KR20020023244A - GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION - Google Patents

GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION Download PDF

Info

Publication number
KR20020023244A
KR20020023244A KR1020020000140A KR20020000140A KR20020023244A KR 20020023244 A KR20020023244 A KR 20020023244A KR 1020020000140 A KR1020020000140 A KR 1020020000140A KR 20020000140 A KR20020000140 A KR 20020000140A KR 20020023244 A KR20020023244 A KR 20020023244A
Authority
KR
South Korea
Prior art keywords
thin film
sicfo
dielectric constant
low dielectric
vapor deposition
Prior art date
Application number
KR1020020000140A
Other languages
Korean (ko)
Inventor
김태희
한윤봉
Original Assignee
한윤봉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한윤봉 filed Critical 한윤봉
Priority to KR1020020000140A priority Critical patent/KR20020023244A/en
Publication of KR20020023244A publication Critical patent/KR20020023244A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A low dielectric SiCFO thin film growth using a plasma-enhanced chemical vapor deposition(PECVD) method is provided to be used as an interlayer dielectric of a metal interconnection, by growing the SiCFO thin film at a low temperature such that the SiCFO thin film has a low dielectric constant and thermal stability. CONSTITUTION: A Si-C-F-O based dielectric thin film having a low dielectric constant(k is from 1.2 to 2.2) is fabricated by a PECVD method. Gas or liquid containing SiCH4, (CH3)3SiC-CSi(CH3)3, £(CH3)3Si|sCH2, £(CH3)3Si|2S, (CH3)3CSi(CH3)2Cl, (CH3)2SiCl2, (CH3)2Si(OC2H5)2, £(CH3)2Si-|n, C2H5SiCl3, (CH3)3SiSi(CH3)3, (CH3)3SiCl, (CH3)3SiOC2H5, (CH3)3SiH, (CH3)3SiCCH, (C5H5)Si(CH3)3, SiF4, COF2, ClF3, C(CF3)2C, CH3F, (CF3)2CO, C2F3N, CF4, NF3, NH3, O2 and O3 is used as a raw material.

Description

플라즈마 화학기상증착법을 이용한 저 유전체 SiCFO 박막 성장{GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION}GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION}

반도체 공정기술의 발달로 반도체칩의 고집적화와 고속화의 추세가 급속하게 진행됨에 따라 배선 구조의 기하학적인 크기의 감소는 층간유전체(interlayer dielectrics)의 기생 축전용량(parasitic capacitance)을 증가시키는 결과를 초래하였다. 소자의 최소 선폭(minimum feature size)이 0.18 ㎛ 이하로 축소하게 됨에 따라 그 동안 사용되던 SiO2산화막으로는 RC 지연을 억제하는 데 한계를 보이게 되었다. 이와 같은 이유로 SiO2보다 유전율이 작은 새로운 층간 유전체 재료를 도입해야 하는 필요성이 대두되었고 현재까지 새로운 물질의 개발을 위해 연구활동이 활발하게 이루어지고 있다.As semiconductor process technology has advanced and the trend of high integration and high speed of semiconductor chips is rapidly progressing, the reduction in the geometrical size of the interconnect structure has resulted in the increase of parasitic capacitance of interlayer dielectrics. . As the minimum feature size of the device is reduced to 0.18 µm or less, the SiO 2 oxide film used in the past has a limit in suppressing the RC delay. For this reason, there is a need to introduce a new interlayer dielectric material having a lower dielectric constant than SiO 2 , and research activities have been actively conducted to develop new materials.

