KR20020054535A - Method for preparing nickel composite hydroxide - Google Patents

Method for preparing nickel composite hydroxide Download PDF

Info

Publication number
KR20020054535A
KR20020054535A KR1020000083656A KR20000083656A KR20020054535A KR 20020054535 A KR20020054535 A KR 20020054535A KR 1020000083656 A KR1020000083656 A KR 1020000083656A KR 20000083656 A KR20000083656 A KR 20000083656A KR 20020054535 A KR20020054535 A KR 20020054535A
Authority
KR
South Korea
Prior art keywords
composite hydroxide
nickel
solution
metal salt
particle size
Prior art date
Application number
KR1020000083656A
Other languages
Korean (ko)
Inventor
양호석
김종섭
이영기
Original Assignee
안복현
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안복현, 제일모직주식회사 filed Critical 안복현
Priority to KR1020000083656A priority Critical patent/KR20020054535A/en
Publication of KR20020054535A publication Critical patent/KR20020054535A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A preparation method of compound nickel hydroxide with homogeneous particle distribution is provided for use as precursors of cathode materials for lithium secondary batteries by growing particles in a reactor. CONSTITUTION: The compound nickel hydroxide is prepared by the following steps of; pouring ammonia water(28wt.%) into water in a reactor; adding 1.5-2.75M of metal salt solution such as sulfates and nitrates having a Ni/Co molar ratio of 9:1, and ammonia water to be 0.5-1.5of a molar ratio of ammonia and metal salt; reacting under the condition of 30-50deg.C and pH 11.0-11.99. The resultant Ni-Co hydroxide has a spherical shape and narrow particle distribution ranging from 5-25micrometer.

Description

니켈복합 수산화물의 제조방법 {Method for preparing nickel composite hydroxide}Method for preparing nickel composite hydroxide {Method for preparing nickel composite hydroxide}

본 발명은 니켈복합 수산화물의 제조방법에 관한 것으로, 보다 상세하게는 리튬이차전지용 양극활물질의 전구체로 사용되는 입도분포가 매우 균일한 니켈복합 수산화물 제조 방법에 관한 것이다.The present invention relates to a method for producing a nickel composite hydroxide, and more particularly to a method for producing a nickel composite hydroxide having a very uniform particle size distribution used as a precursor of a cathode active material for a lithium secondary battery.

리튬이차전지용 양극활물질의 전구체인 니켈복합 수산화물을 제조하는 방법으로 공침법이 가장 잘 알려져 있다. 예를 들면 일본특허 90-6340에서 보고되었듯이 니켈염, 알칼리금속 수산화물, 암모니아수용액을 연속적으로 적가함과 동시에생성된 입자를 반응기로부터 오버플로우시켜 입자를 수집하는 연속식 방법이 가장 보편적인 방법이다. 이와 유사한 방법으로 니켈코발트 함유 수산화물 제조에 관련하여 일본특허 99-246225, 93-41212, 99-130440, 99-224668 등이 있으며, 니켈망간함유 수산화물 제조 관련 해서는 일본특허 99-312519, 95-335214, 96-225328, 99-312519, 96-225328 등이 있다. 그러나 반응기로부터 오버플로우시켜 연속적으로 제조하는 방법은 모든 입자의 체류시간을 제어할 수 없기 때문에 입도분포가 매우 넓어 일반적으로 1-50 마이크론의 입도분포를 나타낸다. 개선된 방법으로 일본특허 95-165428호에서는 여과장치를 장착한 반응기를 이용하여 반응액이 일정량에 도달하면 오버플로우하지 않고 여과장치를 이용하여 반응액만을 제거한 후 다시 출발물질을 공급하는 방법을 반복함으로서 니켈수산화물을 제조하였으나 여과시마다 반응액을 제거함에 따라 분말 농도가 증가하고 따라서 입도 분포도 3-50마이크론 정도로 넓어서 연속식 제조법과 큰 차이를 보이지 않고 있다. 그러나 실제 전지업체에서 사용되는 양극활물질의 입도 분포는 매우 좁으며 평균입도 10 마이크론 또는 그 이하이다. 따라서 경제성 있는 제조법이 되기 위해서는 좁은 입도분포와 평균입도 10마이크론 이하의 니켈복합 수산화물을 제공할 수 있는 제조법의 개발이 필요하다.Coprecipitation method is best known as a method of preparing a nickel composite hydroxide which is a precursor of a cathode active material for a lithium secondary battery. For example, as reported in Japanese Patent No. 90-6340, a continuous method of continuously dropping nickel salt, alkali metal hydroxide and aqueous ammonia solution and simultaneously collecting particles by overflowing the generated particles from the reactor is the most common method. . Similarly, Japanese Patents 99-246225, 93-41212, 99-130440, 99-224668, etc., for the manufacture of nickel cobalt-containing hydroxides, and Japanese Patents 99-312519, 95-335214, 96-225328, 99-312519, 96-225328 and the like. However, the method of continuously producing by overflowing from the reactor cannot control the residence time of all particles, so that the particle size distribution is very wide and generally shows a particle size distribution of 1-50 microns. As an improved method, Japanese Patent No. 95-165428 uses a reactor equipped with a filtration device and repeats the method of removing starting solution only by using a filtration device and then supplying starting materials again without overflow when the reaction solution reaches a predetermined amount. The nickel hydroxide was prepared, but the powder concentration increased as the reaction solution was removed every time the filtration, and thus the particle size distribution was wide as about 3-50 microns. However, the particle size distribution of cathode active materials used in battery companies is very narrow, with an average particle size of 10 microns or less. Therefore, to be an economical manufacturing method, it is necessary to develop a manufacturing method capable of providing a nickel composite hydroxide having a narrow particle size distribution and an average particle size of 10 microns or less.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 반응액의 여과없이 반응기내의 분말 농도를 일정하게 유지시키면서 입자를 성장시킴으로서 좁은 입도 분포를 갖는 니켈 함유 수산화물을 제조할 수 있는 방법을 제공함을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, to provide a method for producing a nickel-containing hydroxide having a narrow particle size distribution by growing the particles while maintaining a constant powder concentration in the reactor without filtration of the reaction solution. For the purpose.

즉, 본 발명은 증류수가 담긴 반응기 안에 암모니아 수용액을 투입한 후, 농도가 1.5∼2.75M인 금속염 용액을 일정속도로 주입하면서, 더불어 암모니아 수용액을 암모니아와 금속염의 몰비가 0.5∼1.5가 되도록 일정속도로 주입하고, 반응온도를 30∼50℃, pH를 11.0∼1.99로 조절하여 반응을 진행시켜 입자를 생성시키는 과정을 포함하는 니켈복합 수산화물의 제조방법에 관한 것이다.That is, according to the present invention, the aqueous ammonia solution is introduced into a reactor containing distilled water, and then a metal salt solution having a concentration of 1.5 to 2.75 M is injected at a constant speed, and the aqueous ammonia solution is fixed at a constant speed such that the molar ratio of ammonia and metal salt is 0.5 to 1.5. The present invention relates to a method for preparing a nickel composite hydroxide, including the step of injecting the mixture into a mixture, and controlling the reaction temperature to 30 to 50 ° C. and the pH to 11.0 to 1.99 to advance the reaction.

도 1은 실시예 1에서 제조된 니켈복합 수산화물의 전자현미경사진,1 is an electron micrograph of the nickel composite hydroxide prepared in Example 1,

도 2은 실시예 1에서 제조된 니켈복합 수산화물의 전자현미경사진,2 is an electron micrograph of the nickel composite hydroxide prepared in Example 1,

도 3은 실시예 1에서 제조된 니켈복합 수산화물의 전자현미경사진,3 is an electron micrograph of the nickel composite hydroxide prepared in Example 1,

도 4은 실시예 1에서 제조된 니켈복합 수산화물의 전자현미경사진, 및4 is an electron micrograph of the nickel composite hydroxide prepared in Example 1, and

도 5은 비교예 1에서 제조된 니켈복합 수산화물의 전자현미경사진이다.5 is an electron micrograph of the nickel composite hydroxide prepared in Comparative Example 1.

이하에서 본 발명을 보다 상세하게 설명하면 하기와 같다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 니켈복합 수산화물에 포함되는 금속의 출발물질로서 설페이트나 나이트레이트염 등을 사용하였다. 이 금속염은 물에 일정농도로 첨가되어 수용액 상태로 반응기에 투입된다.In the present invention, sulfate, nitrate salt, and the like were used as starting materials of the metal contained in the nickel composite hydroxide. This metal salt is added to the water at a constant concentration and introduced into the reactor in an aqueous solution.

본 발명에서는 우선 40∼50℃로 유지된 반응기에 증류수와 초기 입자의 성장을 돕기 위한 암모니아 수용액을 일정량 투입한 후, 금속염 용액과 암모니아 수용액를 일정시간 연속식으로 주입하면서, 반응 온도 및 반응 pH를 일정하게 조절하여 니켈복합 수산화물을 생성시킨다. 본 반응에서는 반응액의 오버플로우나 여과 과정이 없으므로 반응액 속의 분말농도가 거의 일정하고 계속 주입되는 금속염에 의해 입자가 매우 균일하게 성장하는 장점이 있다.In the present invention, first, a predetermined amount of ammonia solution for assisting the growth of distilled water and initial particles is introduced into a reactor maintained at 40 to 50 ° C, and then a metal salt solution and an aqueous ammonia solution are continuously injected for a predetermined time, and the reaction temperature and the reaction pH are constant. To produce a nickel complex hydroxide. In this reaction, since there is no overflow or filtration of the reaction solution, the powder concentration in the reaction solution is almost constant, and the particles grow very uniformly by the metal salt continuously injected.

pH 유지는 수산화나트륨 용액을 필요시 적가함에 의하여 달성하였다. 더욱바람직하게는 pH전극과 수산화나트륨 용액 주입펌프를 연결하여 자동적으로 pH를 유지하도록 하는 것이 좋다. 반응 pH는 11.0∼11.99, 보다 바람직하게는 11.5∼11.6으로 하고, 반응 온도는 30∼50℃, 보다 바람직하게는 40∼45℃로 조절하는 것이 좋다. 상기 투입되는 금속염 용액의 전체 금속농도는 1.5∼2.75몰, 보다 바람직하게는 1.75∼2.5몰로 하고, 투입되는 암모니아 수용액 중의 암모니아와 금속의 몰비는 0.5∼1.5, 보다 바람직하게는 0.7∼1.2로 조절하는 것이 좋다. 또한 상기 암모니아 수용액의 농도는 25∼30 중량%로 하는 것이 좋다.pH maintenance was achieved by dropwise addition of sodium hydroxide solution. More preferably, the pH electrode and the sodium hydroxide solution injection pump is connected to maintain the pH automatically. Reaction pH is 11.0-11.99, More preferably, it is 11.5-11.6, It is good to adjust reaction temperature to 30-50 degreeC, More preferably, it is 40-45 degreeC. The total metal concentration of the metal salt solution to be added is 1.5 to 2.75 mol, more preferably 1.75 to 2.5 mol, and the molar ratio of ammonia and metal in the aqueous ammonia solution to be added is adjusted to 0.5 to 1.5, more preferably 0.7 to 1.2. It is good. In addition, the concentration of the aqueous ammonia solution is preferably 25 to 30% by weight.

이렇게 제조된 니켈코발트수산화물은 5∼25 마이크론의 입도분포를 나타내며 탭 밀도도 2.0g/cc 이상을 나타낸다.The nickel cobalt hydroxide thus prepared has a particle size distribution of 5 to 25 microns and a tap density of 2.0 g / cc or more.

다음은 구체적인 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 설명을 목적으로 하는 것으로 본 발명을 제한하기 위한 것이 아니다.The following is intended to describe the present invention in more detail through specific examples, but the following examples are for the purpose of explanation and are not intended to limit the invention.

실시예 1Example 1

45℃로 유지된 항온조에 들어있는 4L 반응기에 증류수 1L를 넣고 28 중량% NH4OH 수용액을 300㎖ 를 가하였다. 그런 다음 니켈과 코발트의 몰비가 9:1인 1.75M 금속염 용액을 정량펌프를 이용하여 일정 속도로 주입하였다. 이때 28 중량% 암모니아수용액도 암모니아와 금속의 몰비가 1.2 가 되도록 일정하게 주입하였다. pH전극과 6M 수산화나트륨 용액 주입 펌프를 연결하여 반응 pH를 11.55로 유지하였다. 7시간 후에 반응을 멈추고 생성된 입자는 여과액의 pH가 6.5가 될 때까지 물로 반복하여 여과, 세척하였다. 세척된 입자를 110℃ 오븐에서 20시간 이상 건조하여 3∼25 마이크론 입도 분포, 평균입도 7.5 마이크론을 갖는 구형의 니켈코발트복합수산화물을 얻었다. 이때 탭 밀도는 2.0g/cc 이었으며 15 마이크론 이하가 95 중량% 였다. 이 니켈코발트복합 수산화물의 전자현미경사진을 도 1에 나타내었다.1 L of distilled water was added to a 4 L reactor in a thermostat maintained at 45 ° C., and 300 ml of an aqueous 28 wt% NH 4 OH solution was added thereto. Then, a 1.75M metal salt solution having a molar ratio of nickel and cobalt of 9: 1 was injected at a constant rate using a metering pump. At this time, the aqueous solution of 28% by weight of ammonia was constantly injected such that the molar ratio of ammonia and metal was 1.2. The reaction pH was maintained at 11.55 by connecting a pH electrode and a 6M sodium hydroxide solution injection pump. After 7 hours, the reaction was stopped and the resulting particles were repeatedly filtered and washed with water until the pH of the filtrate reached 6.5. The washed particles were dried in an oven at 110 ° C. for at least 20 hours to obtain spherical nickel cobalt composite hydroxide having a 3-25 micron particle size distribution and an average particle size of 7.5 microns. At this time, the tap density was 2.0 g / cc and 95 wt% or less of 15 microns. The electron micrograph of this nickel cobalt composite hydroxide is shown in FIG.

실시예 2Example 2

니켈과 코발트의 몰비가 9:1인 2.0M 금속염 용액을 사용하여 실시예 1과 동일한 방법으로 실시하였다. 이렇게 제조된 니켈코발트복합수산화물은 입도분포 5∼25 마이크론, 평균입도 8.5 마이크론을 갖는 구형의 분말이었다. 이때 탭밀도는 2.05g/cc이었으며, 15 마이크론이하가 95 중량%였다. 이 니켈코발트복합 수산화물의 전자현미경사진을 도 2에 나타내었다.It carried out in the same manner as in Example 1 using a 2.0M metal salt solution having a molar ratio of nickel and cobalt of 9: 1. The nickel cobalt composite hydroxide thus prepared was a spherical powder having a particle size distribution of 5 to 25 microns and an average particle size of 8.5 microns. At this time, the tap density was 2.05 g / cc, and less than 15 microns was 95% by weight. The electron micrograph of this nickel cobalt composite hydroxide is shown in FIG.

실시예 3Example 3

니켈과 코발트의 몰비가 9:1 인 2.5M 금속염 용액을 사용하여 실시예 1과 동일한 방법으로 실시하였다. 이렇게 제조된 니켈코발트복합 수산화물은 입도분포 5∼25 마이크론, 평균입도 8.9 마이크론을 갖는 구형의 분말이었다. 이때 탭밀도는 2.05g/cc이었으며, 15마이크론 이하가 93 중량%였다. 이 니켈코발트복합 수산화물의 전자현미경사진을 도 3에 나타내었다.It was carried out in the same manner as in Example 1 using a 2.5M metal salt solution having a molar ratio of nickel and cobalt of 9: 1. The nickel cobalt composite hydroxide thus prepared was a spherical powder having a particle size distribution of 5 to 25 microns and an average particle size of 8.9 microns. At this time, the tap density was 2.05 g / cc, and the weight of 15 microns or less was 93% by weight. The electron micrograph of this nickel cobalt composite hydroxide is shown in FIG.

비교예 1Comparative Example 1

니켈과 코발트의 몰비가 9:1 인 3.0M 금속염 용액을 사용하여 실시예 1과 동일한 방법으로 실시하였다. 이렇게 제조된 니켈코발트복합 수산화물은 입도분포 5∼25 마이크론, 평균입도 9.0 마이크론을 갖는 분말이었다. 이때 탭밀도는 2.05g/cc이었으며 15 마이크론 이하가 93 중량%였다. 그러나 형상은 유사구형이었으며 표면도 매끄럽지 않았다. 이 니켈코발트복합 수산화물의 전자현미경사진을 도 4에 나타내었다.It carried out in the same manner as in Example 1 using a 3.0M metal salt solution having a molar ratio of nickel and cobalt of 9: 1. The nickel cobalt composite hydroxide thus prepared was a powder having a particle size distribution of 5 to 25 microns and an average particle size of 9.0 microns. At this time, the tap density was 2.05 g / cc and 93 wt% was 15 microns or less. However, the shape was pseudo-spherical and the surface was not smooth. The electron micrograph of this nickel cobalt composite hydroxide is shown in FIG.

비교예 2Comparative Example 2

45℃로 유지된 항온조에 들어있는 4L 반응기에 증류수 3.5L를 넣고 28중량% NH4OH 수용액을 300㎖를 가하였다. 그런 다음 니켈과 코발트의 몰비가 9:1인 2.5M 금속염 용액을 정량펌프를 이용하여 입자체류시간이 6시간이 되도록 일정 속도로 주입하였다. 이때 28중량% 암모니아수용액도 암모니아와 금속의 몰비가 1.2가 되도록 일정하게 주입하였다. 또한 pH 전극과 6M 수산화나트륨 용액 주입 펌프를 연결하여 반응 pH가 11.55로 유지되도록 하였다. 생성된 입자는 반응기로부터 오버플로우시켜 수집하였다. 이 반응을 2일간 진행시킨 후 중단하였다. 이렇게 제조된 분말을 여과액의 pH가 6.5가 될때까지 반복하여 물로 세척, 여과하였다. 세척된 입자를 110℃ 오븐에서 20시간이상 건조하였다. 이렇게 제조된 니켈코발트복합수산화물은3∼50 마이크론 입도 분포, 평균입도 18 마이크론을 갖는 구형의 분말이었다. 이때 20 탭 밀도는 2.1g/cc이었으며, 20마이크론 이하가 85% 였다. 이 니켈코발트복합 수산화물의 전자현미경사진을 도 5에 나타내었다.3.5L of distilled water was added to a 4L reactor in a thermostat maintained at 45 ° C, and 300ml of an aqueous 28% by weight NH 4 OH solution was added thereto. Then, a 2.5M metal salt solution having a molar ratio of nickel and cobalt of 9: 1 was injected at a constant rate so that the particle retention time was 6 hours using a metering pump. At this time, the aqueous solution of 28% by weight ammonia was also constantly injected so that the molar ratio of ammonia and metal was 1.2. In addition, a pH electrode and a 6M sodium hydroxide solution injection pump were connected to maintain the reaction pH at 11.55. The resulting particles were collected by overflowing from the reactor. The reaction was allowed to proceed for 2 days and then stopped. The powder thus prepared was repeatedly washed with water until the pH of the filtrate was 6.5 and filtered. The washed particles were dried at 110 ° C. oven for at least 20 hours. The nickel cobalt composite hydroxide thus prepared was a spherical powder having a particle size distribution of 3 to 50 microns and an average particle size of 18 microns. At this time, the 20-tap density was 2.1 g / cc, and 85% or less was 20 microns or less. The electron micrograph of this nickel cobalt composite hydroxide is shown in FIG.

상기와 같이 본 발명에 의해 기존보다 입도분포가 매우 좁은 니켈복합 수산화물을 제조할 수 있다.As described above, the nickel composite hydroxide having a narrower particle size distribution than the conventional one can be prepared.

Claims (2)

증류수가 담긴 반응기 안에 암모니아 수용액을 투입한 후, 농도가 1.5∼2.75M인 금속염 용액을 일정속도로 주입하면서, 더불어 암모니아 수용액을 암모니아와 금속염의 몰비가 0.5∼1.5가 되도록 일정속도로 주입하고, 반응온도를 30∼50℃, pH를 11.0∼1.99로 조절하여 반응을 진행시켜 입자를 생성시키는 과정을 포함하는 니켈복합 수산화물의 제조방법.After the aqueous ammonia solution was introduced into the reactor containing distilled water, a metal salt solution having a concentration of 1.5 to 2.75 M was injected at a constant speed, and the aqueous ammonia solution was injected at a constant speed so that the molar ratio of ammonia and metal salt was 0.5 to 1.5. A method for producing a nickel composite hydroxide, comprising the step of adjusting the temperature to 30 to 50 ° C. and the pH to 11.0 to 1.99 to advance the reaction to generate particles. 제 1항에 있어서, 상기 암모니아 수용액의 농도가 28 중량%인 것을 특징으로 하는 니켈복합 수산화물의 제조방법.The method of claim 1, wherein the concentration of the aqueous ammonia solution is 28% by weight.
KR1020000083656A 2000-12-28 2000-12-28 Method for preparing nickel composite hydroxide KR20020054535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000083656A KR20020054535A (en) 2000-12-28 2000-12-28 Method for preparing nickel composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000083656A KR20020054535A (en) 2000-12-28 2000-12-28 Method for preparing nickel composite hydroxide

Publications (1)

Publication Number Publication Date
KR20020054535A true KR20020054535A (en) 2002-07-08

Family

ID=27687262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000083656A KR20020054535A (en) 2000-12-28 2000-12-28 Method for preparing nickel composite hydroxide

Country Status (1)

Country Link
KR (1) KR20020054535A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191855A (en) * 1992-12-28 1994-07-12 Kishida Kagaku Kk Production of nickel hydroxide
JPH09283135A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Device and method for manufacturing nickel hydroxide powder
KR0148827B1 (en) * 1994-05-20 1998-10-15 전성원 Method for manufacturing high density nickel hydroxide for alkali rechargeable batteries
JPH11130411A (en) * 1997-10-30 1999-05-18 Toshiba Ceramics Co Ltd Production of aluminum nitride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191855A (en) * 1992-12-28 1994-07-12 Kishida Kagaku Kk Production of nickel hydroxide
KR0148827B1 (en) * 1994-05-20 1998-10-15 전성원 Method for manufacturing high density nickel hydroxide for alkali rechargeable batteries
JPH09283135A (en) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd Device and method for manufacturing nickel hydroxide powder
JPH11130411A (en) * 1997-10-30 1999-05-18 Toshiba Ceramics Co Ltd Production of aluminum nitride

Similar Documents

Publication Publication Date Title
CN101897061B (en) Cathode material precursors doped homogeneously with nanoparticle core
CN101355159B (en) Method for preparing lithium ion battery anode material nickle cobalt lithium manganate
KR101206112B1 (en) Mixed metal hydroxides and their preparation and use
CN110364714A (en) The method for preparing nickel-cobalt-manganese ternary material precursor
JP3884796B2 (en) Method for producing Ni-Co composite hydroxide
CN109962234A (en) Monocrystalline positive electrode of concentration gradient and preparation method thereof
CN109081384A (en) Compound complex agent and the method for preparing lithium ion power battery cathode persursor material
CN108428888A (en) A kind of closely knit nickel cobalt aluminium ternary material of spherical surface, its presoma and its preparation method and application
CN107565124B (en) Nickel cobalt lithium manganate precursor and preparation method thereof
DE60122704T2 (en) PREPARATION OF IMOODIACETIC ACID DERIVATIVES FROM MONOETHANOLAMINE SUBSTRATES
JPH1081521A (en) Nickel-manganese-based double hydroxide, its production and raw material for anode active material for lithium secondary cell
CN115490273B (en) Method for continuously preparing ternary precursor with large specific surface and prepared precursor
CN108862406A (en) A kind of carbonate precursor and its preparation method and application
FI104248B (en) Process for the preparation of nickel hydroxide
KR20020054535A (en) Method for preparing nickel composite hydroxide
CN103288145B (en) Method for preparing spherical alpha-nickel hydroxide
US5840269A (en) Method of preparing a double layered nickel hydroxide active material
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JP3656353B2 (en) Method for producing positive electrode active material for alkaline storage battery
KR19990015234A (en) Manufacturing method of high density nickel hydroxide active material
CN113184823B (en) Method for preparing cobalt nickel phosphate microsphere material
KR20160083617A (en) Reactor, methods for preparing precursors of cathode active materials for lithium ion secondary batteries by using the same, precursors prepared by the same, cathode active materials
CN1078566C (en) Method and apparatus for making spherical nickel hydroxide with surface defect
KR20190021070A (en) Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal using sol-gel synthesizing process of the heterogeneous metal
JP7506161B2 (en) A method for preparing high-nickel ternary precursors with preferential growth of crystal faces regulated and controlled by the amount of added seed crystals

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application