KR20020019871A - Hardening material having high tenacity for an inner surface of cylinder - Google Patents

Hardening material having high tenacity for an inner surface of cylinder Download PDF

Info

Publication number
KR20020019871A
KR20020019871A KR1020000071818A KR20000071818A KR20020019871A KR 20020019871 A KR20020019871 A KR 20020019871A KR 1020000071818 A KR1020000071818 A KR 1020000071818A KR 20000071818 A KR20000071818 A KR 20000071818A KR 20020019871 A KR20020019871 A KR 20020019871A
Authority
KR
South Korea
Prior art keywords
alloy
cylinder
toughness
sample
centrifugal
Prior art date
Application number
KR1020000071818A
Other languages
Korean (ko)
Other versions
KR100414388B1 (en
Inventor
다나카칸이치
히다카켄수케
Original Assignee
후쿠다 타케시
후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후쿠다 타케시, 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 filed Critical 후쿠다 타케시
Publication of KR20020019871A publication Critical patent/KR20020019871A/en
Application granted granted Critical
Publication of KR100414388B1 publication Critical patent/KR100414388B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

PURPOSE: To provide an inside-wall hardening material deposited on a cylinder for an injection molding machine for plastics or the like by using a centrifugal lining method. CONSTITUTION: This high toughness inside-wall hardening material for a cylinder has a composition containing, by weight, 18 to 24% Cr, 2.8 to 3.5% B, 1.0 to 4.0% Si, 0.5 to 3.0% Mo, 0.5 to 3.0% Cu, 1.0 to 5.0% W and 0.05 to 0.15% Al, and the balance Co with unavoidable impurities.

Description

실린더용 고인성 내면 경화재{Hardening material having high tenacity for an inner surface of cylinder}Hardening material having high tenacity for an inner surface of cylinder

본 발명은, 플라스틱과 같은 사출성형기용 실린더에 원심 라이닝법을 이용하여 용착되는 내면 경화재에 관한 것이다.The present invention relates to an inner surface hardened material which is welded to a cylinder for an injection molding machine such as plastic by using a centrifugal lining method.

플라스틱과 같은 사출성형기용 실린더의 내면에는, 수지 또는 수지에 첨가된 첨가재에 의한 마모나 부식을 방지하기 위해, 내마모성과 내식성을 모두 구비한 합금이 원심 라이닝법에 의해 용착되어 있다.On the inner surface of the cylinder for injection molding machines such as plastic, an alloy having both wear resistance and corrosion resistance is welded by centrifugal lining to prevent abrasion and corrosion by the resin or additives added to the resin.

이러한 원심 라이닝에 사용되는 내면 경화재는, 지금까지 수많은 합금이 있었지만, 그 일례로서 본 발명자들은 일본국 특허 공고 평3-56300호에 중량으로 Cr 18∼24%, B 3.0∼3.5%, Si 1.0∼4.0%, Mo 0.5∼5.0%, Cu 0.5∼5.0%, W 5%이하, Ni3.0%이하, Fe 2.0%이하, C 0.5%이하, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 실린더용 Co기 내면 경화재의 조성을 개시하였고, 이 라이닝층의 내마모성과 내부식성이 모두 뛰어난 것도 아울러 개시하였다.As for the inner hardening | curing material used for such a centrifugal lining, there existed many alloys until now, As an example, the present inventors put in Japanese Patent Publication No. Hei 3-56300 by weight Cr 18-24%, B 3.0-3.5%, Si 1.0- 4.0%, Mo 0.5-5.0%, Cu 0.5-5.0%, W 5% or less, Ni3.0% or less, Fe 2.0% or less, C 0.5% or less, and the remaining part is the inner surface of the cylinder Co group consisting of Co and inevitable impurities The composition of hardened | cured material was disclosed, and also the outstanding wear resistance and corrosion resistance of this lining layer were also disclosed.

그러나, 최근 플라스틱재료가 고성능화함에 따라, 플라스틱의 사출성형은 성형온도 약 350℃, 성형압력 약 2500 ㎏f/㎠에 이르는, 보다 고온이며 고압력에서의 가동이 많이 이루어져 왔다. 이와 같은 고온고압하에서 사용되는 사출성형기용 실린더 내면의 원심 라이닝층은, 경우에 따라 단시간의 가동에 의해 라이닝층에 균열이 발생하는 결점이 있다.However, in recent years, as plastic materials have been improved in performance, plastic injection molding has been performed at a higher temperature and higher pressure, reaching a molding temperature of about 350 ° C. and a molding pressure of about 2500 kgf / cm 2. The centrifugal lining layer on the inner surface of the cylinder for injection molding machines used under such a high temperature and high pressure has the drawback that a crack arises in a lining layer by operation for a short time depending on the case.

그래서, 본 발명에서는 상기 일본국 특허 공고 평3-56300호에 개시된 실린더용 Co기 내면 경화재의 내마모성과 내부식성 및 원심 라이닝성을 저해하지 않고, 보다 고온고압하에서 사용할 수 있는 실린더용 내면 경화재를 제공하는 것을 목적으로 한다.Thus, the present invention provides a cylinder inner surface hardener that can be used under high temperature and high pressure without impairing the wear resistance, corrosion resistance and centrifugal lining resistance of the Co group inner surface hardener for cylinder disclosed in Japanese Patent Publication No. Hei 3-56300. It aims to do it.

이를 위해서는, 고온에서의 내면 경화재의 인성을 가능한 한 높여야 한다는 문제가 생긴다.For this purpose, there arises a problem that the toughness of the internal hardening material at high temperature should be increased as much as possible.

이것은, 하기의 두 가지 이유에 의한 것이다. 먼저, 첫 번째는, 사출성형기가 사용될 때의 성형온도범위에서, 내면 경화재의 인성이 저하되면, 그 합금에 의해 형성되는 원심 라이닝층의 인성도 마찬가지로 저하되어, 원심 라이닝층에는 균열이 발생될 확률이 높아진다. 따라서, 고온일 경우의 인성은 가능한 한 높은 것이 바람직하다.This is due to the following two reasons. First, if the toughness of the inner surface hardening material is lowered in the molding temperature range when the injection molding machine is used, the toughness of the centrifugal lining layer formed by the alloy is also lowered, so that the cracks may occur in the centrifugal lining layer. Is higher. Therefore, the toughness in the case of high temperature is preferably as high as possible.

다음으로, 두 번째는, 실린더 본체의 강도를 향상시키기 위해서이다.Next, the second is to improve the strength of the cylinder body.

실린더 본체는, 보통 크롬몰리브덴강(JIS SCM440)이 사용되지만, 원심 라이닝할 때에, 1050℃∼1200℃의 소정 온도까지 가열되고, 원심 라이닝 처리후, 약 900℃∼실온까지 서냉(徐冷)되거나 로냉(爐冷)된다. 이와 같은 냉각조건 때문에, 실린더 본체는 소둔(燒鈍) 상태가 되어, 그 강도는 고온고압하에서 사용되는 실린더 본체로서는 충분하지 않다. 실린더 본체의 강도를 향상시키기 위해서는, 원심 라이닝 처리후, 약 900℃에서 실린더 본체를 강제공냉과 같은 방법으로 냉각할 수 있다면, 그 목적은 달성된다.The cylinder body is usually chromium molybdenum steel (JIS SCM440), but when centrifugal lining, it is heated to a predetermined temperature of 1050 ℃ to 1200 ℃, after centrifugal lining treatment, slowly cooled to about 900 ℃ to room temperature It is cooled by furnace. Due to such cooling conditions, the cylinder body is annealed and its strength is not sufficient for the cylinder body used under high temperature and high pressure. In order to improve the strength of the cylinder body, after the centrifugal lining treatment, if the cylinder body can be cooled by a method such as forced air cooling at about 900 ° C, the object is achieved.

그러나, 이 경우 실린더 본체와 라이닝층 사이에 온도차에 의한 열수축의 차이가 발생하고, 라이닝층내에 응력이 발생한다. 만일, 라이닝층이 이 응력을 견디지 못하면, 라이닝층에는 균열이 발생한다. 따라서, 실린더 본체의 강도를 높이기 위해서는, 고온에서의 내면 경화재의 인성이 가능한 한 높은 것이 바람직하다.In this case, however, a difference in thermal contraction due to a temperature difference occurs between the cylinder body and the lining layer, and a stress occurs in the lining layer. If the lining layer does not withstand this stress, cracking occurs in the lining layer. Therefore, in order to raise the intensity | strength of a cylinder main body, it is preferable that the toughness of the inner surface hardening | curing material at high temperature is as high as possible.

도 1은, 본 발명에 따른 합금의 Ni 함유량과 샤르피 충격치의 관계를 나타낸 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the relationship between Ni content and Charpy impact value of the alloy which concerns on this invention.

도 2는, 본 발명에 따른 합금의 Al 함유량과 샤르피 충격치의 관계를 나타낸 도면이다.2 is a diagram showing a relationship between Al content and Charpy impact value of the alloy according to the present invention.

본 발명자들은, 상기와 같은 관점으로부터 고온에서의 상기 실린더용 Co기 내면 경화재의 인성을 향상시키는 방법을 여러 가지로 검토한 결과, 실린더용 Co기 내면 경화재에 포함되어 있던 Ni량을 극히 낮추는 방법과 미량의 Al을 첨가하는 방법에 의해, 고온에서의 합금의 인성이 현저히 향상하는 것을 발견하였다. 그리고, 이것을 토대로 고온고압하에서 사용하더라도 균열이 발생하지 않는 원심 라이닝층을 형성하기 위한 실린더용 고인성 내면 경화재를 완성시켰다.MEANS TO SOLVE THE PROBLEM The present inventors examined the method of improving the toughness of the said inner surface Co hardening material for cylinders at high temperature from the above viewpoint, As a result, the method which reduces extremely the amount of Ni contained in the inner surface hardening materials for cylinders Co group, and It was found that the toughness of the alloy at high temperature is remarkably improved by the method of adding a trace amount of Al. And based on this, the highly tough inner surface hardening | curing material for cylinders for forming the centrifugal lining layer which does not produce a crack even if used under high temperature and high pressure was completed.

본 발명에 관련된 실린더용 고인성 내면 경화재는, 중량으로 Cr 18∼24%, B2.8∼3.5%, Si 1.0∼4.0%, Mo 0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Ni 0% 및 0초과∼0.1%, Al 0.05∼0.15%, C 0% 및 0초과∼0.5%, Fe 0% 및 0초과∼2.0%, [O] 0% 및 0초과∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 것을 특징으로 한다.The high toughness inner surface hardening | curing material for cylinders concerning this invention is 18-24% Cr, B2.8-3.5%, Si 1.0-4.0%, Mo 0.5-3.0%, Cu 0.5-3.0%, W 1.0-5.0% by weight. , Ni 0% and 0% to 0%, Al 0.05 to 0.15%, C 0% and 0% to 0% to 0.5%, Fe 0% and 0% to 2.0%, [O] 0% and 0% to 0.15%, remainder The part is characterized by consisting of Co and unavoidable impurities.

발명의 실시형태Embodiment of the invention

이하, 본 발명에 따른 실린더용 고인성 내면 경화재의 합금 조성(중량%)을 한정한 이유에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the reason which limited the alloy composition (weight%) of the high toughness internal surface hardening | curing material for cylinders which concerns on this invention is demonstrated.