차세대 반도체 소자용 금속 배선의 층간물질로 이용되기 위해서는 저유전체 재료는 현재 사용되고 있는 SiO2(k=3.9∼4.2)보다 유전상수가 작으면서 SiO2와 거의 동일한 열적 안정성을 가져야 한다. 유기 고분자는 무기물질에 비해 일반적으로 유전상수가 낮다는 이유로 새로운 유전체 재료로 각광을 받고 있으나, Si 기판과의 접합성이 좋지 못하고 열적 안정성이 좋지 못하고 단분자에서 고분자로 중합되는 동안 전형적으로 탈수 반응(dyhydration reaction)을 동반하기 때문에 수분 생성을 피할 수 없어 실제 반도체 소자 제조 공정에 적용하는데 어려움을 겪고 있다.In order to be used as an interlayer material for next-generation semiconductor devices, low-dielectric materials must have a thermal stability that is almost the same as that of SiO 2 while having a dielectric constant smaller than that of SiO 2 (k = 3.9 to 4.2). Organic polymers are attracting attention as new dielectric materials because they have a lower dielectric constant than inorganic materials. However, dehydration reactions are typically performed during polymerization from monomolecules to polymers with poor adhesion to Si substrates and poor thermal stability. Since it is accompanied by a dyhydration reaction, water generation cannot be avoided, and thus, it is difficult to apply to the actual semiconductor device manufacturing process.

본 발명은 플라즈마 화학증착법(PECVD)을 사용하여 수분 생성문제를 제거하고, 분극율이 Si-O보다 낮은 것으로 알려진 Si-F, C-F 결합으로 형성된 박막을 제조함과 동시에 열적으로 안정한 C-C 결합구조를 갖는 유전상수율이 작은(k = 1.3 - 2.2) SiCFO 박막을 성장하는 것이다.The present invention eliminates the problem of water generation by using plasma chemical vapor deposition (PECVD), and produces a thermally stable CC bond structure while producing a thin film formed of Si-F, CF bonds known to have a lower polarization rate than Si-O. To grow a SiCFO thin film having a low dielectric constant (k = 1.3-2.2).

[도 1]은 본 발명에 의해 p-type Si(100) 기판위에 성장한 SiCFO 박막의 구조를 나타내는 전자현미경(SEM) 사진.1 is an electron microscope (SEM) photograph showing the structure of a SiCFO thin film grown on a p-type Si (100) substrate by the present invention.

[도 2]은 실리콘 기판위에 SiCFO 저유전체 박막을 성장시키는데 사용한 PECVD 장치의 개략도.2 is a schematic diagram of a PECVD apparatus used to grow a SiCFO low dielectric thin film on a silicon substrate.

[도 3]은 RF 전력 변화에 따른 SiCFO 박막의 증착속도와 유전상수(A), 박막의 화학적 결합상태를 나타내는 FT-IR 분석결과(B), 박막의 원소성분비를 나타내는 EDS(energy dispersive spectroscopy) 분석결과(C)를 나타내는 결과도.3 is an FT-IR analysis result (B) showing the deposition rate and dielectric constant (A) of a SiCFO thin film according to RF power change, and the chemical bonding state of the thin film (EDS). Figure showing results of analysis (C).

[도 4]는 CF4유량 변화에 따른 SiCFO 박막의 증착속도와 유전상수(A) 및 증착박막의 FT-IR 분석결과(B)를 나타내는 결과도.4 is a result showing the deposition rate and dielectric constant (A) of the SiCFO thin film and the FT-IR analysis result (B) of the deposited thin film according to the CF 4 flow rate change.

[도 5]는 내수성을 알아보기 위해 CF4유량과 증착온도를 변화시키면서 성장한 SiCFO 박막을 한달동 안 대기중에 노출시킨 후에 측정한 FT-IR 결과도.5 is a FT-IR results measured after exposing the SiCFO thin film grown in the atmosphere for one month while varying the CF 4 flow rate and deposition temperature to determine the water resistance.

[도 6]은 PECVD법으로 성장한 SiCFO 박막의 열적 안정성을 측정하기 위해 400 ℃ 및 500 ℃에서 20분간 열처리한 후 측정한 유전상수율과 FT-IR 결과도.6 is a dielectric constant and FT-IR results measured after heat treatment at 400 ℃ and 500 ℃ for 20 minutes to measure the thermal stability of the SiCFO thin film grown by PECVD.

첨부한 도면들을 참조한 본 발명의 상세 설명은 다음과 같다.Detailed description of the invention with reference to the accompanying drawings is as follows.

이하 바람직한 실시예를 통해 본 발명의 목적 및 구성을 보다 잘 이해할 수 있을 것이다.Through the following preferred embodiments will be able to better understand the purpose and configuration of the present invention.

[도 1]은 PECVD법으로 p-type Si(001) 기판위에 성장한 SICFO 박막의 단면을 보여주는 주사전자현미경(SEM) 사진이다. SEM 사진에서 볼 수 있는 바와 같이 SICFO 박막은 p-type Si(001) 기판과 우수한 접합특성이 우수함을 알 수 있다. 또한 상기 박막은 표면을 AFM(atomic force microscopy)으로 분석한 결과 평균거칠기(rms)가 2.12 nm로서 아주 미려한 표면을 나타냈다.FIG. 1 is a scanning electron microscope (SEM) photograph showing a cross section of a SICFO thin film grown on a p-type Si (001) substrate by PECVD. As can be seen in the SEM image, the SICFO thin film has excellent bonding properties with the p-type Si (001) substrate. In addition, the thin film of the surface was analyzed by atomic force microscopy (AFM), and the average roughness (rms) was 2.12 nm, indicating a very beautiful surface.

[도 2]는 실리콘 기판위에 SiCFO 저유전체 박막을 성장시키는데 사용한 PECVD 장치의 개략도이다. PECVD법은 글로우 방전(glow discharge)을 통해 전구체(precursor)로부터 라디칼(radical)과 이온(ion)과 같은 활성종(active species)을 만들어 내고, 이러한 활성종들의 당양한 기상(gas-phase) 혹은 표면반응(surface reaction)을 통해 박막을 성장 시킬 수 있기 때문에 박막 생성시 수분 발생을 막을 수 있을 뿐 아니라 반응기체들이 플라즈마 방전에 의해 분해되어 화학적으로 활성이 큰 반응종등을 생성하기 때문에 열화학증착법보다 저온에서 증착 공정을 수행할 수 있다.2 is a schematic diagram of a PECVD apparatus used to grow a SiCFO low dielectric thin film on a silicon substrate. PECVD produces active species, such as radicals and ions, from precursors through glow discharges, and the active gas-phase of these active species It is possible to grow thin films through surface reactions, which not only prevents the generation of moisture during thin film formation, but also reacts with plasma discharge to produce chemically active reactive species. The deposition process can be performed at low temperatures.

[도 3]은 RF 전력 변화에 따른 SiCFO 박막의 증착속도와 유전상수(A), 박막의 화학적 결합상태를 나타내는 FT-IR 분석결과(B), 박막의 원소성분비를 나타내는 EDS(energy dispersive spectroscopy) 분석결과(C)를 각각 나타낸다. 유전율을 측정하기 위해 Al/SiCFO/Si MIS(metal-insulator-semiconductor)구조를 제작였으며, HP4284 LCR meter를 사용하여 C-V 특성을 측정한 후 유전 상수값을 구하였다.3 is an FT-IR analysis result (B) showing the deposition rate and dielectric constant (A) of a SiCFO thin film according to RF power change, and the chemical bonding state of the thin film (EDS). Each analysis result (C) is shown. The Al / SiCFO / Si MIS (metal-insulator-semiconductor) structure was fabricated to measure the dielectric constant, and the dielectric constant was determined after measuring the C-V characteristics using the HP4284 LCR meter.

PECVD에서는 원료 분자들이 플라즈마내에서 운동하는 전자들과의 충돌에 의해 분해되어 박막을 형성하는 반응에 참여하므로 플라즈마의 활성화 정도는 박막의 증착에서 매우 중요한 역할을 차지한다. PECVD에서 플라즈마 밀도에 큰 영향을 주는 변수들 중의 하나가 외부에서 인가되는 RF(radio frequency) 전력이다. RF 전력 변화에 대한 증착특성을 관찰하기 위하여 RF power를 40, 60, 80 및 120 W로 변화시키면서 박막을 증착하였다. RF 전력 증가에 따라 증착속도가 증가하다가 80 W에서 최고치를 나타내었으며, 120 W에서는 증착속도가 감소하는 결과를 보였다[도 3 A]. 이것은 RF 전력 증가에 따라 플라즈마 활성화에 의해 박막의 증착 반응이 촉진되다가 120 W 이상의 높은 출력에서는 SiH4와 CF4의 이온화율이 높아지고, 이온들의 전극에 대한 이온폭격(ion bombardment)효과가 커져서 오히려 증착된 SiCFO 박막을 스퍼터링(sputtering)시키거나, 기판 표면에 흡착된 반응종들이 반응하기 전에 스퍼터링에 의해 탈착되기 때문이다. RF 전력 40 W와 120 W에서 증착한 박막의 유전율이 1.3으로 가장 낮은 값을 나타내었고, 60과 80 W에서 증착한 박막의 유전율은1.6이었다. 이 값은 지금까지 보고된 SiO2(k=3.9∼4.2)[15,16], SiOF(k = 3.0 ∼ 3.5)[15] 및 a-C:F (amorphous fluorinated carbon, k = 2.0 ∼ 3.0)[17] 등의 저유전체 박막의 유전상수와 비교했을 때 상당히 낮은 유전상수이다.In PECVD, since the raw molecules are decomposed by collisions with electrons moving in the plasma, they participate in a reaction to form a thin film, so the degree of activation of the plasma plays a very important role in the deposition of the thin film. One of the variables that greatly affect plasma density in PECVD is radio frequency (RF) power applied from the outside. In order to observe the deposition characteristics against the RF power change, the thin films were deposited while changing the RF power to 40, 60, 80, and 120 W. As the RF power increased, the deposition rate increased to the highest value at 80 W, and the deposition rate decreased at 120 W [FIG. 3 A]. This increases the deposition reaction of the thin film by plasma activation with increasing RF power, but increases the ionization rate of SiH 4 and CF 4 at higher outputs above 120 W and increases the ion bombardment effect on the electrodes. This is because sputtering of the thin SiCFO thin film or reactive species adsorbed on the substrate surface are detached by sputtering before reacting. The dielectric constant of the thin films deposited at the RF power of 40 W and 120 W was 1.3, the lowest, and the dielectric constant of the thin films deposited at 60 and 80 W was 1.6. These values are reported so far as SiO 2 (k = 3.9-4.2) [15,16], SiOF (k = 3.0-3.5) [15] and aC: F (amorphous fluorinated carbon, k = 2.0-3.0) [17 ] Is significantly lower than that of low dielectric thin films.

[도 3 B]는 RF 전력을 변화시키면서 성장한 SiCFO의 FT-IR 분석결과이다. 900 cm-1근처에서 Si-F의 스트레칭 모드에 해당하는 피크가 나타났으며, 1100 cm-1근처에서 C-F의 모드에 해당하는 피크가 관찰되었다. 1450 cm-1에서 CFx에 해당하는 모드와 1600 cm-1에서 Si-C, C=C에 해당하는 피크를 관찰할 수 있었다. 또한 840 cm-1근처와 1100 cm-1근처에서 Si-O-Si 결합의 밴딩(bending)모드와 스트레칭(stretching)모드가 각각 관찰되었다. 이러한 결과로 볼 때 제조된 유전체 박막은 Si, C, F 및 O를 함유하는 SiCFO박막임을 알 수 있다. 그러나, 박막의 수분흡수와 불순물로 작용하는 결합과 관련된 피크들, 즉 Si-OH(∼3650 cm-1), Si-H(∼3600 cm-1), H-OH(∼3230 cm-1) 등은 관찰되지 않았다. RF 전력이 증가할 수록 900 cm-1 근처에 서 Si-F 피크와 1100 cm-1근처에서 C-F의 피크가 증가하다가 120 W에서는 Si-F 피크와 C-F 피크가 크게 감소하였다. 이것은 앞에서 설명한 바와 같이 RF Power 증가에 따라 플라즈마 활성화에 의해 박막의 증착반응이 촉진되다가, 120 W 이상의 높은 출력에서는 SiH4와 CF4의 이온화율이 높아지고, 이온들의 전극에 대한 ion bombardment 효과가 커져 휘발성이 큰 불화물이 탈착되기 때문이다.3B is an FT-IR analysis result of SiCFO grown with varying RF power. A peak corresponding to the stretching mode of Si-F appeared around 900 cm −1 , and a peak corresponding to the mode of CF was observed near 1100 cm −1 . A mode corresponding to CF x at 1450 cm −1 and a peak corresponding to Si-C and C = C at 1600 cm −1 were observed. In addition, bending and stretching modes of Si—O—Si bonds were observed near 840 cm −1 and around 1100 cm −1 , respectively. These results show that the prepared dielectric thin film is a SiCFO thin film containing Si, C, F and O. However, the peaks associated with water absorption and impurity bonding of the thin film, namely Si-OH (~ 3650 cm -1 ), Si-H (-3600 cm -1 ), H-OH (-3230 cm -1 ) Etc. were not observed. As the RF power increased, the Si-F peak near 900 cm −1 and the CF peak near 1100 cm −1 increased, but the Si-F peak and CF peak decreased significantly at 120 W. As described above, as the RF power increases, the deposition reaction of the thin film is accelerated by the plasma activation, and the ionization rate of SiH 4 and CF 4 increases at a high output of 120 W or higher, and the ion bombardment effect on the electrode increases, resulting in volatile volatility. This large fluoride is desorbed.

[도 3 C]는 증착박막을 구성하는 원소들의 성분비를 나타내는 EDS 분석결과이다. RF 전력 60 W까지는 일정한 성분비를 나타내다가 80 W 이상에서 성분원소들의 비율의 변화가 심함을 알 수 있다. 이는 FT-IR 분석과 일치하는 결과로서 본 발명에 의하여 증착된 박막은 SiCFO 계임을 나타내는 것이다.3C is an EDS analysis result showing the component ratio of elements constituting the deposited thin film. It can be seen that a constant component ratio is maintained up to 60 W of RF power, but the ratio of component elements is severely changed above 80 W. This is consistent with the FT-IR analysis, indicating that the thin film deposited by the present invention is a SiCFO system.

[도 4]는 CF4유량 변화에 따른 SiCFO 박막의 증착속도와 유전상수(A) 및 증착박막의 FT-IR 분석결과(B)를 나타내는 결과도이다. 실시예로서 RF 전력 60-80 W, 기판온도 150-250 ℃, SiH42-5 sccm에서 SiCFO 박막을 증착하였다. CF4유량이 증가할 수록 증착속도가 거의 선형적으로 증가하다가 30 sccm 이상에서는 감소하였다[도 4 A]. CF4유량이 증가할 수록 증착속도가 증가하는 이유는 Si 라디칼과 반응하는 C와 F 라디칼의 농도가 증가하기 때문이다. 그러나 SiH4에 대한 CF4의 비가 너무 커지게 되면 F 라디칼에 의한 식각반응이 우세하게 되어 오히려 증착속도가 감소하게 된다. CF4만을 사용하게 되면 박막은 거의 증착되지 않았다. 그러나 SiH4를 함께 사용하게 되면 증착속도는 급격히 증가하였다. 이것은 SiH4가 혼합되면 Si의 큰 결합수(4가)로 인하여 다양한 형태의 결합이 형성될 것이고, 따라서 박막의 증착속도는 급격히 증가하기 때문이다. CF4유량에 따른 유전상수는 1.3∼2.2정도를 나타내었다.4 is a result diagram showing the deposition rate and dielectric constant (A) of the SiCFO thin film and the FT-IR analysis result (B) of the deposited thin film according to the CF 4 flow rate change. As an example, SiCFO thin films were deposited at an RF power of 60-80 W, a substrate temperature of 150-250 ° C., and SiH 4 2-5 sccm. As the CF 4 flow rate increased, the deposition rate increased almost linearly and decreased above 30 sccm [FIG. 4A]. The deposition rate increases with increasing CF 4 flow rate because the concentration of C and F radicals reacting with Si radicals increases. However, if the ratio becomes too great of CF 4 to SiH 4 is etched by F-radical reaction is predominant is rather reduced in deposition rate. When only CF 4 was used, the thin film was hardly deposited. However, when using SiH 4 together, the deposition rate increased drastically. This is because when SiH 4 is mixed, various types of bonds will be formed due to the large number of bonds (tetravalent) of Si, and thus the deposition rate of the thin film increases rapidly. Dielectric constant of CF 4 flow rate was about 1.3 ~ 2.2.

[도 4 B]는 CF4유량을 변화시키면서 성장한 SiCFO 박막의 화학적 결합상태를 나타내는 FT-IR 결과도이다. [도 3 B]에서와 같이 900 cm-1근처에서 Si-F의 스트레칭 모드에 해당하는 피크가 나타났으며, 1100 cm-1근처에서 C-F의 모드에 해당하는 피크가 관찰되었다. 1450 cm-1에서 CFx에 해당하는 모드와 1600 cm-1에서 Si-C, C=C에 해당하는 피크를 관찰할 수 있었다. 또한 840 cm-1근처와 1100 cm-1근처에서 Si-O-Si 결합의 벤딩(bending)모드와 스트레칭(stretching)모드가 각각 관찰되었다. 이러한 결과는 제조된 유전체 박막은 Si, C, F 및 O를 함유하는 SiCFO 박막임을 알 수 임을 확인시켜주는 결과이다. 박막의 수분흡수와 불순물로 작용하는 결합과 관련된 피크들, 즉 Si-OH(∼3650 cm-1), Si-H(∼3600 cm-1), H-OH(∼3230 cm-1) 등은 관찰되지 않았다.4B is an FT-IR result diagram showing chemical bonding states of SiCFO thin films grown with varying CF 4 flow rates. As shown in FIG. 3B, a peak corresponding to the stretching mode of Si-F was observed around 900 cm −1 , and a peak corresponding to the mode of CF was observed near 1100 cm −1 . A mode corresponding to CF x at 1450 cm −1 and a peak corresponding to Si-C and C = C at 1600 cm −1 were observed. In addition, the bending and stretching modes of Si-O-Si bonds were observed around 840 cm -1 and around 1100 cm -1 , respectively. These results confirm that the prepared dielectric thin film is a SiCFO thin film containing Si, C, F and O. Peaks associated with water absorption and impurity bonding of the thin film, such as Si-OH (~ 3650 cm -1 ), Si-H (~ 3600 cm -1 ), H-OH (~ 3230 cm -1 ), etc. Not observed.

[도 5]은 내수성을 알아보기 위해 CF4유량(A)과 증착온도(B)를 변화시키면서 성장한 SiCFO 박막을 한 달 동안 대기중에 노출시킨 후에 측정한 FT-IR 결과도이다. 처음 증착한 SiCFO 박막의 FT-IR 피크들([도 4 B] 참조)과 마찬가지로 한 달 동안 대기 중에 방치했던 박막 내부에도 Si-O, Si-F, C-F 및 C-C 결합이 존재하고 있음을 알 수 있으며, -OH 피크가 관찰되지 않아 한달 후에도 수분흡수가 일어나지 않았음을 알 수 있다. 따라서 본 발명에 의해 제조된 박막은 내수성이 우수함을 알 수 있다.FIG. 5 is a FT-IR result measured after exposing the SiCFO thin film grown for one month to the atmosphere while varying the CF 4 flow rate (A) and the deposition temperature (B) to determine water resistance. As with the FT-IR peaks of the first deposited SiCFO thin film (see Fig. 4B), the Si-O, Si-F, CF, and CC bonds are also present inside the film, which was left in the air for one month. In addition, no -OH peak was observed, indicating that no water absorption occurred even after one month. Therefore, it can be seen that the thin film produced by the present invention has excellent water resistance.

[도 6]은 PECVD법으로 성장한 SiCFO 박막의 열적 안정성을 측정하기 위해400 ℃ 및 500 ℃에서 20분간 열처리한 후 측정한 유전상수율(k)과 FT-IR 결과도이다. 실시예로서 2 sccm SiH4, 20 sccm CF4, 80 W RF, 200 ℃에서 증착한 박막을 400 ℃ 및 500 ℃에서 20분 동안 열처리한 후 FT-IR로 측정한 결과를 비교한 것이다. 400 ℃ 열처리후에는 Si-F, C-F, Si-O의 결합은 잘 유지되고 있지만, 500 ℃ 열처리후에는 박막내에 존재하던 F 성분이 상당히 감소하여 분극율이 낮은 Si-F, C-F의 밀도가 감소하였음을 알 수 있다. SiCFO 박막의 유전율은 as-grown 박막이 1.6, 400 ℃에서 20분간 열처리한 후에는 1.7, 500 ℃ 열처리 후에는 2.3이었다.6 is a dielectric constant (k) and FT-IR results measured after heat treatment at 400 ° C. and 500 ° C. for 20 minutes in order to measure the thermal stability of SiCFO thin films grown by PECVD. As an example, the thin films deposited at 2 sccm SiH 4 , 20 sccm CF 4 , 80 W RF, and 200 ° C. were heat treated at 400 ° C. and 500 ° C. for 20 minutes, and the results of FT-IR measurements were compared. After 400 ℃ heat treatment, the bonding of Si-F, CF, and Si-O is well maintained, but after 500 ℃ heat treatment, the F component in the thin film is considerably reduced, which reduces the density of Si-F and CF with low polarization rate. It can be seen that. The dielectric constant of the SiCFO thin film was 1.7 after heat treatment at 1.6 and 400 ° C. for 20 minutes at 1.7 and 500 ° C., respectively.

상술한 바와 같이 본 발명에 의하면 PECVD법으로 성장한 SiCFO 박막은 저온에서 성장이 가능하며, 유전상수가 낮고 열적 안정성과 내수성이 우수하여 반도체 소자용 금속 배선의 층간 절연막으로 이용이 가능하다. 특히, 선폭(feature size) 0.1 ㎛이하에서 요구되는 저 유전율(k = 1.6 - 2.2) 층간 절연막으로 사용할 수 있을 것으로 판단되어 차세대 반도체 소자를 구현하는데 효과가 클 것으로 기대된다.As described above, according to the present invention, the SiCFO thin film grown by PECVD can be grown at low temperature, has a low dielectric constant, excellent thermal stability and water resistance, and can be used as an interlayer insulating film of a metal wiring for semiconductor devices. In particular, it can be used as a low dielectric constant (k = 1.6-2.2) interlayer insulating film required in the feature size of less than 0.1 ㎛ is expected to be effective in implementing the next-generation semiconductor device.

Claims (3)

저온 플라즈마 화학기상증착법(PECVD)을 사용하여 Si-C-F-O계 저 유전상수(k=1.2-2.2)를 갖는 유전체 박막을 제조하는 공정.A process for producing a dielectric thin film having a Si-C-F-O based low dielectric constant (k = 1.2-2.2) using low temperature plasma chemical vapor deposition (PECVD). 제1항에 있어 플라즈마(밀도 108-1012cm-3)를 사용하여 SiCH4, (CH3)3SiC-CSi(CH3)3, [(CH3)3Si]2CH2, [(CH3)3Si]2S, (CH3)3CSi(CH3)2Cl, (CH3)2SiCl2, (CH3)2Si(OC2H5)2, [(CH3)2Si-]n, C2H5SiCl3, (CH3)3SiSi(CH3)3, (CH3)3SiCl, (CH3)3SiOC2H5, (CH3)3SiH, (CH3)3SiCCH, (C5H5)Si(CH3)3, SiF4, COF2, ClF3, C(CF3)2C, CH3F, (CF3)2CO, C2F3N, CF4, NF3, NH3, O2, O3등을 함유하는 기체 또는 액체를 원료로 Si-C-F-O계 저유전체 박막을 제조하는 방법.The method according to claim 1, wherein the plasma (density 10 8 -10 12 cm -3 ) is used to form SiCH 4, (CH 3 ) 3 SiC-CSi (CH 3 ) 3 , [(CH 3 ) 3 Si] 2 CH 2 , [( CH 3 ) 3 Si] 2 S, (CH 3 ) 3 CSi (CH 3 ) 2 Cl, (CH 3 ) 2 SiCl 2 , (CH 3 ) 2 Si (OC 2 H 5 ) 2 , [(CH 3 ) 2 Si-] n , C 2 H 5 SiCl 3 , (CH 3 ) 3 SiSi (CH 3 ) 3 , (CH 3 ) 3 SiCl, (CH 3 ) 3 SiOC 2 H 5 , (CH 3 ) 3 SiH, (CH 3 ) 3 SiCCH, (C 5 H 5 ) Si (CH 3 ) 3 , SiF 4 , COF 2 , ClF 3 , C (CF 3 ) 2 C, CH 3 F, (CF 3 ) 2 CO, C 2 F 3 A method for producing a Si-CFO-based low dielectric thin film using a gas or a liquid containing N, CF 4 , NF 3 , NH 3 , O 2 , O 3 and the like. 제 2항에 있어 기타 제3의 성분을 첨가하여 Si-C-F-O계 박막을 제조하는 방법.The method for producing a Si-C-F-O-based thin film according to claim 2, wherein another third component is added.
KR1020020000140A 2002-01-02 2002-01-02 GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION KR20020023244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020000140A KR20020023244A (en) 2002-01-02 2002-01-02 GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020000140A KR20020023244A (en) 2002-01-02 2002-01-02 GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

Publications (1)

Publication Number Publication Date
KR20020023244A true KR20020023244A (en) 2002-03-28

Family

ID=19718108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020000140A KR20020023244A (en) 2002-01-02 2002-01-02 GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

Country Status (1)

Country Link
KR (1) KR20020023244A (en)

Similar Documents

Publication Publication Date Title
US6458718B1 (en) Fluorine-containing materials and processes
KR100453612B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
EP1149934B1 (en) CVD synthesis of silicon nitride materials
EP0517548B1 (en) Chemical vapor deposition method for forming silicon oxide film
US7488693B2 (en) Method for producing silicon oxide film
JP2004312041A (en) Low-dielectric constant material and treatment method by cvd
Rivillon et al. Gas phase chlorination of hydrogen-passivated silicon surfaces
US6159559A (en) Low temperature, high quality silicon dioxide thin films deposited using tetramethylsilane (TMS)
Ermakova et al. Study of Cu diffusion behavior in carbon rich SiCN: H films deposited from trimethylphenylsilane
CN1754252A (en) Method for producing hydrogenated silicon oxycarbide films
Dupont et al. Structural properties of N-rich a-Si-N: H films with a low electron-trapping rate
JP2001332550A (en) Semiconductor device and its manufacturing method
Santana et al. Low temperature–low hydrogen content silicon nitrides thin films deposited by PECVD using dichlorosilane and ammonia mixtures
Lucovsky et al. Deposition of silicon-based dielectrics by remote plasma-enhanced chemical vapor deposition
KR20020023244A (en) GROWTH OF LOW DIELECTRIC CONSTANT SiCFO THIN FILMS BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION
JP3443978B2 (en) Method of forming low dielectric film
Mandracci et al. Silicon–carbon–oxynitrides grown by plasma-enhanced chemical vapor deposition technique
Loboda et al. Deposition of low-K dielectric films using trimethylsilane
Ray et al. Low-Temperature deposition of dielectric films by microwave plasma enhanced decomposition of hexamethyldisilazane
Alonso et al. Effect of the predecomposition of SiF4 on the properties of silicon dioxide deposited at low temperatures using SiF4/SiH4/N2O in a double‐plasma process
Huang et al. The formation of a SiOx interfacial layer on low-k SiOCH materials fabricated in ULSI application
Freeman et al. Properties of low‐pressure chemical vapor deposited dielectric films from hexamethyldisilazane
Kim et al. Plasma enhanced chemical vapor deposition of low dielectric constant SiCFO thin films
JPH08335579A (en) Silicon-based oxide film containing fluorine and its preparation
JPH08321499A (en) Silicon compound film and forming method thereof

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination