KR20020002448A - Fluidized porous media soak with zeolite for removal of organic carbon and denitrification - Google Patents

Fluidized porous media soak with zeolite for removal of organic carbon and denitrification Download PDF

Info

Publication number
KR20020002448A
KR20020002448A KR1020010070614A KR20010070614A KR20020002448A KR 20020002448 A KR20020002448 A KR 20020002448A KR 1020010070614 A KR1020010070614 A KR 1020010070614A KR 20010070614 A KR20010070614 A KR 20010070614A KR 20020002448 A KR20020002448 A KR 20020002448A
Authority
KR
South Korea
Prior art keywords
zeolite
fluidized bed
carrier
bed carrier
impregnated
Prior art date
Application number
KR1020010070614A
Other languages
Korean (ko)
Inventor
전양근
Original Assignee
전양근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전양근 filed Critical 전양근
Priority to KR1020010070614A priority Critical patent/KR20020002448A/en
Publication of KR20020002448A publication Critical patent/KR20020002448A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE: A fluid media soaked with zeolite is provided to remove organics and ammonia nitrogen via adsorption and ion-exchange. CONSTITUTION: The fluid media is manufactured by soaking polyethylene or poly-urethane with zeolite. The pore size of polyethylene and polyurethane is 25-60ppi. The zeolite of the present invention has a specific surface area of 0.9-1.7m¬2/g, and a density 1.1-2.1g/cc, and an ion-exchange capacity (C.E.C) of 120(me/100g). Soaked zeolite in the fluid media is filtered through a sieve being 300-500 mesh. Water content of zeolite is 12% and less. The fluid media is packed in an aerobic tank in a ratio of 10-20% of the aerobic tank volume.

Description

제올라이트가 함침된 유기물제거 및 탈질용 유동상 담체 및 그 제조방법 {Fluidized porous media soak with zeolite for removal of organic carbon and denitrification}Fluidized porous media soak with zeolite for removal of organic carbon and denitrification}

본 발명은 유동상 담체의 제조와 그 운영에 관한 것으로 생물학적 처리방법에 의한 유기성 오수 및 폐수를 처리함에 있어서 안정적인 미생물량을 확보하고 부하변동에도 유지관리가 용이하며 슬러지 발생량이 적은 처리방법중 미생물 담체를 이용한 방법이 최선의 대안으로 개발되고 있다. 미생물 담체가 적용되지 않은 일반적인 표준활성슬러법의 경우 유지관리가 상당히 어려워 부하변동이나 온도변화등에 민감하게 반응하는 단점이 있다. 이를 극복하기 위한 대안으로 고정상 담체와 유동상 담체를 이용하는 방법이 제시되어 다양한 담체에 대한 적용성 실험과 기술개발이 이루어 지고 있다.The present invention relates to the manufacture and operation of a fluidized bed carrier, to secure a stable microbial amount in the treatment of organic sewage and wastewater by a biological treatment method, easy to maintain and control the load fluctuations, microbial carrier in the treatment method is less sludge generation The method using is being developed as the best alternative. In the case of a general standard activated sludge method in which a microbial carrier is not applied, maintenance is difficult, and thus there is a disadvantage in that it reacts sensitively to load variation or temperature change. As an alternative to overcome this problem, a method of using a fixed bed carrier and a fluidized bed carrier has been proposed, and the applicability experiment and technology development for various carriers have been made.

고정상 미생물막을 이용한 방법은 담체 유동에 소요되는 에너지를 절감할 수 있는 장점이 있는 반면에 생산가가 고가 이고, 혼합효율이 저하되며 과도한 미생물막이 형성될 경우 활성미생물층의 성장이 어렵고, 생물막의 성장에 의한 탈리가 단점으로 제시된다. 반면에 유동상 담체의 경우 유동에 소요되는 에너지가 다소 큰 반면에 혼합효율을 높일 수 있으며 과도한 미생물막의 성장을 억제하고 표면에 활성미생물층을 확보할 수 있으며 생물막내로의 산소 및 물질전달이 용이한 장점이 있다.The method using the fixed-phase microbial membrane has the advantage of reducing the energy required for carrier flow, while the production cost is high, the mixing efficiency is lowered, and if the excessive microbial membrane is formed, it is difficult to grow the active microbial layer, Desorption by water is presented as a disadvantage. On the other hand, in the case of the fluidized bed carrier, the energy required for the flow is rather large, but the mixing efficiency can be improved, excessive microbial membrane growth can be suppressed, an active microbial layer can be secured on the surface, and oxygen and mass transfer into the biofilm are easy. There is one advantage.

이러한 유동상 담체의 효율을 높이기 위하여 표면적이 상대적으로 큰 다공성 담체를 이용하는 방법이 적용되기 시작하였으며 최근에는 이러한 다공성 담체에 활성탄등을 코팅한 유동상 담체가 상용화 되기도 하였으나 가격이 고가인 반면 효율은 기대치에 미치지 못하고 있는 실정이다.In order to increase the efficiency of the fluidized bed carrier, a method using a porous carrier having a relatively large surface area has begun to be applied. Recently, a fluidized bed carrier coated with activated carbon on such a porous carrier has been commercialized, but the price is high but the efficiency is expected. This is not true.

따라서 본 발명품은 상기와 같은 종래의 문제점을 감안하여 창출된 것으로 그 목적은 생물학적 처리조내 운전이 안정되게 할뿐 만 아니라 폭기조 및 무산소조에서 고농도의 미생물이 최적의 활성을 유지할 수 있고 유동상 담체내에 함침된 제올라이트에 의한 물리적인 흡착 및 화학적인 이온교환에 의한 오염물질을 처리할 수 있는 담체의 제조와 영양염중 질소제거를 위한 운전방법을 제공함에 있다.Therefore, the present invention was created in view of the above-mentioned conventional problems, and its purpose is not only to stabilize the operation in the biological treatment tank, but also to maintain the optimum activity of the high concentration of microorganisms in the aeration tank and the anoxic tank and impregnate the fluidized bed carrier. The present invention provides a method for preparing a carrier capable of treating contaminants by physical adsorption and chemical ion exchange by zeolite and removal of nitrogen from nutrients.

도1은 본 발명인 유동상 담체1 is a fluid bed carrier of the present invention

도2는 유동상 담체내에 제올라이트가 함침되기전의 담체 모습Figure 2 shows the carrier before the zeolite is impregnated in the fluidized bed carrier

도3는 유동상 담체내에 제올라이트가 함침된 모습3 is a zeolite impregnated in the fluidized bed carrier

본 발명품인 유동상담체는 비표면적(specific surface area)이 0.9 ∼ 1.7(㎡/g) 이고 밀도는 1.1 ∼2.1(g/cc)로 폴리에테르나 폴리우레탄계의 다공성 담체로담체 내부에 제올라이트를 함침(soaking)시킨 것이다. 이 다공성 담체의 공극의 크기는 25 ppi ∼ 60 ppi(pore per inch)로 적용되는 미생물상 및 처리반응조의 기능에 따라 적용한다.The fluid carrier of the present invention has a specific surface area of 0.9 to 1.7 (m2 / g) and a density of 1.1 to 2.1 (g / cc), impregnating zeolite inside the carrier with a porous carrier of polyether or polyurethane. (soaking) The pore size of this porous carrier is applied depending on the function of the microbial phase and the treatment tank applied at 25 ppi to 60 ppi (pore per inch).

유동상 담체는 한변의 길이가 1.0(±0.5)cm인 정육각형이나 직경이 1.0(±0.5)cm이 구형이며 여기에 함침되는 제올라이트는 300 ∼ 500 메취(mesh)체를 통과한 것으로 5 ∼ 20%의 중량부로 수용성 아크릴계의 결합체로 혼합한 후 100±5℃로 약 120분간 건조한다. 여기에 사용되는 제올라이트는 수분이 12%이하로 이온교환능력(C.E.C)은 120(me/100g)이상으로 그 화학적 조성은 다음표와 같다.The fluidized bed carrier is a regular hexagon of 1.0 (± 0.5) cm in length on one side, or a sphere of 1.0 (± 0.5) cm in diameter, and the zeolite impregnated therein is passed through a 300 to 500 mesh sieve and is 5 to 20% After mixing with a water-soluble acrylic binder in parts by weight of and dried at 100 ± 5 ℃ for about 120 minutes. The zeolite used here has a water content of 12% or less and an ion exchange capacity (C.E.C) of 120 (me / 100g) or more, and its chemical composition is shown in the following table.

기타 유기물손실율은 8%이하이며 제올라이트와 다공성 담체의 중량비는 15∼30%로 조성한다.Other organic loss is less than 8% and the weight ratio of zeolite and porous carrier is 15-30%.

이러한 유동상 담체는 기공의 크기가 비교적 적은 45 ∼60ppi것은 호기성 미생물의 서식에 적합하므로 포기조내 투입하는 것이 바람직하며 투입율은 반응조 용적의 10% ∼20%로 한다. 포기조내의 투입율은 유입수 농도와 조의 형상에 따라서 결정되어 진다. 유입수내의 암모니아성 질소가 다소 높을 경우 투입율은 증가한다. 유입수내 암모니아 이온은 1차적으로 유동상 담체내 제올라이트에 이온교환되어 제거되며 제올라이트의 재생은 미생물의 신진대사작용에 의해 이루어 진다. 미생물막이 형성되기전에 유입수중 유기물이 제거되는 반응은 일차적으로 유동상 담체내에오염물질이 흡착되고 미생물에 의한 생물막이 형성된다. 폭기조내에 투입된 유동상 담체는 산기관으로부터 배출되는 기포의 유동에 의해 불규칙적인 혼합운동을 하면서 수류의 전단력과 상호간의 충돌에 의해 일정한 생물막 두께를 유지 할 수 있게 된다.Since the fluidized bed carrier has a relatively small pore size of 45 to 60 ppi, which is suitable for aerobic microorganisms, it is preferable to add it to the aeration tank, and the feeding rate is 10% to 20% of the volume of the reaction tank. The feed rate in the aeration tank is determined by the influent concentration and the shape of the tank. If the ammonia nitrogen in the influent is rather high, the input rate increases. Ammonia ions in the influent are primarily removed by ion exchange to the zeolites in the fluidized bed carrier and the regeneration of the zeolites is carried out by the metabolism of the microorganisms. In the reaction in which organic matter is removed from the influent before the microbial membrane is formed, the pollutant is adsorbed in the fluidized bed carrier and the biofilm is formed by the microorganism. The fluidized bed carrier introduced into the aeration tank can maintain a constant biofilm thickness due to the shear force of the water stream and the collision with each other while performing irregular mixing movement by the flow of bubbles discharged from the diffuser.

영양염중의 질소제거를 위한 무산소조를 운영할 경우 여기에 투입되는 유동상 담체는 공극이 비교적 큰 25 ∼40ppi의 것을 사용한다. 이 유동상 담체의 유동은 교반기에 의하여 이루어 지며 무산조내에 일부 잔류하는 암모니아 이온을 이온교환하고 유기물을 흡착하여 탈질작용시 안정적인 탄소원으로 이용할 수 있게 한다. 이 유동상 담체는 폭기조내 투입된 담체보다는 다소 많은 양의 미생물농도를 유지할 수 있는 것을 특징으로 한다. 무산소조내에 존재하는 암모니아 이온이 많을수록 탈질반응은 저하되므로 잔유농도가 높을수록 투입율을 높여야 한다. 탈질용 유동상 담체의 경우 폭기조내 투입된 호기성용 담체에 비해 비중이 상대적으로 작아 저속 교반에 의해서도 충분히 혼합될 수 있다.When operating an anoxic tank for the removal of nitrogen from nutrients, the fluidized bed carrier used here should be 25-40 ppi with relatively large voids. This fluidized bed carrier is flowed by a stirrer and ion-exchanges some of the remaining ammonia ions in the acid-free tank and adsorbs the organic material so that it can be used as a stable carbon source during denitrification. This fluidized bed carrier is characterized in that it can maintain a slightly higher concentration of microorganisms than the carrier introduced into the aeration tank. The more ammonia ions present in the anoxic bath, the lower the denitrification reaction, so the higher the residual concentration, the higher the input rate. In the case of the fluidized bed carrier for denitrification, the specific gravity is relatively small compared to the aerobic carrier introduced into the aeration tank, and thus, it may be sufficiently mixed even by low speed agitation.

전술한 바와 같이 유동상 담체는 유입수중의 암모니아성 이온과 유기물질을 이온교환과 흡착에 의해서 제거하고, 미생물의 농도를 9,000∼10,000mg/L정도로 고농도 유지가 가능하기 때문에 유량 및 수질의 변동에 안정적으로 대처할 수 있다. 이와 같은 유동상담체의 적용은 중소규모 오폐수처리시설 뿐만 아니라 질산화 및 유기물 제거가 원활하게 이루어지지 않는 처리시설에 적정량을 투입하므로서 효율향상을 기대할 수 있다. 또한 생물반응기내 미생물을 고농도로 유지할 수 있기 때문에 유입수량의 증가에 대한 별도의 반응조 증가 없이도 기존시설을 운영할 수 있으므로 소요부지를 절약할 수 있는 효과가 있다.As described above, the fluidized bed carrier removes ammonia ions and organic substances in the influent water by ion exchange and adsorption, and maintains high concentrations of microorganisms at a concentration of 9,000 to 10,000 mg / L. Can cope with it stably. The application of such a fluid carrier can be expected to improve efficiency by putting an appropriate amount into a small and medium-sized wastewater treatment facility as well as a treatment facility where nitrification and organic matter removal are not performed smoothly. In addition, since the microorganisms in the bioreactor can be maintained at a high concentration, the existing facility can be operated without increasing the reaction tank for the increase in inflow amount, thereby saving the required site.

Claims (4)

공극의 크기가 25 ppi ∼ 60 ppi인 폴리에틸렌이나 폴리우레탄재질의 다공성 담체와 이에 제올라이트가 함침되어 암모니아 이온의 제거와 유기물의 흡착 및 많은 비표면적을 보유하여 미생물의 집적이 가능한 생물학적 처리용 유동상 담체A porous carrier made of polyethylene or polyurethane with a pore size of 25 ppi to 60 ppi and a zeolite impregnated therein to remove ammonia ions, adsorb organic matter, and retain a large specific surface area, thereby allowing microbial accumulation. 제1항에 있어 유동상 담체의 크기는 1.0(±0.5)cm인 정육각형이나 직육각형인 것이나, 직경이 1.0(±0.5)cm이 구형이며 여기에 함침되는 제올라이트는 300 ∼ 500 메취체를 통과한 것으로 5 ∼ 20%의 중량부로 수용성 아크릴계의 결합체로 혼합하여 함침한 유동상 담체.According to claim 1, the size of the fluidized bed carrier is a regular hexagon or a rectangular hexagon (1.0 (± 0.5) cm), the diameter is 1.0 (± 0.5) cm sphere and the zeolite impregnated therein is passed through 300 to 500 A fluidized bed carrier impregnated with 5-20% by weight of a water-soluble acrylic binder. 제1항에 있어 함침된 제올라이트의 이온교환능력은 이온교환능력(C.E.C)이 120(me/100g)이상인 것을 사용하고, 비표면적(specific surface area)이 0.9 ∼1.7(㎡/g) 이고 밀도는 1.1 ∼2.1인 유동상 담체.The ion exchange capacity of the impregnated zeolite according to claim 1, wherein the ion exchange capacity (CEC) is 120 (me / 100g) or more, the specific surface area is 0.9 ~ 1.7 (㎡ / g) and the density is Fluid bed carrier, 1.1 to 2.1. 제1항에 있어 유동상 담체는 균동혼합을 할수 있는 교반기와 유동상 담체의 분리를 위하여 눈금의 간격이 2.5mm∼5mm이하인 세목스크린을 사용하는 것을 특징으로 하는 유동상 담체.The fluidized bed carrier according to claim 1, wherein the fluidized bed carrier uses a fine screen having a scale interval of 2.5 mm to 5 mm or less for separation of the stirrer and the fluidized bed carrier.
KR1020010070614A 2001-11-13 2001-11-13 Fluidized porous media soak with zeolite for removal of organic carbon and denitrification KR20020002448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010070614A KR20020002448A (en) 2001-11-13 2001-11-13 Fluidized porous media soak with zeolite for removal of organic carbon and denitrification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010070614A KR20020002448A (en) 2001-11-13 2001-11-13 Fluidized porous media soak with zeolite for removal of organic carbon and denitrification

Publications (1)

Publication Number Publication Date
KR20020002448A true KR20020002448A (en) 2002-01-09

Family

ID=19715959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010070614A KR20020002448A (en) 2001-11-13 2001-11-13 Fluidized porous media soak with zeolite for removal of organic carbon and denitrification

Country Status (1)

Country Link
KR (1) KR20020002448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068367A (en) * 2002-02-15 2003-08-21 김임석 Method of a sewage, waste water disposal
KR20030074062A (en) * 2002-03-09 2003-09-19 김임석 Method of a sewage, waste water disposal
CN108358301A (en) * 2018-05-18 2018-08-03 清华大学深圳研究生院 A kind of compound suspended filter material with denitrification functions
CN108423802A (en) * 2018-05-18 2018-08-21 清华大学深圳研究生院 A kind of filtrate for the rapid filter that suspends

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068367A (en) * 2002-02-15 2003-08-21 김임석 Method of a sewage, waste water disposal
KR20030074062A (en) * 2002-03-09 2003-09-19 김임석 Method of a sewage, waste water disposal
CN108358301A (en) * 2018-05-18 2018-08-03 清华大学深圳研究生院 A kind of compound suspended filter material with denitrification functions
CN108423802A (en) * 2018-05-18 2018-08-21 清华大学深圳研究生院 A kind of filtrate for the rapid filter that suspends
CN108423802B (en) * 2018-05-18 2024-03-08 清华大学深圳研究生院 Filter material for suspension rapid filter tank

Similar Documents

Publication Publication Date Title
Tan et al. Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater
Zhao et al. Modified solid carbon sources with nitrate adsorption capability combined with nZVI improve the denitrification performance of constructed wetlands
Han et al. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater
KR101484608B1 (en) Core-shell composite having poly-vinylalcohol and alginate and method for fabricating the same
CN2863781Y (en) High-concentration ammonia nitrogen waste water treatment apparatus
Cao et al. Constructed wetlands for rural domestic wastewater treatment: A coupling of tidal strategy, in-situ bio-regeneration of zeolite and Fe (Ⅱ)-oxygen denitrification
EP0530226B1 (en) Method for removing nitrogen from an aqueous solution
CN107055760A (en) A kind of method that efficient nitrosation is realized based on ammonia nitrogen waste water
US6855255B2 (en) Method for treating wastewater/water with fixed-film microorganism on porous carriers
Garrido et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor
Wilderer et al. Application of biofilms and biofilm support materials as a temporary sink and source
CN211004783U (en) Nitrifying aeration biological filter
CN100445366C (en) Nitrobacteria culture promoter
CN100445365C (en) Nitrobacteria culture promoter
KR100477204B1 (en) A microorganism media and method thereof
CN201809259U (en) Hybrid bioreactor
KR20020002448A (en) Fluidized porous media soak with zeolite for removal of organic carbon and denitrification
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
CN105984954A (en) Method for purifying wastewater by constructed wetland comprising microbial carrier
Klimenko et al. Biosorption processes for natural and wastewater treatment–part 1: Literature review
CN104591386A (en) Method for purifying water quality through efficient ecological packing biological carrier
Mohammadi et al. Drinking water denitrification with autotrophic denitrifying bacteria in a fluidized bed bioreactor (FBBR)
Furukawa et al. Nitrification of polluted Urban river waters using zeolite‐coated nonwovens
CN2861135Y (en) Zeolite reactor
CN113457639A (en) Manganese-loaded loofah sponge fiber for adsorption catalytic denitrification and preparation and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application