Cr (18 ∼ 24%)Cr (18-24%)

Cr은, Co를 주체로 하는 매트릭스에 고용(固溶)되어, 합금의 내식성을 향상시킨다. Cr 첨가량을 증가시킴에 따라 질산에 대한 내식성이 향상되지만, Cr이 18% 미만인 경우에는 그 효과가 적다. 한편, Cr이 24%를 넘으면 크롬붕화물의 정출량(晶出量)이 많아지고, 합금의 고액공존역(固液共存域)이 넓어져서, 원심 라이닝을 수행할 때, 적합하지 않다. 따라서, 함유량을 18∼24%로 정하였다.Cr is dissolved in a matrix mainly composed of Co to improve the corrosion resistance of the alloy. Increasing the amount of Cr increases the corrosion resistance to nitric acid, but less effective when Cr is less than 18%. On the other hand, when Cr exceeds 24%, the amount of chromium boride crystallized increases, and the solid-liquid coexistence area of the alloy is widened, which is not suitable when performing centrifugal lining. Therefore, content was set to 18 to 24%.

B (2. 8 ∼ 3. 5%)B (2.8-3. 5%)

B는, Co와 Cr을 주체로 하는 고경도(高硬度)의 붕화물을 형성하여, 합금의 경도를 높이고, 내마모성을 향상시킨다. 또, 이 붕화물은 Co 고용체와 공정반응(共晶反應)에 의해 합금의 융점을 낮추기도 한다. B가 2.8% 미만인 경우에는, 합금의 경도가 충분히 강하지 못하여 아공정조성(亞共晶組成)이 되고, 합금의 고액공존역이 넓어져서 적합하지 않다. 한편, B가 3.5%를 넘으면 합금의 경도가 너무 상승하여 인성이 저하되어 과공정조성(過共晶組成)이 되고, 합금의 고액공존역이 넓어져적합하지 않다. 따라서, 함유량을 2.8∼3.5%로 정하였다.B forms a high hardness boride mainly containing Co and Cr, increases the hardness of the alloy and improves the wear resistance. In addition, this boride also lowers the melting point of the alloy due to a process reaction with Co solid solution. When B is less than 2.8%, the hardness of the alloy is not strong enough, resulting in subprocess formation, and the solid-liquid coexistence area of the alloy is not suitable. On the other hand, when B exceeds 3.5%, the hardness of the alloy is too high, the toughness is lowered, and the eutectic composition is increased, and the solid-liquid coexistence area of the alloy is not suitable. Therefore, content was set to 2.8 to 3.5%.

Si (1. 0 ∼ 4. 0%)Si (1.0-4.0%)

Si는, Co에 고용되어 합금의 경도를 높이고, 내마모성을 향상시킴과 동시에 내식성도 향상시킨다. Si가 1.0%미만인 경우에는 그 효과가 충분하지 않지만, 4.0%를 넘으면 합금의 경도가 높아지고, 인성이 저하되므로 적합하지 않다. 따라서, 함유량을 1.0∼4.0%로 정하였다.Si is dissolved in Co to increase the hardness of the alloy, improve wear resistance, and improve corrosion resistance. If Si is less than 1.0%, the effect is not sufficient, but if it exceeds 4.0%, the hardness of the alloy is high and the toughness is lowered, which is not suitable. Therefore, content was set to 1.0 to 4.0%.

Mo (0. 5 ∼ 3. 0%), Cu (0. 5 ∼ 3. 0 %)Mo (0.5-3. 0%), Cu (0.5-3. 0%)

Mo 및 Cu는, 모두 Co에 고용되어 합금의 내식성, 특히 염산에 대한 내식성을 향상시킨다. Mo 및 Cu가 모두 0.5%미만인 경우에는, 염산에 대한 내식성의 개선효과는 충분하지 않고, 한편 3.0%를 넘으면 첨가량의 비율에 대한 개선효과를 확인할 수 없고, 게다가 합금의 고액공존역이 넓어져 적합하지 않다. 따라서, 함유량을 모두 0.5∼3.0%로 정하였다.Both Mo and Cu are dissolved in Co to improve the corrosion resistance of the alloy, particularly corrosion resistance to hydrochloric acid. When both Mo and Cu are less than 0.5%, the effect of improving the corrosion resistance to hydrochloric acid is not sufficient. On the other hand, when the content exceeds 3.0%, the improvement effect on the proportion of the added amount cannot be confirmed, and the solid-liquid coexistence area of the alloy is suitable. Not. Therefore, all content was set to 0.5 to 3.0%.

W (1. 0 ∼ 5. 0%)W (1.0-5.0%)

W는, Co 중에 고용되어 합금의 강도를 높이고, 더 나아가 내식성 및 내마모성 향상에도 기여한다. W가 1.0% 미만인 경우에는 그 효과가 충분하지 않지만, 5.0%를 넘으면, W를 주체로 하는 붕화물이 형성되어, 합금의 인성을 저하시키므로 적합하지 않다. 따라서, 함유량을 1.0∼5.0%로 정하였다.W is dissolved in Co to increase the strength of the alloy, further contributing to the improvement of corrosion resistance and wear resistance. If W is less than 1.0%, the effect is not sufficient. If W is more than 5.0%, boride mainly containing W is formed, and thus the toughness of the alloy is lowered, which is not suitable. Therefore, content was set to 1.0 to 5.0%.

Ni (0% 및 0초과 ∼ 0. 1%)Ni (0% and over 0 to 0.1%)

Ni은, Co중에 소량 함유되는 것이 많으므로, Ni의 영향을 조사하였다.Since Ni is often contained in a small amount in Co, the influence of Ni was investigated.

도 1에, Cr 21%, B 3.0%, Si 2.0%, Mo 1.0%, Cu 1.0%, W 4.0%, C 0.08%, Fe1.5%, 나머지 부분은 Co의 조성을 갖는 Co기 합금과 이에 Ni을 소량 함유시킨 합금을, 1200℃까지 가열용융하고 주조하여 얻은 시료의 샤르피 충격치를 나타낸다.1, Cr 21%, B 3.0%, Si 2.0%, Mo 1.0%, Cu 1.0%, W 4.0%, C 0.08%, Fe1.5%, the remainder is a Co-based alloy having a composition of Co and Ni The Charpy impact value of the sample obtained by heat-melting and casting the alloy which contains a small amount of these to 1200 degreeC is shown.

도 1로부터 알 수 있는 바와 같이, Ni 0%의 합금으로부터 얻어진 시료는, Ni을 함유한 합금으로부터 얻은 시료보다도 샤르피 충격치가 높으며, 고온이 됨에 따라, 충격치는 증가한다. 한편, Ni을 함유한 합금으로부터 얻어진 시료는, Ni의 함유량이 많아짐에 따라, 그 충격치는 감소되고, 고온에서의 충격치도 증가되지 않는다.As can be seen from FIG. 1, the sample obtained from the Ni 0% alloy has a higher Charpy impact value than the sample obtained from the alloy containing Ni, and the impact value increases as the temperature becomes high. On the other hand, the sample obtained from the alloy containing Ni increases the impact value as Ni content increases, and the impact value in high temperature does not increase either.

Ni 함유량에 의한 충격치의 저하는, 합금내에 Ni을 주체로 하는 붕화물이 형성되고, 이 붕화물이 취약하기 때문에, 합금의 인성을 저하시키는 원인이라고 여겨진다. 이와 같이, Ni은 합금의 인성을 저해하므로 0%인 것이 가장 바람직하다.The decrease in the impact value due to the Ni content is considered to be a cause of lowering the toughness of the alloy because a boride mainly containing Ni is formed in the alloy, and the boride is fragile. As such, since Ni inhibits the toughness of the alloy, it is most preferable that it is 0%.

그러나, 이 합금의 원료가 되는 Co의 순도도 고려하여, Ni이 0초과∼0.1%인 경우에는 실질적으로 인성을 저해하지 않는 범위로서 허용할 수 있다. 따라서, 함유량을 0% 및 0 초과∼0.1%로 정하였다.However, considering the purity of Co which is a raw material of this alloy, when Ni is more than 0 to 0.1%, it can accept as a range which does not substantially impair toughness. Therefore, content was set to 0% and more than 0 to 0.1%.

Al (0. 05 ∼ 0. 15%)Al (0.05-0.15%)

Al은, 원심 라이닝 처리공정에서 합금이 용융되었을 때, 탈산재(脫酸材)로서 작용하여 라이닝층의 인성향상에 기여한다.Al acts as a deoxidizer when the alloy is melted in the centrifugal lining treatment step, contributing to the improvement of the toughness of the lining layer.

도 2에, Cr 21%, B 3.0%, Si 2.0%, Mo 1.0%, Cu 1.0%, W 4.0%, C 0.08%, Fe 1.5%, 나머지 부분은 Co인 조성을 갖는 Co기 합금과, 여기에 Al 0.10%를 함유시킨 합금을 1200℃까지 가열 용융하고 주조하여 얻은 시료의 샤르피 충격치를 나타낸다.2, Cr 21%, B 3.0%, Si 2.0%, Mo 1.0%, Cu 1.0%, W 4.0%, C 0.08%, Fe 1.5%, Co-based alloy having a composition of Co, The Charpy impact value of the sample obtained by heat-melting and casting the alloy containing 0.10% of Al to 1200 degreeC is shown.

도 2로부터 알 수 있는 바와 같이, Al을 함유한 합금으로부터 얻어진 시료는, Al을 함유하지 않는 합금으로부터 얻어진 시료보다 샤르피 충격치가 높고, 또 그 분산도 작다.As can be seen from FIG. 2, a sample obtained from an alloy containing Al has a higher Charpy impact value and a smaller dispersion than a sample obtained from an alloy containing no Al.

이것은, 시료조제시 용융할 때, Al의 탈산작용에 의해 용탕중에 미세한 개재물이 제거되기 때문에, 이 시료에서의 인성이 향상되었다고 여겨진다. Al이 0.05% 미만인 경우에는, 그 효과가 불충분하지만, 0.15%를 넘으면 과잉 Al에 의해 합금의 산화가 일어나고, 원심 라이닝 처리 공정에서 용융을 저해하기 때문에, 적합하지 않다. 따라서, 함유량을 0.05∼0.15%로 정하였다.This is considered to be because the toughness in the sample is improved because the fine inclusions are removed in the molten metal by the deoxidation of Al when melting during sample preparation. When Al is less than 0.05%, the effect is insufficient. However, when Al exceeds 0.15%, oxidation of the alloy occurs due to excess Al, which inhibits melting in the centrifugal lining treatment step. Therefore, content was set to 0.05 to 0.15%.

C (0% 및 0초과 ∼ 0. 5%), Fe (0% 및 0초과 ∼ 2. 0%)C (0% and greater than 0 to 0.5%), Fe (0% and greater than 0 to 2.0%)

C 및 Fe는, 모두 합금 중에 함유되지 않더라도, 본 발명의 합금으로서의 성능은 발휘할 수 있다.Even if neither C nor Fe is contained in the alloy, the performance as an alloy of the present invention can be exhibited.

그러나, 원료나 용해시에 불순물로서 혼입될 우려가 있기 때문에, C 및 Fe에 대하여 그 영향을 조사하였다.However, the effects of C and Fe were investigated because of the possibility of mixing as impurities during raw materials and melting.

그 결과, C가 0.5%를 넘으면 합금의 경도가 상승하고, 인성이 저하하는 경향을 보였고, 또 Fe가 2.0%를 넘으면 내식성이 저하하는 경향을 보였다.As a result, when C exceeded 0.5%, the hardness of the alloy increased and the toughness decreased, and when Fe exceeded 2.0%, the corrosion resistance tended to decrease.

그러나, C가 0초과∼0.5%, Fe가 0초과∼2.0%인 경우에는, 특히 그 영향을 확인할 수 없었다. 따라서, 그 함유량을 C 0% 및 0초과∼0.5%, Fe 0% 및 0초과∼2.0%로 정하였다.However, in the case where C is greater than 0 to 0.5% and Fe is greater than 0 to 2.0%, the effect cannot be confirmed in particular. Therefore, the content was set to C 0% and 0% to 0% to 0.5%, Fe 0% and 0% to 2.0%.

[O] (0% 및 0초과 ∼ 0.15%)[O] (0% and greater than 0 to 0.15%)

[O]는, 합금 중에 함유되지 않더라도, 본 발명의 합금으로서의 성능은 발휘할 수 있다.Even if [O] is not contained in the alloy, the performance as an alloy of the present invention can be exhibited.

그러나, 이 합금을 원심 라이닝 처리 공정에서 사용할 때, 분말상이나 입자상의 형태로 하기 때문에, 그들 표면에 피할 수 없는 산화물로서 [O]가 함유된다. 그래서, [O]에 대하여 그 영향을 조사하였다. 그 결과, [O]가 0.15%를 넘으면, 원심 라이닝 처리 공정에서의 합금의 용융이 저해되는 경향을 보였다.However, when this alloy is used in the centrifugal lining treatment step, since it is in the form of powder or particles, [O] is contained as an inevitable oxide on the surface thereof. Therefore, the influence on [O] was investigated. As a result, when [O] was more than 0.15%, the melting of the alloy in the centrifugal lining treatment step tended to be inhibited.

그러나, [O]가 0초과∼0.15%인 경우에는, 그 영향은 특별히 확인할 수 없었다. 따라서, 그 함유량을 0% 및 0초과∼0.15%로 정하였다.However, in the case where [O] is more than 0 to 0.15%, the effect was not particularly confirmed. Therefore, the content was set to 0% and over 0 to 0.15%.

본 발명에 따른 실린더용 고인성 내면 경화재는, 상술한 바와 같이 정한 합금조성의 범위가 되도록 각 금속을 임의로 배합할 수 있다. 일례로 든 본 발명에 적합한 합금조성의 범위는 다음과 같다.The high toughness inner surface hardening | curing material for cylinders which concern on this invention can mix | blend each metal arbitrarily so that it may become the range of alloy composition determined as mentioned above. As an example, the range of the alloy composition suitable for this invention is as follows.

(1) 중량으로Cr 18∼20%, B 2.8∼3.5%, Si 1.0∼4.0%, Mo 0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Al 0.05∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 것.(1) 18 to 20% Cr , 2.8 to 3.5% B, 1.0 to 4.0% Si, 0.5 to 3.0% Mo, 0.5 to 3.0% Cu, 1.0 to 5.0% W, 0.05 to 0.15% Al, Consisting of Co and unavoidable impurities.

(2) 중량으로Cr 20∼22%, B 2.8∼3.5%, Si 1.0∼4.0%, Mo 0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Al 0.05∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 것.(2) 20 to 22% Cr , 2.8 to 3.5% B, 1.0 to 4.0% Si, 0.5 to 3.0% Mo, 0.5 to 3.0% Cu, 1.0 to 5.0% W, 0.05 to 0.15% Al, Consisting of Co and unavoidable impurities.

(3) 중량으로Cr 22∼24%, B 2.8∼3.5%, Si 1.0∼4.0%, Mo 0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Al 0.05∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 것.(3) By weight, Cr 22-24 % , B 2.8-3.5%, Si 1.0-4.0%, Mo 0.5-3.0%, Cu 0.5-3.0%, W 1.0-5.0%, Al 0.05-0.15%, the rest Consisting of Co and unavoidable impurities.

(4) 중량으로 Cr 18∼24%,B 2.8이상에서 3%미만, Si 1.0∼4.0%, Mo0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Al 0.05∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 것.(4) 18 to 24% by weight, less than 3% at B 2.8 or more , Si 1.0 to 4.0%, Mo 0.5 to 3.0%, Cu 0.5 to 3.0%, W 1.0 to 5.0%, Al 0.05 to 0.15%, The remaining part is composed of Co and inevitable impurities.

상기한 모든 경우에서, C 0.5% 이하 및 Fe 2.0%이하 중의 하나, 또는 양자 모두를 포함할 수도 있지만, Ni는 함유하지 않는 편이 바람직하다.In all the above cases, one or both of C 0.5% or less and Fe 2.0% or less may be included, but it is preferable that Ni is not contained.

실시예·비교예Example and Comparative Example

먼저, 표 1에 나타낸 바와 같이, 본 발명의 합금(시료 No. 1∼4)과 비교예로서 공지의 Co기 합금(시료 No. 5∼7) 및 공지의 Ni기 합금(시료 No. 8)에 대하여 샤르피 충격시험(400℃ 및 600℃)과 원심 라이닝 후의 급냉 균열 시험을 하였다.First, as shown in Table 1, an alloy of the present invention (sample Nos. 1 to 4), a known Co-based alloy (sample Nos. 5 to 7) and a known Ni-based alloy (sample No. 8) as comparative examples. The Charpy impact test (400 ° C and 600 ° C) and the quench cracking test after centrifugal lining were carried out.

각 시료는, 원료에 Co, Cr, Co-B, Si, Mo, Cu, W, Ni, Al, Fe, Mn, Cr-C를 이용하여, 표 1과 같은 조성이 되도록 배합하고, 고주파용해로(高周波溶解爐)로 Ar 분위기에서, 1450℃까지 가열용해하고, N2가스 원자화법으로 분말로 하였다. 또한, 시료 No. 1∼6에 이용한 원료 Co 및 Co-B는 순도가 높은 것을 이용하였다. 또, 시료 No. 1∼4 및 6의 Al은 원자화 직전의 용탕에 소정량 첨가하였다. 더 나아가, 표 1의 합금조성 중 Al과 [O]는 수득된 분말의 분석치이고, 그 외는 배합치이다. 수득된 분말을 이용하여 샤르피 충격시험편을 만들었다.Each sample is blended so as to have a composition as shown in Table 1 using Co, Cr, Co-B, Si, Mo, Cu, W, Ni, Al, Fe, Mn, Cr-C as raw materials, in an Ar atmosphere to高周波溶解爐), it was heated to dissolve the powder, and N 2 gas atoms speech to 1450 ℃. In addition, sample No. The raw material Co and Co-B used for 1-6 used the thing with high purity. Moreover, sample No. Al of 1 to 4 and 6 were added to the molten metal immediately before atomization. Furthermore, in the alloy composition of Table 1, Al and [O] are analyzed values of the powder obtained, and others are compounded values. The Charpy impact test piece was made using the obtained powder.

각 시료의 분말 150g을 Ar 분위기의 로(爐)에서, 그 액상선온도 +30℃까지 가열용융하여, 12㎜ ×12㎜ ×75㎜의 쉘 주형(鑄型)에 주조하고, 그 주조편을 10㎜ ×10㎜ ×55㎜, U 노치부착 JIS 3호 시험편으로 완성하였다. 시험편은 400℃ 및 600℃로 유지된 전기로에서 균일하게 가열한 후, 샤르피 충격시험을 행하였다.150 g of the powder of each sample is heated and melted to a liquidus temperature of + 30 ° C in a furnace in an Ar atmosphere, cast into a shell mold of 12 mm x 12 mm x 75 mm, and the cast piece It was completed by 10 mm x 10 mm x 55 mm, JIS No. 3 test piece with a U notch. After the test piece was uniformly heated in an electric furnace maintained at 400 ° C and 600 ° C, the Charpy impact test was performed.

표 2로부터 알 수 있는 바와 같이, 본 발명의 합금은 비교예의 합금보다도샤르피 충격치가 높고, 400℃일 때보다도 600℃인 경우가 높아진다는 특징이 있다.As can be seen from Table 2, the alloy of the present invention has a characteristic that the Charpy impact value is higher than that of the comparative example, and the case of 600 ° C is higher than that of 400 ° C.

외경 100㎜, 내경 24㎜, 길이 200㎜의 크롬몰리브덴강(JIS SCM440) 관내에 각 시료의 분말 250g을 넣고, 그 양단에 강철로 된 뚜껑을 용접하여 원심 라이닝용 공시재(供試材)를 만들었다.250 g of the powder of each sample is placed in a chromium molybdenum steel (JIS SCM440) tube having an outer diameter of 100 mm, an inner diameter of 24 mm, and a length of 200 mm, and a test piece for centrifugal lining is formed by welding a steel lid on both ends thereof. made.

또, 이 공시재의 한쪽 뚜껑에는, 중앙에 지름 6㎜의 구멍이 뚫려 있다.In addition, a hole having a diameter of 6 mm is drilled in the center of one lid of the specimen.

이 공시재를, 그 안에 넣어 특정 시료 분말의 액상선온도 +30℃까지, 로에서 가열승온시켰다. 이 가열승온중에는, 공시재의 뚜껑에 설치된 구멍으로부터, Ar 가스를 유입시켜 내부의 산화를 방지하였다.This test material was put in it, and it heated up in the furnace to liquidus temperature of +30 degreeC of specific sample powder. During this heating and heating, Ar gas was introduced from the hole provided in the lid of the specimen to prevent internal oxidation.

그 후, 공시재를 고속회전기에 장착하여, 약 2000rpm으로 회전시키고, 원심 라이닝을 하였다. 냉각은 원심 라이닝 온도로부터 약 900℃까지 방냉시킨 후, 외부를 송풍기로 강제 공냉시켜 약 500℃까지 냉각시키고, 그 후에는 방냉시켰다.Thereafter, the specimen was mounted on a high speed rotor, rotated at about 2000 rpm, and centrifugal lining was performed. Cooling was allowed to cool to about 900 ° C from the centrifugal lining temperature, then forced air cooling the outside with a blower to cool to about 500 ° C, after which it was allowed to cool.

이렇게 하여 원심 라이닝이 끝난 공시재를 절단하고, 라이닝층의 균열 발생 상황을 조사하였다. 표 2로부터 알 수 있는 바와 같이, 본 발명의 합금에서는 균열이 전혀 발생되지 않았던 것에 비해, 비교예의 합금에서는 균열수에 있어서 다소의 차가 있기는 하였지만, 모든 시료에서 발생하였다.In this way, the test piece which finished centrifugal lining was cut | disconnected, and the crack occurrence state of the lining layer was investigated. As can be seen from Table 2, cracks did not occur at all in the alloy of the present invention, but there were some differences in the number of cracks in the alloy of the comparative example, but occurred in all samples.

이로써, 본 발명에 따른 합금은 고온에서의 인성이 뛰어나기 때문에, 실린더 본체의 강관을 비교적 빠르게 냉각하였을 때 발생하는 응력에 대하여 충분히 견딜 수 있다는 것이 확인되었다.Thus, it was confirmed that the alloy according to the present invention is excellent in toughness at high temperature, and thus can sufficiently withstand the stress generated when the steel pipe of the cylinder body is cooled relatively quickly.

다음으로, 본 발명의 합금 시료 No. 1를 이용하여, 실제로 방출성형기용 실린더를 제작하여, 실제기계시험을 하였다.Next, alloy sample No. of the present invention. Using 1, the actual cylinder for the ejecting machine was manufactured and subjected to the actual mechanical test.

실린더 본체가 되는 강관은, 외경 120㎜, 내경 32㎜, 길이 1000㎜의 크롬몰리브덴강(JIS SCM 440)을 이용하였다. 이 관내에 시료 No.1의 분말 4.5㎏을 넣고, 관 양단에 강철제로 된 뚜껑을 용접하여 원심 라이닝용 소관(素管)을 만들었다. 또한, 한쪽 뚜껑의 중앙에는 지름 6㎜의 구멍이 뚫려 있다. 이렇게 하여 얻어진 원심 라이닝용 소관을 원심 라이닝 처리하였다.As the steel pipe serving as the cylinder body, chromium molybdenum steel (JIS SCM 440) having an outer diameter of 120 mm, an inner diameter of 32 mm, and a length of 1000 mm was used. 4.5 kg of powder of sample No. 1 was put into this pipe | tube, and the steel cap was welded to the both ends of the pipe | tube, and the small pipe for centrifugal lining was created. Moreover, the hole of diameter 6mm is drilled in the center of one lid | cover. The tube for centrifugal lining thus obtained was subjected to centrifugal lining.

원심 라이닝은 상기와 같은 조건에서 행하였다. 원심 라이닝이 끝난 소관은 기계가공에 의해, 외경 106㎜, 내경 28㎜, 길이 807㎜로 완성하였다. 내면의 라이닝층은 컬러 체크에 의해 균열이 없는 것이 내시경 관찰에 의해 확인되었다. 이렇게 하여 완성된 실린더를 이용하여 사출성형 실기시험을 하였다.Centrifugal lining was performed on the conditions as mentioned above. After the centrifugal lining was finished, the tube was finished to an outer diameter of 106 mm, an inner diameter of 28 mm, and a length of 807 mm by machining. It was confirmed by endoscope observation that the inner lining layer was free of cracks by color check. In this way, the injection molding practical test was carried out using the completed cylinder.

성형재에는, PPS 수지에 유리섬유 50%를 혼입한 것을 이용하고, 성형온도 350℃, 성형압력 2500㎏/㎠의 조건에서 행하였다. 약 30만 쇼트 후, 실린더의 상황을 조사한 결과, 라이닝층의 균열은 보이지 않았고, 또 실린더 본체의 형상에도 이상이 확인되지 않았다.As a molding material, what mix | blended 50% of glass fiber with PPS resin was used on condition of 350 degreeC of molding temperature, and 2500 kg / cm <2> of forming pressures. After about 300,000 shots, as a result of examining the state of the cylinder, no cracking of the lining layer was observed, and no abnormality was observed in the shape of the cylinder body.

그리고 또, 라이닝층 표면의 마모도 가장 큰 부분이 15㎛이하이고, 또 사용상 문제가 없는 상태이며, 부식은 전혀 볼 수 없었다.Moreover, the largest part of the wear on the surface of the lining layer was 15 micrometers or less, and there was no problem in use, and corrosion was not seen at all.

그 결과, 공지의 Co기 및 Ni기 내면 경화재의 원심 라이닝층에서는 수 만 쇼트 또는 그 이하에서 분열이 많이 발생하는 것에 비해, 내구성이 크게 향상된 것을 보였다.As a result, in the centrifugal lining layer of the known Co group and Ni group inner surface hardening materials, durability was greatly improved compared with generation | occurrence | production of a lot of splitting in tens of thousands shot or less.

시료No.Sample No. 합금조성(중량%)Alloy composition (% by weight) 액상선온도(℃)Liquid line temperature (℃) CrCr BB SiSi MoMo CuCu WW NiNi AlAl CC FeFe [O][O] MnMn CoCo 본발명Invention 12341234 2118242121182421 3.03.53.02.83.03.53.02.8 2.01.03.52.02.01.03.52.0 1.03.01.02.01.03.01.02.0 1.03.01.02.01.03.01.02.0 4.01.03.04.54.01.03.04.5 0.00.00.10.10.00.00.10.1 0.100.050.150.100.100.050.150.10 0.080.20.40.050.080.20.40.05 1.50.52.01.51.50.52.01.5 0.150.050.100.050.150.050.100.05 -------- Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal. 11401140115011301140114011501130 비교예Comparative example 56785678 21217.01421217.014 3.03.04.03.23.03.04.03.2 2.02.01.04.72.02.01.04.7 1.01.0--1.01.0-- 1.01.0--1.01.0-- 4.04.0--4.04.0-- 0.53.0-Bal.0.53.0-Bal. 0.000.15--0.000.15-- 0.080.080.30.70.080.080.30.7 1.51.53.03.01.51.53.03.0 0.150.15--0.150.15-- --1.0---1.0- Bal.Bal.Bal.-Bal.Bal.Bal.- 11401140112010201140114011201020

(-)은 분석 및 배합하지 않은 공정(-) Is an unanalyzed process

시료 No.Sample No. 샤르피 충격치(㎏f·m/㎠)Charpy impact value (kgf · m / ㎠) 원심라이닝후냉각시 균열Crack during cooling after centrifugal lining 400℃400 ℃ 600℃600 ℃ 본발명Invention 12341234 1.501.401.451.651.501.401.451.65 1.901.751.852.051.901.751.852.05 없음없음없음없음None None None None 비교예Comparative example 56785678 0.750.500.750.100.750.500.750.10 0.800.500.750.150.800.500.750.15 약간 있음있음약간 있음무수히 많음Somewhat Somewhat Somewhat

이상, 상기한 바와 같이, 본 발명에 따른 합금은 특히 고온에서의 인성이 뛰어나며, 게다가 내마모성, 내식성도 뛰어나다.As mentioned above, the alloy which concerns on this invention is especially excellent in toughness at high temperature, and also excellent in abrasion resistance and corrosion resistance.

따라서, 본 발명에 따른 합금을 이용하여 그 내면에 원심 라이닝층을 형성시킨 사출성형기용 실린더는, 고온고압하에서 사용하더라도, 그 내구성이 비약적으로 증가하였고, 그 경제적인 효과도 매우 크다.Therefore, the cylinder for injection molding machine in which the centrifugal lining layer was formed in the inner surface using the alloy which concerns on this invention, even if used under high temperature, high pressure, the durability drastically increased, and the economic effect is also very large.

또한, 본 발명의 합금 분말을 이용하여 HIP법에 의해 내면경화층을 형성할 수도 있다.Moreover, the inner hardening layer can also be formed by the HIP method using the alloy powder of the present invention.

Claims (2)

중량으로 Cr 18∼24%, B 2.8∼3.5%, Si 1.0∼4.0%, Mo 0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Al 0.05∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 실린더용 고인성 내면 경화재.By weight Cr 18-24%, B 2.8-3.5%, Si 1.0-4.0%, Mo 0.5-3.0%, Cu 0.5-3.0%, W 1.0-5.0%, Al 0.05-0.15%, the remainder is Co and inevitable High toughness internal hardener for cylinder made of impurities. 중량으로 Cr 18∼24%, B 2.8∼3.5%, Si 1.0∼4.0%, Mo 0.5∼3.0%, Cu 0.5∼3.0%, W 1.0∼5.0%, Ni 0초과∼0.1%, Al 0.05∼0.15%, C 0초과∼0.5%, Fe 0초과∼2.0%, [O] 0초과∼0.15%, 나머지 부분은 Co 및 불가피한 불순물로 이루어지는 실린더용 고인성 내면 경화재.By weight Cr 18-24%, B 2.8-3.5%, Si 1.0-4.0%, Mo 0.5-3.0%, Cu 0.5-3.0%, W 1.0-5.0%, Ni 0-0.1%, Al 0.05-0.15% , C 0 to 0.5%, Fe 0 to 2.0%, [O] 0 to 0.15%, the remaining portion is a highly tough inner surface hardener for cylinders made of Co and unavoidable impurities.
KR10-2000-0071818A 2000-09-07 2000-11-30 Hardening material having high tenacity for an inner surface of cylinder KR100414388B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000270856A JP3483529B2 (en) 2000-09-07 2000-09-07 High toughness inner hardening material for cylinder
JP270856/2000 2000-09-07

Publications (2)

Publication Number Publication Date
KR20020019871A true KR20020019871A (en) 2002-03-13
KR100414388B1 KR100414388B1 (en) 2004-01-07

Family

ID=18757226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0071818A KR100414388B1 (en) 2000-09-07 2000-11-30 Hardening material having high tenacity for an inner surface of cylinder

Country Status (5)

Country Link
JP (1) JP3483529B2 (en)
KR (1) KR100414388B1 (en)
CN (1) CN1111608C (en)
HK (1) HK1042528B (en)
TW (1) TW491900B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445046A (en) * 2021-06-30 2021-09-28 重庆工港致慧增材制造技术研究院有限公司 Tungsten alloy and method for laser cladding of tungsten alloy on surface of mold sprue cup

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839350A (en) * 2011-06-23 2012-12-26 苏州五方光电科技有限公司 Film coater
CN103827664B (en) * 2011-11-29 2015-10-21 日本特殊陶业株式会社 Gas sensor
CN107083502B (en) * 2016-02-12 2023-10-13 肯纳金属公司 Wear-resistant and corrosion-resistant cobalt-based alloy powder and application method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113445046A (en) * 2021-06-30 2021-09-28 重庆工港致慧增材制造技术研究院有限公司 Tungsten alloy and method for laser cladding of tungsten alloy on surface of mold sprue cup

Also Published As

Publication number Publication date
HK1042528A1 (en) 2002-08-16
TW491900B (en) 2002-06-21
CN1341764A (en) 2002-03-27
JP3483529B2 (en) 2004-01-06
KR100414388B1 (en) 2004-01-07
HK1042528B (en) 2004-01-21
CN1111608C (en) 2003-06-18
JP2002080926A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
EP3670684B1 (en) High wear resistant high entropy alloy and preparation thereof
CA2383165C (en) Hot working die steel excelling in molten corrosion resistance and strength at elevated temperature and member for high temperature use formed of the hot working die steel
JPS60427B2 (en) Free-cutting steel with excellent cold forging properties
US4318739A (en) Steel having improved surface and reduction of area transverse properties, and method of manufacture thereof
US20040037731A1 (en) Cast steel and casting mold
JP3747585B2 (en) High hardness martensitic stainless steel with excellent workability and corrosion resistance
JP3416869B2 (en) Low ductility non-heat treated steel with excellent machinability
CA2233830C (en) Tool for glass molding operations and method of manufacture thereof
KR100414388B1 (en) Hardening material having high tenacity for an inner surface of cylinder
US6117388A (en) Hot working die steel and member comprising the same for high-temperature use
JPH08100239A (en) Alloy tool steel
US4861547A (en) Iron-chromium-nickel heat resistant alloys
WO2016052660A1 (en) Composite cylinder for molding machine and process for producing same
US5639421A (en) High-hardness precipitation hardening steel for metallic mold
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP3301441B2 (en) Composite cylinder for high-temperature and high-pressure molding
EP1159463B1 (en) Mould steel
JP4339483B2 (en) Steel for cold forging with excellent chip disposal
JP3531752B2 (en) Molding machine cylinder and method of manufacturing the same
JPH0768609A (en) Cylinder for molding machine and manufacture therefor
JPH01165779A (en) Hardening material for inside of cylinder
JP2003003234A (en) Free-cutting steel for plastic molding die having excellent machinability
JPH07145448A (en) Hot tool steel excellent in fatigue fracture property
JPH01139737A (en) Internal hardening material for cylinder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee