of 0 to 2 and have a relationship of a + b = 2). 제 7항에 있어서, 유기 마그네슘 화합물은 메틸마그네슘클로라이드, 메틸마그네슘브로마이드, 메틸마그네슘아이오다이드, 에틸마그네슘클로라이드, 에틸마그네슘브로마이드, 프로필마그네슘클로라이드, 부틸마그네슘클로라이드, 펜틸마그네슘브로마이드, 헥실마그네슘브로마이드, 옥틸마그네슘클로라이드, 데실마그네슘브로마이드, 도데실마그네슘브로마이드, 이소프로필마그네슘클로라이드, 이소부틸마그네슘클로라이드, 이소부틸마그네슘브로마이드, 터셔리부틸마그네슘클로라이드, 사이클로펜틸마그네슘클로라이드, 사이클로펜틸마그네슘브로마이드, 사이클로헥실마그네슘클로라이드, 디부틸마그네슘, 디에틸마그네슘 또는 디옥틸마그네슘인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The method of claim 7, wherein the organic magnesium compound is methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, ethylmagnesium chloride, ethylmagnesium bromide, propylmagnesium chloride, butylmagnesium chloride, pentylmagnesium bromide, hexylmagnesium bromide, octyl magnesium Chloride, decyl magnesium bromide, dodecyl magnesium bromide, isopropyl magnesium chloride, isobutyl magnesium chloride, isobutyl magnesium bromide, tertiary butyl magnesium chloride, cyclopentyl magnesium chloride, cyclopentyl magnesium bromide, cyclohexyl magnesium chloride , Diethylmagnesium or dioctylmagnesium. 제 1항에 있어서, 중합시에 주입되는 할로겐이 함유된 포화탄화수소는 에틸클로라이드, 클로로포름, 터셔리부틸클로라이드, 테트라클로로메탄, 에틸브로마이드, 터셔리부틸아이오다이드, 노르말부틸브로마이드, 노르말부틸아이오다이드 또는 노르말부틸플루오라이드인 것을 특징으로 하는 에틸렌 중합체 또는 공중합체 제조방법.The halogen-containing saturated hydrocarbon injected during the polymerization of claim 1 is ethyl chloride, chloroform, tertiary butyl chloride, tetrachloromethane, ethyl bromide, tertiary butyl iodide, normal butyl bromide or normal butyl iodide. Ethylene or normal butyl fluoride method of producing an ethylene polymer or copolymer.
KR10-2001-0076519A 2000-12-29 2001-12-05 A method for producing ethylene homo- and c0-polymer KR100476881B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01272946A EP1360212A4 (en) 2000-12-29 2001-12-22 A method for producing ethylene homo- and copolymer
PCT/KR2001/002241 WO2002053607A1 (en) 2000-12-29 2001-12-22 A method for producing ethylene homo- and copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020000085530 2000-12-29
KR20000085530 2000-12-29

Publications (2)

Publication Number Publication Date
KR20020056819A true KR20020056819A (en) 2002-07-10
KR100476881B1 KR100476881B1 (en) 2005-03-18

Family

ID=27688721

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0076519A KR100476881B1 (en) 2000-12-29 2001-12-05 A method for producing ethylene homo- and c0-polymer

Country Status (1)

Country Link
KR (1) KR100476881B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496776B1 (en) * 2001-06-21 2005-06-22 삼성토탈 주식회사 Catalyst for polymerization and copolymerization of ethylene
WO2005087820A1 (en) * 2004-03-11 2005-09-22 Sk Corporation Method for preparing ethylene polymerization catalysts
KR100530795B1 (en) * 2001-12-26 2005-11-23 삼성토탈 주식회사 A method for ethylene homo- and copolymerization
KR100953948B1 (en) * 2007-12-24 2010-04-21 호남석유화학 주식회사 Preparation process of olefin polymeryzation catalyst and olefin polymeryzation catalyst prepared therefrom
CN101775086B (en) * 2009-01-09 2012-05-23 中国石油天然气股份有限公司 Preparation method of ethylene homopolymerization and copolymerization
CN113929798A (en) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 Solid catalyst component and catalyst system for olefin polymerization
CN113929797A (en) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 Solid catalyst component and catalyst system for producing polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365668B2 (en) * 1994-03-02 2003-01-14 三井化学株式会社 Ethylene polymer, solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst containing the catalyst component, and method for producing ethylene polymer using the catalyst
CN1098866C (en) * 1998-01-14 2003-01-15 中国石油化工集团公司 Gas-phase method total density polyvinyl high-efficiency catalyst
KR100430848B1 (en) * 1998-07-27 2004-08-30 삼성아토피나주식회사 Improved Olefin Polymerization and Copolymerization Catalysts

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496776B1 (en) * 2001-06-21 2005-06-22 삼성토탈 주식회사 Catalyst for polymerization and copolymerization of ethylene
KR100530795B1 (en) * 2001-12-26 2005-11-23 삼성토탈 주식회사 A method for ethylene homo- and copolymerization
WO2005087820A1 (en) * 2004-03-11 2005-09-22 Sk Corporation Method for preparing ethylene polymerization catalysts
KR100953948B1 (en) * 2007-12-24 2010-04-21 호남석유화학 주식회사 Preparation process of olefin polymeryzation catalyst and olefin polymeryzation catalyst prepared therefrom
CN101775086B (en) * 2009-01-09 2012-05-23 中国石油天然气股份有限公司 Preparation method of ethylene homopolymerization and copolymerization
CN113929798A (en) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 Solid catalyst component and catalyst system for olefin polymerization
CN113929797A (en) * 2020-06-29 2022-01-14 中国石油化工股份有限公司 Solid catalyst component and catalyst system for producing polymers
CN113929797B (en) * 2020-06-29 2023-07-21 中国石油化工股份有限公司 Solid catalyst component and catalyst system for producing polymers
CN113929798B (en) * 2020-06-29 2023-07-21 中国石油化工股份有限公司 Solid catalyst component and catalyst system for olefin polymerization

Also Published As

Publication number Publication date
KR100476881B1 (en) 2005-03-18

Similar Documents

Publication Publication Date Title
KR20010097493A (en) Catalyst for preparation of ultra high molecular weight polyethylene and preparation method of ultra high molecular weight polyethylene using the same
KR20020036484A (en) Preparation method of catalyst for ethylene polymeration or copolymeration
KR100353960B1 (en) A method for producing ethylene homo- and co-polymer
KR100361224B1 (en) Method for preparing catalyst for ethylene homo- and co-polymerization
KR100389475B1 (en) Preparation method of catalyst for ethylene polymeration or copolymeration
JP3817548B2 (en) Catalyst for ethylene polymerization and copolymerization
KR100389476B1 (en) A method for producing ethylene homo- and co-polymer
KR100476881B1 (en) A method for producing ethylene homo- and c0-polymer
KR100389477B1 (en) A method for producing ethylene homo- and co-polymer
KR100424011B1 (en) A method for producing ethylene homo- and c0-polymer
KR100361225B1 (en) Process for preparing a catalyst for ethylene homo- and co-polymerization
JP3676343B2 (en) Catalyst for ethylene copolymerization
KR100816951B1 (en) A method for ethylene polymerization and co-polymerization
EP1360212A1 (en) A method for producing ethylene homo- and copolymer
KR100435980B1 (en) Olefin polymerization and copolymerization method using solid complex titanium catalyst for producing polymer having high apparent density
KR100715266B1 (en) Ethylene polymerization and copolymerization method
KR20090092023A (en) A preparation method of catalyst for ethylene (co)polymerization
KR100827539B1 (en) A method for producing a solid vanadium titanium catalyst for ehtylene homo- and copolymerization
KR100715265B1 (en) Ethylene polymerization and copolymerization method
KR100787659B1 (en) A method for ethylene polymerization and co-polymerization
KR100743912B1 (en) A catalyst for ethylene homo- and co-polymerization
KR20090087632A (en) A catalyst and a preparation method for ethylene polymer or copolymer using the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100104

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee