KR20020013968A - Zinc Oxide-Based Dehydrogenating Catalysts - Google Patents

Zinc Oxide-Based Dehydrogenating Catalysts Download PDF

Info

Publication number
KR20020013968A
KR20020013968A KR1020027000762A KR20027000762A KR20020013968A KR 20020013968 A KR20020013968 A KR 20020013968A KR 1020027000762 A KR1020027000762 A KR 1020027000762A KR 20027000762 A KR20027000762 A KR 20027000762A KR 20020013968 A KR20020013968 A KR 20020013968A
Authority
KR
South Korea
Prior art keywords
catalyst
weight
dehydrogenation
particularly preferably
sodium
Prior art date
Application number
KR1020027000762A
Other languages
Korean (ko)
Inventor
하인츠 페터 마이어
베른트 펜네만
안드레아스 슐체-틸링
외르크 티트리히 옌트쉬
Original Assignee
빌프리더 하이더
바이엘 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 빌프리더 하이더, 바이엘 악티엔게젤샤프트 filed Critical 빌프리더 하이더
Publication of KR20020013968A publication Critical patent/KR20020013968A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/002Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by dehydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 소정의 나트륨 함량과 비표면적을 갖는 활성 성분으로서 산화아연을 기재로 하는 탈수소화 촉매에 관한 것이다. 본 발명은 또한 2차 알콜을 탈수소화하여 상응하는 케톤을 얻는 데 있어서 상기 촉매의 용도에 관한 것이다.The present invention relates to a dehydrogenation catalyst based on zinc oxide as an active ingredient having a predetermined sodium content and specific surface area. The invention also relates to the use of said catalyst in dehydrogenation of a secondary alcohol to obtain the corresponding ketone.

Description

산화아연 기재 탈수소화 촉매 {Zinc Oxide-Based Dehydrogenating Catalysts}Zinc Oxide-Based Dehydrogenating Catalysts

본 발명은 활성 성분으로서 산화화연을 기재로 하는 탈수소화 촉매 및 2차 알콜을 상응하는 케톤으로 탈수소화시키는 데 있어서의 그의 용도에 관한 것이다.The present invention relates to a dehydrogenation catalyst based on lead oxide as an active ingredient and its use in the dehydrogenation of secondary alcohols with the corresponding ketones.

독일 특허 출원 공개 제19626587호는 활성 성분으로서 Cu를, 지지체로 Al2O3를 함유하는 촉매 상에서 탈수소화에 의해 시클로헥사논을 제조하는 방법을 개시하고 있다. 이러한 촉매는 일반적으로 구리가 없는 경우에 비해 더 낮은 온도에서 반응을 수행할 수 있다.German Patent Application Publication No. 19626587 discloses a process for the preparation of cyclohexanone by dehydrogenation on a catalyst containing Cu as active component and Al 2 O 3 as a support. Such catalysts can generally carry out the reaction at lower temperatures as compared to the absence of copper.

유럽 특허 출원 공개 제0 204 046호는 탈수소화를 위해 구리, 산화아연 및 알칼리 금속 화합물, 바람직하게는 탄산나트륨으로 이루어진 촉매를 사용하는, 시클로헥사논의 제조 방법을 기재한다. 이러한 촉매는 종종 선택성이 좁지만, 이는 적합한 제조 방법 및 활성 물질과 지지체의 유리한 조합에 의해 개선될 수 있다. 이외에도, 허용가능한 선택성을 얻기 위해 물과 같은 첨가제를 반응 혼합물에 혼합하는 것이 종종 필요하다. 이 방법에서는, 낮은 반응 온도에서의 보다 불리한 평형 위치로 인한 비교적 낮은 전환율을 개선시키는 것이 불가능하다. 이들 촉매의 경우, 반응 온도의 상승은 보통 구리의 소결로 인해 촉매 에이징을 상당히 가속화시키는데, 그 결과 이렇게 사용되는 촉매는 비경제적으로 짧은 유효 수명을 갖는다.EP 0 204 046 describes a process for the preparation of cyclohexanone using a catalyst consisting of copper, zinc oxide and an alkali metal compound, preferably sodium carbonate, for dehydrogenation. Such catalysts are often narrow in selectivity, but this can be improved by suitable preparation methods and advantageous combinations of active materials and supports. In addition, it is often necessary to mix additives such as water into the reaction mixture to obtain acceptable selectivity. In this method, it is not possible to improve the relatively low conversion due to the more unfavorable equilibrium position at low reaction temperatures. For these catalysts, the rise in reaction temperature usually significantly accelerates catalyst aging due to the sintering of copper, with the result that the catalysts used in this way have an economically short useful life.

구리 무함유 촉매를 사용하는 방법에서는 이러한 단점들이 없다.There are no such drawbacks in the method using a copper free catalyst.

독일 특허 출원 공개 제1443462호는 염기성 침전제에 의해 아연염 용액을 침전시킴으로써 제조되는 시클로헥산올의 탈수소화용 촉매를 기재하고 있다. 촉매의 Na 함량에 관한 정보는 전혀 제공되지 않는다. 독일 특허 출원 공개 제19609954호는 증기상에서 승온에서 2차 알콜을 탈수소화하는 방법을 개시하고 있다. 산화아연과 탄산칼슘의 혼합물을 촉매로 사용한다. 촉매는 질산아연과 질산칼슘을 탄산나트륨에 의해 침전시키고, 여과하고, 질산염이 없어질 때까지 세척하고, 여과 케이크를 건조하여 얻어진다. 후속적으로, 이 생성물을 하소하고, 가압하여 성형물을 형성한다. 그러나, 이러한 방법을 경제적으로 이용할 수 있는 선택성은 수소를 기류로 반응기에 첨가하는 경우에만 달성된다. 수소 첨가는 반응의 평형 위치를 보다 불리하게 만들고 반응기에서 기체 혼합물의 잔류 시간을 감소시킴으로써 반응 전환율을 감소시키기 때문에, 이러한 사실은 이 방법의 심각한 단점이다. 실시예에 따른, 이 방법의 공간-시간 수율은 촉매 1 g 당, 시간 당 시클로헥사논 0.46 g이었다.German Patent Application Publication No. 1443442 describes a catalyst for dehydrogenation of cyclohexanol prepared by precipitating a zinc salt solution with a basic precipitant. No information is provided regarding the Na content of the catalyst. German Patent Application Publication No. 19609954 discloses a process for dehydrogenating secondary alcohols at elevated temperatures in the vapor phase. A mixture of zinc oxide and calcium carbonate is used as a catalyst. The catalyst is obtained by precipitating zinc nitrate and calcium nitrate with sodium carbonate, filtration, washing until the nitrate disappears, and drying the filter cake. Subsequently, this product is calcined and pressed to form a molding. However, economically viable selectivity of this method is only achieved when hydrogen is added to the reactor in the air stream. This fact is a serious disadvantage of this method because hydrogenation makes the reaction equilibrium more disadvantageous and reduces the reaction conversion by reducing the residence time of the gas mixture in the reactor. According to the examples, the space-time yield of this process was 0.46 g of cyclohexanone per hour, per g of catalyst.

종래 기술의 공지된 모든 방법에서, 디아논은 원치않는 2차 생성물이다.In all known methods of the prior art, diones are unwanted secondary products.

따라서, 본 발명의 목적은 2차 케톤, 바람직하게는 시클로헥사논을 고선택성이면서 고전환율로 얻을 수 있는 방법을 위한 촉매를 찾는 것이었다. 또한, 촉매는 적당한 유효 수명을 가져야 한다. 본 발명에 따른 방법에서는, 2차 알콜을 증기상에서, 0.1 내지 0.6 중량%의 나트륨을 갖는 산화아연을 함유하는 촉매의 존재하에 탈수소화시킨다. 본 발명에 따라 사용될 수 있는 알콜은 2차 지방족 알콜 뿐 아니라 지환족 알콜류이며, 시클로헥산올이 바람직하다.It was therefore an object of the present invention to find a catalyst for the process by which secondary ketones, preferably cyclohexanone, can be obtained with high selectivity and high conversion. In addition, the catalyst should have a suitable useful life. In the process according to the invention, the secondary alcohol is dehydrogenated in the vapor phase in the presence of a catalyst containing zinc oxide with 0.1 to 0.6% by weight sodium. Alcohols which can be used according to the invention are not only secondary aliphatic alcohols but also alicyclic alcohols, with cyclohexanol being preferred.

따라서, 본 출원은 활성 화합물로 산화아연을 함유하는 촉매를 제공한다. 나트륨을 0.1 내지 3%, 바람직하게는 0.1 내지 0.6% 함유하는 촉매가 바람직하다. 0.15 내지 0.4%의 나트륨을 함유하는 촉매가 특히 바람직하다. BET 비표면적은 5 내지 30 m2/g이 바람직하고, 8 내지 20 m2/g이 특히 바람직하다.Accordingly, the present application provides a catalyst containing zinc oxide as the active compound. Preference is given to catalysts containing 0.1 to 3%, preferably 0.1 to 0.6%, sodium. Particular preference is given to catalysts containing 0.15 to 0.4% sodium. The BET specific surface area is preferably 5 to 30 m 2 / g, particularly preferably 8 to 20 m 2 / g.

본 발명에 따른 촉매는 염기에 의해 수용성 아연 화합물로부터 난용성인 아연 화합물을 침전시키고, 후속적으로 침전된 생성물을 당업계의 숙련자에게 알려져 있는 방법으로 처리함으로써 얻어질 수 있다. 본 발명에 따른 제법은 예를 들어 탄산나트륨 수용액을 사용하고, 여기에 황산아연을 첨가하는 것을 포함한다. 침전된 생성물을 여과, 세척, 건조하고, 후속적으로 650 ℃ 이하의 온도에서 하소시킨다. 얻어진 생성물은 경우에 따라서 분쇄 및 압축하는데, 예를 들어 이를 타블렛 성형 보조제와 혼합하고, 이를 타블렛 성형기로 성형하여 성형물을 형성한다.The catalyst according to the invention can be obtained by precipitating a poorly soluble zinc compound from a water soluble zinc compound with a base and subsequently treating the precipitated product by methods known to those skilled in the art. The preparation according to the invention comprises, for example, using an aqueous sodium carbonate solution and adding zinc sulfate thereto. The precipitated product is filtered, washed, dried and subsequently calcined at temperatures below 650 ° C. The resulting product is optionally ground and compacted, for example it is mixed with a tablet molding aid and molded into a tablet molding machine to form a molding.

일반적으로는, 아연염의 수용액으로 진행한다. 사용할 수 있는 아연염의 예로는 황산아연, 질산아연, 염화아연 또는 아세트산아연이 있다. 황산아연 및 염화아연이 바람직하다. 침전을 위해 예를 들어 수산화나트륨, 탄산수소나트륨 또는 탄산나트륨과 같은 수용성 나트륨염을 사용할 수 있고, 탄산나트륨 및 수산화나트륨이 바람직하다. 여기서, 두 염 중 하나의 용액, 바람직하게는 염기를 반응기에넣고, 다른 염의 수용액을 요구되는 pH값이 얻어질 때까지 흘려 보낸다. 침전은 pH가 6 내지 9에 이를 때까지 수행하는 것이 바람직하다. 이러한 침전법은 독일 특허 출원 공개 제3900243호에 기재되어 있다. 선택되는 온도는 일반적으로 20 내지 90 ℃, 바람직하게는 50 내지 80 ℃의 범위내이다. 또다른 변형법에서는, 두가지 염 용액을 동시에 반응기에 도입하는데, 이때 반응기에서 일정한 pH값이 얻어지도록 첨가량을 조절한다. 침전 중 pH 값은 6 내지 9인 것이 바람직하다. 침전물을 여과, 세척 및 건조시킨다. 하소된 촉매 전구체가 세척되어 나올 수 있는 나트륨을 0.1 내지 0.6%, 특히 바람직하게는 0.15 내지 0.4% 함유하고 있도록 액체를 흘려보내 세척을 수행하는 것이 바람직하다. 여기서, 세척되어 나올 수 있는 나트륨의 함량은 촉매 전구체 1 kg 당 100 리터의 증류수로 촉매 전구체를 세척하기 전후의 Na 함량을 측정하여 확인한다.Generally, it advances into the aqueous solution of a zinc salt. Examples of zinc salts that can be used are zinc sulfate, zinc nitrate, zinc chloride or zinc acetate. Zinc sulfate and zinc chloride are preferred. For precipitation, water-soluble sodium salts such as, for example, sodium hydroxide, sodium bicarbonate or sodium carbonate can be used, with sodium carbonate and sodium hydroxide being preferred. Here, a solution of one of the two salts, preferably a base, is placed in the reactor and an aqueous solution of the other salt is flowed out until the required pH value is obtained. Precipitation is preferably carried out until the pH reaches 6-9. This precipitation method is described in German Patent Application Publication No. 3900243. The temperature selected is generally in the range of 20 to 90 ° C, preferably 50 to 80 ° C. In another variant, two salt solutions are introduced into the reactor at the same time, with the addition amount being adjusted to obtain a constant pH value in the reactor. The pH value during precipitation is preferably 6-9. The precipitate is filtered, washed and dried. It is preferable to carry out the washing by flowing a liquid such that the calcined catalyst precursor contains 0.1 to 0.6%, particularly preferably 0.15 to 0.4%, of sodium which can be washed out. Here, the content of sodium that can be washed out is determined by measuring Na content before and after washing the catalyst precursor with 100 liters of distilled water per kg of catalyst precursor.

촉매 전구체를 세척하는 중에는, 사용된 아연염의 음이온이 완전히 세척되도록 주의하는데, 이는 이들 음이온이 본 발명에 따른 촉매의 선택성에 악영향을 미칠 수 있기 때문이다. 또다른 바람직한 방법에서는, 예를 들어 얻어진 침전 생성물을 탄산나트륨 용액 등의 염기성 용액을 사용하여 페이트스로 만든 후, 이를 건조시켜 얻어진 처리된 분말에 소정량의 나트륨을 고의적으로 첨가한다. 용액의 농도는 촉매가 본 발명에 따른 나트륨 함량을 갖도록 선택한다. 이처럼, 세척시에 촉매의 나트륨 함량 (원소 분석 등에 의해 당업계의 숙련자에 의해 쉽게 확인됨)이 영향을 받기 때문에, 세척 단계는 특히 중요하다.While washing the catalyst precursor, care is taken to ensure that the anions of the zinc salts used are thoroughly washed, since these anions may adversely affect the selectivity of the catalyst according to the invention. In another preferred method, for example, the obtained precipitated product is made into pate using a basic solution such as sodium carbonate solution, and then a predetermined amount of sodium is deliberately added to the treated powder obtained by drying it. The concentration of the solution is chosen such that the catalyst has a sodium content according to the invention. As such, the washing step is particularly important because the sodium content of the catalyst (which is readily identified by those skilled in the art by elemental analysis or the like) is affected at the time of washing.

경우에 따라서 얻어진 분말을 바람직하게는 분무 건조기에서 예비 하소시킬수 있다. 그후, 분말은 조형 단계를 거치고, 생성물은 하소시키는데, 하소 조건, 특히 온도는 얻어진 촉매의 BET 내부 비표면적이 최소 5 m2/g, 최대 30 m2/g, 특히 바람직하게는 8 내지 20 m2/g이 되도록 선택한다. 이와 관련하여, 비표면적이 작을수록 하소 온도를 높이고(거나) 하소 시간을 더 길게 선택한다는 것을 예비 실험으로 알아내었다. 조형 및 하소 순서는 경우에 따라 바뀔 수도 있다.If desired, the powder obtained can be preliminarily calcined in a spray dryer. The powder is then subjected to a shaping step and the product is calcined, wherein the calcination conditions, in particular the temperature, are at least 5 m 2 / g, at most 30 m 2 / g, particularly preferably 8 to 20 m, in the BET internal specific surface area of the catalyst Select to be 2 / g. In this regard, preliminary experiments have shown that the smaller the specific surface area, the higher the calcination temperature and / or the longer the calcination time is chosen. The order of molding and calcination may vary from case to case.

바람직한 실시형태에서는, 하소를 먼저 수행하고, 얻어진 생성물을 보조 물질 0.1 내지 5 중량%, 바람직하게는 1 내지 5 중량%, 특히 바람직하게는 2 내지 5 중량%과 혼합하고, 얻어진 생성물을 압축시켜 타블렛, 성상, 환상, 칩핑, 바퀴상, 구상, 바람직하게는 타블렛과 같은 성형물을 형성하였다. 바람직한 타블렛 성형 보조제는 흑연이며, 공정 단계 중에는 어떠한 경우든 촉매의 오염을 피해야하므로 합성 흑연이 그의 높은 순도로 인해 더욱 바람직하다. 산성 특성을 갖는 것으로 당업계의 숙련자에게 알려져 있는 금속 산화물들이 촉매로 들어가지 않게 주의해야 한다는 것은 매우 일반적인 사실이다. 이들의 예로는 활성화된 산화알루미늄이 포함된다. BET 내부 비표면적이 최소 5 m2/g, 최대 30 m2/g, 특히 바람직하게 8 내지 20 m2/g이 되도록 타블렛을 하소시킨다. 이와 관련하여 측면 파열 강도가 20 내지 500 N, 특히 40 내지 100 N인 것이 특히 바람직하다. 이들 파열 강도는 타블렛 성형 분야에서 통상적인 방법, 예를 들면 램압을 조정하고, 압입 플러그 직경이 8 mm인 인스트론 미니(Instron Mini) 44로 측정하여 얻어질 수 있다.In a preferred embodiment, calcination is carried out first, the resulting product is mixed with 0.1 to 5% by weight of auxiliary material, preferably 1 to 5% by weight, particularly preferably 2 to 5% by weight, and the resulting product is compressed to give tablets , Shaped, annular, chipped, wheeled, spherical, preferably shaped articles such as tablets. Preferred tablet shaping aids are graphite, and synthetic graphite is more preferred because of its high purity because in any case during the process step the contamination of the catalyst should be avoided. It is a very common fact that care should be taken not to enter metal catalysts known to those skilled in the art as having acidic properties. Examples of these include activated aluminum oxide. The tablet is calcined such that the BET internal specific surface area is at least 5 m 2 / g, at most 30 m 2 / g, particularly preferably 8 to 20 m 2 / g. In this connection it is particularly preferred that the lateral burst strength is 20 to 500 N, in particular 40 to 100 N. These burst strengths can be obtained by conventional methods in the field of tablet molding, for example by adjusting the ram pressure and measuring with an Instron Mini 44 with an indentation plug diameter of 8 mm.

본 발명에 따른 방법에서 촉매를 사용하는 경우, 탈수소화될 2차 알콜의 증기를 촉매와 접촉시킨다. 이를 위해, 알콜을 예를 들면 증발기에서 증발시키고, 촉매층을 함유하는 가열된 유동관을 통해 통과시킨다. 시클로헥산올의 경우, 시간 단위 당 충전되는 소정량의 알콜은 촉매층 1 리터 당, 시간 당 0.5 내지 3 kg이 바람직하고, 1 내지 2 kg이 특히 바람직하며, 다른 알콜의 경우 이 양은 시클로헥산올 분율만큼 그들의 분자량에 해당한다. 특히 바람직한 방법은 시클로헥사논의 산화 및 후속적인 정제로 얻어진 생성물인 시클로헥산올과 시클로헥사논의 혼합물을 사용하는 것이다. 여기서 반응 온도는 촉매의 유효 수명을 허용되지 않는 정도로 변화시키는 것 없이 200 내지 500 ℃가 바람직하고, 300 내지 450 ℃가 특히 바람직하다. 바람직한 방법에서, 온도는 2차 알콜이 바람직하게 60 내지 90%, 특히 바람직하게 65 내지 80% 전환되도록 선택한다. 그후, 반응 온도를 300 내지 450 ℃로 변화시키는 것이 특히 바람직하다. 얻어진 생성물을 통상적으로 응축시키고, 수소를 제거하고, 증류에 의해 후처리한다.When using a catalyst in the process according to the invention, the vapor of the secondary alcohol to be dehydrogenated is contacted with the catalyst. To this end, the alcohol is evaporated, for example in an evaporator, and passed through a heated flow tube containing a catalyst bed. In the case of cyclohexanol, the predetermined amount of alcohol charged per unit of time is preferably 0.5 to 3 kg per hour, especially preferably 1 to 2 kg per liter of catalyst layer, and for other alcohols this amount is the cyclohexanol fraction As much as their molecular weight. A particularly preferred method is to use a mixture of cyclohexanol and cyclohexanone, which is a product obtained by the oxidation and subsequent purification of cyclohexanone. The reaction temperature here is preferably 200 to 500 ° C, particularly preferably 300 to 450 ° C, without changing the useful life of the catalyst to an unacceptable degree. In a preferred method, the temperature is chosen such that the secondary alcohol is preferably converted from 60 to 90%, particularly preferably from 65 to 80%. It is then particularly preferable to change the reaction temperature to 300 to 450 ° C. The product obtained is usually condensed, hydrogen removed and worked up by distillation.

본 발명에 따른 촉매는 유효 수명이 길고, 활성이 충분히 높으면서 동시에 선택도가 높다.The catalyst according to the invention has a long useful life, high activity and high selectivity at the same time.

본 발명에 따라 제조된 시클로헥사논은 폴리아미드-6 및 폴리아미드-6.6에 대해 중요한 전구체이다.Cyclohexanone prepared according to the invention is an important precursor for polyamide-6 and polyamide-6.6.

실시예 1 (촉매의 제조)Example 1 (Preparation of Catalyst)

증류수 18 리터 및 18% 탄산나트륨 용액 18 리터를 60 리터의 반응기에 넣고, 60 ℃로 가열하였다. 황산아연 수화물(ZnSO4·7H2O)을 증류수에 용해시키고, 황산을 사용하여 pH 4.1로 산성화시켜 얻어진, 1리터 당 아연 100 g을 함유하는 황산아연 용액 약 20 리터를 60 ℃로 가열하고, 교반시키면서 60분 동안 반응기로 흘려보냈다. 반응기에서의 pH값이 7.0이 될 때까지 황산아연 용액을 첨가하였다. 반응 혼합물을 30분 동안 더 교반시킨 후, 30분 동안 방치하고, 상등액을 흡인 여과하고, 현탁액을 3개의 너체 여과기에 나누어서 여과하고, 총 72 리터의 증류수로 세척하였다. 여과 케이크를 몇개의 금속 시트에 펼쳐서 125 ℃의 강제 통풍 오븐에서 하룻밤 건조시켰다. 생성물 3570 g이 얻어졌다. 그후, 이 생성물을 정류 오븐에서 400 ℃로 가열하고, 1 시간 동안 하소시켰다. 얻어진 생성물을 분쇄한 후, 고체 물질 총량을 기준으로 합성 흑연 (평균 입도 44 ㎛) 4 중량%와 혼합하고, 타블렛 성형기에서 직경 5 mm, 높이 3 mm의 타블렛으로 압축하였다. 이 타블렛을 500 ℃의 실험용 오븐에서 4 시간 동안 달구었다. 촉매의 측면 파괴 경도는 104 N, BET 내부 비표면적은 11 m2/g, 나트륨 함량은 0.20% 및 황산염 함량은 0.02%였다.18 liters of distilled water and 18 liters of 18% sodium carbonate solution were placed in a 60 liter reactor and heated to 60 ° C. About 20 liters of zinc sulfate solution containing 100 g of zinc per liter, obtained by dissolving zinc sulfate hydrate (ZnSO 4 7H 2 O) in distilled water and acidified to pH 4.1 with sulfuric acid, was heated to 60 ° C., Flowed into the reactor for 60 minutes with stirring. Zinc sulfate solution was added until the pH value in the reactor was 7.0. The reaction mixture was further stirred for 30 minutes, then left for 30 minutes, the supernatant was suction filtered, the suspension was filtered by dividing into three nugget filters and washed with a total of 72 liters of distilled water. The filter cake was spread over several metal sheets and dried overnight in a forced draft oven at 125 ° C. 3570 g of product were obtained. This product was then heated to 400 ° C. in a rectifying oven and calcined for 1 hour. The resulting product was ground and then mixed with 4% by weight of synthetic graphite (average particle size 44 μm) based on the total amount of solid material and compressed into a tablet 5 mm in diameter and 3 mm in height in a tablet molding machine. The tablets were baked for 4 hours in a 500 ° C. laboratory oven. The catalyst had a lateral fracture hardness of 104 N, a BET internal specific surface area of 11 m 2 / g, a sodium content of 0.20% and a sulfate content of 0.02%.

실시예 2 (촉매의 제조)Example 2 (Preparation of Catalyst)

독일 특허 제3900243호에서와 같이, 황산아연 및 염화아연을 1:2의 몰비로 포함하는 아연염 용액을 사용하였다. 탄산나트륨 및 수산화나트륨을 40:60의 몰비로 포함하는 용액을 염기로 사용하였다. 두 용액을 칭량하여 반응기에 동시에 투입하는데, 이때 pH가 8이 되도록 펌핑 속도를 조절하였다. 얻어진 생성물을 여과하였다. 그후, 이를 너치 여과기에서 세척하였다. 다른 방법으로는 실시예 1과 동일하게 하였다. 최종 제조된 촉매의 나트륨 함량은 0.39%, 측면 파괴 경도는 45N, BET 내부 비표면적은 9 m2/g였다.As in German Patent No. 3900243, a zinc salt solution containing zinc sulfate and zinc chloride in a molar ratio of 1: 2 was used. A solution containing sodium carbonate and sodium hydroxide in a molar ratio of 40:60 was used as the base. Both solutions were weighed and introduced into the reactor at the same time, with the pumping speed adjusted to pH 8. The obtained product was filtered. Then it was washed in a nutch filter. Another method was the same as in Example 1. The final catalyst had a sodium content of 0.39%, a lateral fracture hardness of 45N and a BET internal specific surface area of 9 m 2 / g.

실시예 3 (비교예)Example 3 (Comparative Example)

이 방법은 촉매 타블렛을 제조 과정 말렵에 하소시키지 않았다는 것을 제외하고는 실시예 2와 동일하였다. 그 결과, BET 내부 비표면적 64 m2/g이 얻어졌다. 촉매의 나트륨 함량은 0.39%이고, 그의 측면 파괴 경도는 48N였다.This method was the same as in Example 2 except that the catalyst tablet was not calcined at the end of the preparation process. As a result, a BET internal specific surface area of 64 m 2 / g was obtained. The sodium content of the catalyst was 0.39% and its lateral fracture hardness was 48N.

실시예 4 (비교예)Example 4 (Comparative Example)

이 방법은 침전된 생성물 5.0 kg을 진공 너치 여과기에서 증류수 530 리터로 더 세척하였다는 것을 제외하고는 실시예 2와 동일하였다. 성형물은 실시예 2와 동일하게 제조하였다. 얻어진 촉매의 나트륨 함량은 0.022%, 측면 파괴 경도는 35 N, BET 내부 비표면적은 10 m2/g였다.This method was the same as in Example 2 except that 5.0 kg of the precipitated product was further washed with 530 liters of distilled water in a vacuum notch filter. Molded products were prepared in the same manner as in Example 2. The sodium content of the obtained catalyst was 0.022%, the lateral fracture hardness was 35 N, and the specific surface area of the BET was 10 m 2 / g.

실시예 5 (비교예)Example 5 (Comparative Example)

"진크바이스 파마(Zinkweiss Pharma) 8" 형의 ZnO 분말 (그릴로(Grillo) 회사 제품) 4 kg을 물을 사용하여 페이스트로 만들고, 생성물을 125 ℃의 실험용 오븐에서 하룻밤 건조시키고, 얻어진 케이크를 분쇄하고, 체질기에 의해 입도 1.5 내지 3 mm의 분획물을 가려내었다. 얻어진 알갱이는 매우 부드러웠고, BET 내부 비표면적은 7.5 m2/g였고, 나트륨 함량은 12 ppm였다.4 kg of ZnO powder of "Zinkweiss Pharma 8" type (manufactured by Grillo) is pasteurized with water, the product is dried overnight in a laboratory oven at 125 ° C and the resulting cake is ground And fractions with a particle size of 1.5 to 3 mm were screened by a sieving machine. The granules obtained were very soft, the BET internal specific surface area was 7.5 m 2 / g and the sodium content was 12 ppm.

실시예 6 (촉매 시험)Example 6 (catalyst test)

얻어진 촉매를 내경 55 mm, 높이 1 m인 유동관에서 시험하였다. 반응관을 전기적으로 가열하였으며, 촉매층의 부피는 각 경우 2 리터였다. 94% 시클로헥산올과 6% 시클로헥사논의 혼합물을 증발기를 통해 반응기로 시간 당 3 kg의 속도로 공급하였다. 촉매는 약 7 내지 10일의 기간 동안 작동시켰으며, 이 기간 중에 반응 온도는 얻어지는 생성물의 시클로헥사논 함량이 73 내지 75%가 되도록 단계적으로 증가시켰다. 그후, 기체 크로마토그래피에 의해 측정된 생성물의 디아논 함량 및 촉매 평가를 위해 요구되는 반응 온도를 기록하였다. 실시예 3의 촉매의 경우에는, 전환율이 63% 넘게 증가되지 않았으며, 실시예 1 및 실시예 2에 대해 비교를 위한 측정값들이 제시된다.The obtained catalyst was tested in a flow tube having an inner diameter of 55 mm and a height of 1 m. The reaction tube was heated electrically and the volume of catalyst bed was in each case 2 liters. A mixture of 94% cyclohexanol and 6% cyclohexanone was fed to the reactor via an evaporator at a rate of 3 kg per hour. The catalyst was operated for a period of about 7 to 10 days, during which the reaction temperature was increased stepwise to bring the cyclohexanone content of the resulting product to 73 to 75%. The dianone content of the product, as determined by gas chromatography, and the reaction temperature required for catalyst evaluation were then recorded. In the case of the catalyst of Example 3, the conversion was not increased by more than 63%, and the measured values for comparison are shown for Examples 1 and 2.

독일 특허 제14 43 462호의 실시예 1을 반복한다면 나트륨 3.67 중량%를 함유하는 촉매가 얻어진다.Repeating Example 1 of DE 14 43 462 yields a catalyst containing 3.67% by weight sodium.

탈수소화 시험의 결과Result of dehydrogenation test 촉매catalyst Na 함량 [%]Na content [%] BET (m2/g)BET (m 2 / g) 샘플링 시간 [h]Sampling time [h] 반응 시간 [℃]Reaction time [℃] 시클로헥사논 함량 [%]Cyclohexanone content [%] 생성물 중의 디아논 [%]Dione [%] in the product 실시예 1Example 1 0.200.20 1111 97 24397 243 309 327309 327 64 7364 73 0.19 0.240.19 0.24 실시예 2Example 2 0.390.39 99 93 18993 189 333 347333 347 64 7564 75 0.09 0.170.09 0.17 실시예 3Example 3 0.390.39 6464 9292 299299 6363 0.850.85 실시예 4Example 4 0.0220.022 1010 215215 323323 7474 1.651.65 실시예 5Example 5 0.00120.0012 168168 340340 7474 1.861.86

Claims (7)

총중량을 기준으로 0.1 내지 3 중량%, 바람직하게는 0.1 내지 0.6 중량%의 나트륨을 함유하며, BET 내부 비표면적이 5 내지 30 m2/g인 것을 특징으로 하는, 산화아연을 함유하는 탈수소화 촉매.Zinc oxide containing dehydrogenation catalyst, characterized in that it contains 0.1 to 3% by weight, preferably 0.1 to 0.6% by weight of sodium, and the BET internal specific surface area is 5 to 30 m 2 / g. . 제1항에 있어서, 촉매의 총중량을 기준으로 0.1 내지 1 중량%, 특히 바람직하게는 0.1 내지 0.6 중량%, 가장 특히 바람직하게는 0.15 내지 0.4 중량%의 나트륨을 함유하는 것을 특징으로 하는 탈수소화 촉매.2. Dehydrogenation catalyst according to claim 1, characterized in that it contains 0.1 to 1% by weight, particularly preferably 0.1 to 0.6% by weight, most particularly preferably 0.15 to 0.4% by weight, based on the total weight of the catalyst. . 제1항 또는 제2항에 있어서, BET 내부 비표면적이 8 내지 20 m2/g인 것을 특징으로 하는 탈수소화 촉매.The dehydrogenation catalyst of claim 1 or 2, wherein the BET internal specific surface area is 8 to 20 m 2 / g. 제1항 내지 제3항 중 어느 한 항에 있어서, 추가의 보조 물질을, 바람직하게는 타블렛 성형을 위해 바람직하게는 0.1 내지 5 중량%, 특히 바람직하게는 1 내지 5 중량%, 가장 특히 바람직하게는 2 내지 5 중량% 양의 흑연을 함유하는 것을 특징으로 하는 탈수소화 촉매.A further auxiliary material according to any one of the preceding claims, preferably 0.1 to 5% by weight, particularly preferably 1 to 5% by weight, most particularly preferably for tablet molding Is a dehydrogenation catalyst, characterized in that it contains 2 to 5% by weight of graphite. 측면 압입 경도가 20 내지 500 N, 바람직하게는 40 내지 100 N인 것을 특징으로 하는, 제1항 내지 제4항 중 어느 한 항의 탈수소화 촉매 중 하나를 함유하는 성형물.A molded article containing one of the dehydrogenation catalysts according to any one of claims 1 to 4, characterized in that the lateral indentation hardness is 20 to 500 N, preferably 40 to 100 N. 제5항에 있어서, 타블렛인 것을 특징으로 하는 성형물.The molding according to claim 5, which is a tablet. 제1항 내지 제4항 중 어느 한 항의 촉매 및(또는) 제5항 또는 제6항에 따른 성형물의 존재하에 증기상에서, 승온하에서, 바람직하게는 200 내지 500 ℃, 특히 바람직하게는 300 내지 450 ℃에서 2차 알콜을 탈수소화하여 2차 케톤을 제조하는 방법.In the presence of the catalyst of claim 1 and / or the molding according to claim 5 or 6, in the vapor phase, at elevated temperature, preferably from 200 to 500 ° C., particularly preferably from 300 to 450 A process for the preparation of secondary ketones by dehydrogenation of secondary alcohols at < RTI ID = 0.0 >
KR1020027000762A 1999-07-19 2000-07-06 Zinc Oxide-Based Dehydrogenating Catalysts KR20020013968A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19933079.4 1999-07-19
DE19933079A DE19933079A1 (en) 1999-07-19 1999-07-19 Dehydrogenation catalysts
PCT/EP2000/006376 WO2001005499A1 (en) 1999-07-19 2000-07-06 Zinc oxide-based dehydrogenating catalysts

Publications (1)

Publication Number Publication Date
KR20020013968A true KR20020013968A (en) 2002-02-21

Family

ID=7914824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020027000762A KR20020013968A (en) 1999-07-19 2000-07-06 Zinc Oxide-Based Dehydrogenating Catalysts

Country Status (9)

Country Link
EP (1) EP1202799A1 (en)
JP (1) JP2003504194A (en)
KR (1) KR20020013968A (en)
CN (1) CN1361718A (en)
AU (1) AU6432100A (en)
DE (1) DE19933079A1 (en)
HK (1) HK1048613A1 (en)
WO (1) WO2001005499A1 (en)
ZA (1) ZA200200015B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022922A (en) * 2005-07-12 2007-02-01 Tonen Chem Corp Method for producing carbonyl compound
JP5631308B2 (en) 2008-07-18 2014-11-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Modified zinc oxide particles
JP6627219B2 (en) * 2015-01-05 2020-01-08 株式会社Ihi Olefin production method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1211629B (en) * 1962-08-14 1966-03-03 Basf Ag Process for the dehydrogenation of cyclohexanol
DE1443462A1 (en) * 1962-12-18 1969-08-14 Basf Ag Process for the dehydration of primary or secondary alcohols
FR1543933A (en) * 1966-11-28 1968-10-31 Inst Francais Du Petrole Process and catalyst for the manufacture of cyclic ketones by catalytic dehydrogenation of cyclic alcohols
DE3200483A1 (en) * 1982-01-09 1983-07-21 Bayer Ag, 5090 Leverkusen MOLDED BODIES CONTAINING SILICA, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
JPS59204145A (en) * 1983-05-02 1984-11-19 Toa Nenryo Kogyo Kk Production of carbonyl compound
DE3513568A1 (en) * 1985-04-16 1986-10-16 Basf Ag, 6700 Ludwigshafen PROCESS FOR WORKING UP CYCLOHEXANOL, CYCLOHEXANONE AND CYCLOHEXYL HYDROPEROXIDE CONTAINING REACTION MIXTURES
US4670605A (en) * 1985-05-31 1987-06-02 Industrial Technology Research Institute Process and catalyst for the conversion of cyclohexanol to cyclohexanone
US4918239A (en) * 1988-12-27 1990-04-17 National Science Council Method of producing cyclohexanone from cyclohexanol through oxidative dehydrogenation
JPH04164816A (en) * 1990-10-30 1992-06-10 Mitsubishi Materials Corp Production of acicular zinc oxide powder by submerged synthetic method
JPH04164813A (en) * 1990-10-30 1992-06-10 Mitsubishi Materials Corp Production of zinc oxide powder
US5254516A (en) * 1992-03-26 1993-10-19 Research Triangle Institute Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance
DE19609954A1 (en) * 1996-03-14 1997-09-18 Basf Ag Process for the dehydrogenation of secondary cyclic alcohols

Also Published As

Publication number Publication date
CN1361718A (en) 2002-07-31
DE19933079A1 (en) 2001-01-25
EP1202799A1 (en) 2002-05-08
AU6432100A (en) 2001-02-05
JP2003504194A (en) 2003-02-04
WO2001005499A1 (en) 2001-01-25
HK1048613A1 (en) 2003-04-11
ZA200200015B (en) 2003-01-02

Similar Documents

Publication Publication Date Title
RU2024296C1 (en) Method for production of acrylic acid and catalyst for its realization
KR100516408B1 (en) Monoclinic Zirconium Dioxide having a Large Surface Area
JP3802056B2 (en) Alcohol production method
US7119237B2 (en) Process and catalyst for preparing alcohols
JP3486195B2 (en) Method for producing 1,3-propanediol
AU650558B2 (en) Copper/zinc oxide/aluminum oxide-containing catalysts
US6716789B1 (en) Method for producing oxidic catalysts containing copper with oxidation number>0
US4024074A (en) Catalyst for the oxidation of methanol to formaldehyde and process for preparing the same
US5347056A (en) Process for producing unsaturated alcohols
DE10124962A1 (en) Catalysts for the purification of ethylene
KR100500624B1 (en) Process for Dehydrogenating Secondary Cyclic Alcohols
KR20020013968A (en) Zinc Oxide-Based Dehydrogenating Catalysts
CN112387268B (en) Solid base catalyst for preparing 3-hydroxybutyraldehyde and preparation method thereof
WO2007042456A1 (en) Method for hydrogenating carbonyl compounds
JP3328340B2 (en) Process for producing acrolein or acrylic acid, and catalyst used therefor
JP3523566B2 (en) Method for producing triethylenediamine using phosphate catalyst
RU2190468C2 (en) Catalyst for dehydrogenation of cyclohexanol into cyclohexanone and method of its production
JPH05168928A (en) Catalyst for dehydrogenation reaction, production thereof and production of carbonyl compound using the catalyst
JPH0672706A (en) Method for increasing strength of zeolite compact
JP4182324B2 (en) Production method of aromatic amine production catalyst
US3404099A (en) Process for the preparation of iron-base catalytic masses and the resulting products
JPH08224472A (en) Catalyst for hydration reaction of olefin and its production
CN117003650A (en) Method for synthesizing hexamethylenediamine from caprolactam
JP2544207B2 (en) Cyclododecanone manufacturing method
WO1998010864A1 (en) Catalyst for preparing cyclohexanone by dehydrogenation of cyclohexanol and process for the preparation thereof

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid