KR20010095512A - Nonaqueous Battery Electrolyte - Google Patents

Nonaqueous Battery Electrolyte Download PDF

Info

Publication number
KR20010095512A
KR20010095512A KR1020000018636A KR20000018636A KR20010095512A KR 20010095512 A KR20010095512 A KR 20010095512A KR 1020000018636 A KR1020000018636 A KR 1020000018636A KR 20000018636 A KR20000018636 A KR 20000018636A KR 20010095512 A KR20010095512 A KR 20010095512A
Authority
KR
South Korea
Prior art keywords
carbonate
methyl
ethyl
electrolyte solution
nonaqueous electrolyte
Prior art date
Application number
KR1020000018636A
Other languages
Korean (ko)
Other versions
KR100328153B1 (en
Inventor
김영규
김종섭
김제윤
김진성
황상문
박정준
Original Assignee
안복현
제일모직주식회사
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안복현, 제일모직주식회사, 김순택, 삼성에스디아이 주식회사 filed Critical 안복현
Priority to KR1020000018636A priority Critical patent/KR100328153B1/en
Publication of KR20010095512A publication Critical patent/KR20010095512A/en
Application granted granted Critical
Publication of KR100328153B1 publication Critical patent/KR100328153B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided is a nonaqueous electrolyte solution for lithium ion secondary battery in which anhydrous maleic acid is added to inhibit collapse of solid electrolyte interface, thereby remarkably improving both charging/discharging efficiency and thermal stability of lithium ion secondary battery. CONSTITUTION: In the nonaqueous electrolyte solution for lithium ion secondary battery comprising organic solvents and lithium salts, it is characterized in that 0.1-10wt.% of hexafluorobenzene of chemical formula I is contained in the nonaqueous electrolyte solution. The organic solvent is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butyrolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate. The lithium salts is at least one selected from the group consisting of LiPF6, LiClO4, LiAsF5, LiBF4, LiCF3SO3 and its concentration is between 0.7 and 2.0 mol.

Description

전지용 비수전해액 {Nonaqueous Battery Electrolyte}Non-aqueous Electrolyte for Battery {Nonaqueous Battery Electrolyte}

본 발명은 전지용 비수전해액에 관한 것으로, 더욱 상세하게는 유기용매에 리튬염을 용해시킨 것을 기본 전해액으로 하고 여기에 헥사플루오르벤젠 (Hexafluorobenzene)을 첨가하는 것을 특징으로 하는 리튬이온 2차 전지용 비수전해액에 관한 것이다.The present invention relates to a nonaqueous electrolyte solution for batteries, and more particularly, to a nonaqueous electrolyte solution for a lithium ion secondary battery, wherein a lithium salt is dissolved in an organic solvent as a basic electrolyte solution and hexafluorobenzene is added thereto. It is about.

종래에 노트북 컴퓨터, 캠코더, 휴대폰 등에 사용되는 소형화 및 슬림화된 리튬이온 2차 전지는 리튬금속 혼합 산화물을 양극 활물질로 하고, 탄소재료 또는 금속리튬 등을 음극으로 하여, 유기용매에 리튬염을 적당량 용해시킨 것을 전해액으로 하여 구성되었다.Conventionally, miniaturized and slimmed lithium ion secondary batteries used in notebook computers, camcorders, mobile phones, etc. have a lithium metal mixed oxide as a positive electrode active material, a carbon material or metal lithium as a negative electrode, and dissolve an appropriate amount of lithium salt in an organic solvent. What was made was comprised as electrolyte solution.

보다 구체적으로 기존에 리튬 2차 전지에서 전해액으로 사용되는 유기용매로는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC) 등으로부터 2종 이상이 선택 사용되고, 용질로는 LiPF6등의 리튬염이 사용된다.More specifically, conventional organic solvents used as electrolyte in lithium secondary batteries include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), 2 or more types are selected from ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), etc., and lithium salts, such as LiPF 6 , are used as a solute.

리튬 2차전지에서 사용되는 전해액은 초기 충전시 음극을 구성하는 탄소와 반응하여 음극 표면에 엷은 막을 형성하며, 형성되는 막의 종류는 전해액에 사용되는 용매나 첨가제 등에 따라서 크게 달라져 전지 성능에 크게 영향을 미치는 것으로 알려져 있다.The electrolyte used in the lithium secondary battery reacts with the carbon constituting the negative electrode during initial charging to form a thin film on the surface of the negative electrode. The type of the formed film varies greatly depending on the solvent or additives used in the electrolyte and greatly affects battery performance. It is known to be mad.

초기 화성(formation) 공정에서 양극으로 사용되는 리튬 금속산화물로부터 나온 리튬이온이 음극으로 사용되는 탄소전극으로 이동하여 삽입되는데, 이 때 리튬의 강한 반응성에 의하여 탄소 음극과 반응하여 Li2CO3, Li2O, LiOH 등을 만들어내게 되고 이것들은 음극의 표면에 고체전해계면(Solid Electrolyte Interface, SEI)이라는 피막을 형성하게 된다. 이 SEI 피막은 형성된 후 이온터널(Ion Tunnel)의 역할을 수행하여 리튬이온만을 통과시키게 된다. 이 이온터널 효과는 전해액의 유기용매들이 탄소음극에 리튬이온과 함께 삽입(cointercalation)되어 탄소 음극의 구조가 붕괴 되는 것을 막아준다. 또한 일단 이 피막이 형성되고 나면 리튬이온은 다시 탄소음극이나 다른 물질과 반응하지 않게 되어 리튬이온의 양이 가역적으로 유지된다. 즉 생성된 SEI 피막이 표면안정화층(passivation layer)으로 작용하여 충, 방전시 더이상의 전해액의 분해가 발생하지 않고 안정적인 반응을 계속할 수 있도록 하는 것이다.(J.Power Sources, 51 (1994) pp. 79∼104)In the initial formation process, lithium ions from lithium metal oxides used as anodes are moved to and inserted into carbon electrodes used as cathodes. At this time, lithium 2 reacts with the carbon cathodes due to the strong reactivity of Li 2 CO 3 , Li. 2 O, LiOH, etc. are formed, and these form a film called a solid electrolyte interface (SEI) on the surface of the cathode. After the SEI film is formed, it functions as an ion tunnel to pass only lithium ions. This ion tunnel effect prevents the organic solvents of the electrolyte from intercalating with the lithium ions in the carbon anode, thereby destructing the structure of the carbon anode. In addition, once this film is formed, lithium ions do not react again with the carbon cathode or other materials, so that the amount of lithium ions is reversibly maintained. In other words, the generated SEI film acts as a passivation layer so that the electrolyte can continue stable reaction without any further decomposition of the electrolyte during charging and discharging (J. Power Sources, 51 (1994) pp. 79 To 104)

그러나 만충전상태(4.2V)에서 고온에 노출시 SEI 피막은 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 주위의 전해액에 노출된 새로운 음극 표면에서 부반응이 지속적으로 발생한다. 이때 계속적으로 발생하는 H2, CO, CO2,CH4, C2H4및 C2H6와 같은기체들에 의해 전지의 내압이 상승하게 되어, 전지의 성능이 떨어지고 전지의 두께팽창에 의한 장착불량 등을 문제를 일으킨다.However, when exposed to high temperatures at full charge (4.2V), the SEI film slowly collapses due to increased electrochemical and thermal energy, causing side reactions to continue on new cathode surfaces exposed to the surrounding electrolyte. At this time, the internal pressure of the battery is increased by gases such as H 2 , CO, CO 2 , CH 4 , C 2 H 4 and C 2 H 6 , which occur continuously, resulting in a decrease in battery performance and It causes problems such as bad mounting

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 극복하는 것으로, 리튬 2차 전지의 음극 표면에 SEI 피막 형성반응을 변화시킬수 있도록 적절한 화합물을 첨가한 전지용 비수전해액을 제공하여, 전지의 충방전 효율 및 수명성능의 감소없이 전지의 고온 안정성을 크게 향상시키도록 하는 것이다.An object of the present invention is to overcome the problems of the prior art as described above, to provide a non-aqueous electrolyte for the battery to which the appropriate compound is added to change the SEI film formation reaction on the negative electrode surface of the lithium secondary battery, the charge and discharge efficiency of the battery And it is to significantly improve the high temperature stability of the battery without reducing the life performance.

즉, 본 발명은 유기용매 및 리튬염으로 이루어진 전지용 비수전해액에 있어서, 하기 화학식 1의 헥사플루오르벤젠을 포함하는 것을 특징으로 하는 전지용 비수전해액을 제공하는 것이다.That is, the present invention provides a battery non-aqueous electrolyte solution comprising hexafluorobenzene represented by the following formula (1) in a battery non-aqueous electrolyte solution consisting of an organic solvent and a lithium salt.

이하에서 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 전지용 비수전해액은 결정질 흑연 또는 리튬금속을 음극으로 사용하고 리튬금속 화합물을 양극으로 사용하는 리튬이온 2차전지를 만충전상태에서 고온저장 시 유기용매의 분해를 억제하는 헥사플루오르벤젠을 포함하는 것을 특징으로 한다.The nonaqueous electrolyte solution for batteries of the present invention includes hexafluorobenzene which inhibits decomposition of an organic solvent during high temperature storage of a lithium ion secondary battery using crystalline graphite or lithium metal as a cathode and a lithium metal compound as a cathode. It is characterized by.

본 발명에서 바람직하게 사용되는 비수전해액 유기용매로는 환상 카보네이트 화합물(Cyclic carbonate)로서 에틸렌카보네이트, 프로필렌카보네이트, γ-부티로락톤 등을, 또한 선형 카보네이트 화합물(Chain carbonate)로서 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸메틸카보네이트, 에틸프로필카보네이트 등을 들 수 있으며, 그 외에 프로필아세테이트, 메틸아세테이트, 에틸아세테이트, 부틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트 등의 에스테르류의 용매도 가능하다. 더욱 바람직하게는 이들 유기 용매중에서 2종 이상을 선택 혼합하여 사용하는 것이 유리하다.As the non-aqueous electrolyte organic solvent preferably used in the present invention, ethylene carbonate, propylene carbonate, γ-butyrolactone and the like as cyclic carbonate compounds, and dimethyl carbonate and diethyl carbonate as linear carbonate compounds (Chain carbonate) And dipropyl carbonate, methyl propyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate, and the like, and other esters such as propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate. Solvents are also possible. More preferably, it is advantageous to select and use two or more kinds in these organic solvents.

본 발명에서 유기용매에 첨가되는 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3중에서 1종 또는 2종 이상 선택하여 사용하는 것이 좋고, 이때 염의 사용농도는 바람직하게 0.7 내지 2.0몰 농도 범위이다. 염의 농도가 0.7몰 미만이면 전해액의 전도도가 낮아짐으로써 전해액 성능이 떨어지고, 2.0몰을 초과하는 경우에는 저온에서의 점도 증가에 따라 저온 성능이 떨어지는 문제점이 있어 좋지 않다.As the lithium salt added to the organic solvent in the present invention, it is preferable to use one or two or more selected from LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , and LiCF 3 SO 3 , wherein the salt concentration is preferably 0.7. To 2.0 molar concentration range. If the salt concentration is less than 0.7 mol, the conductivity of the electrolyte is lowered, the performance of the electrolyte is lowered, and if it exceeds 2.0 mol, there is a problem that the low temperature performance is lowered as the viscosity increases at low temperatures.

본 발명에서 특징적으로 사용되는 헥사플루오르벤젠은 0.1 중량% 이상 그리고 10 중량% 이하로 첨가되는 것이 바람직하다. 본 발명에서 상기 첨가제의 함량이 0.1 중량% 미만이면 본 발명의 목적인 기체 발생 억제 효과를 기대하기 어렵고, 10 중량%을 초과하여 사용할 경우 초기 충방전 효율과 수명 성능이 사용량 증가에 따라 감소하는 문제점이 발생하기 때문이다.Hexafluorobenzene, which is characteristically used in the present invention, is preferably added at 0.1% by weight or more and 10% by weight or less. When the content of the additive in the present invention is less than 0.1% by weight, it is difficult to expect the effect of inhibiting gas generation, which is the purpose of the present invention. Because it occurs.

본 발명의 바람직한 양상에 있어서, 바람직한 전지용 비수전해액의 일례는 에틸렌카보네이트와 디메틸카보네이트가 5:5 의 비율로 혼합된 용매에 용질로 LiPF6를 1몰 농도로 용해시킨 것을 기본 전해액으로 하고, 이 기본 전해액에 대하여 상기 화학식 1의 헥사플루오르벤젠을 0.1∼10중량%로 첨가하여 구성된다.In a preferred aspect of the present invention, an example of a preferred nonaqueous electrolyte solution for a battery is a solution obtained by dissolving LiPF 6 in a molar concentration of 1 mol in a solvent in which ethylene carbonate and dimethyl carbonate are mixed at a ratio of 5: 5. It is composed by adding 0.1 to 10% by weight of hexafluorobenzene of the formula (1) to the electrolyte solution.

이하, 본 발명을 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1Example 1

에틸렌카보네이트와 디메틸카보네이트를 5:5의 비율로 혼합한 용매에 용질로서 LiPF6를 1몰 농도로 용해시킨 것을 기본 전해액으로 하고, 여기에 헥사플루오르벤젠을 0.5 중량% 첨가하여 최종 전해액을 수득하고 이를 이용하여 30mm x 48mm x 6mm의 각형 전지를 제조하였다. 이 때, 음극은 활물질로는 결정성 흑연(상품명:MCF)을 결착제로는 불화비닐리덴수지(Ployvinylidene Fluoride, PVDF)를 각각 92:8의 비율로 혼합하여 사용하였고, 양극의 활물질로는 LiCoO2를, 결착제로는 PVDF를, 그리고 도전체로는 카본을 92:4:4의 비율로 혼합하여 사용하였다.A solution of LiPF 6 dissolved in a molar concentration of ethylene carbonate and dimethyl carbonate in a ratio of 5: 5 as a solute was used as a basic electrolyte solution, and 0.5 wt% of hexafluorobenzene was added thereto to obtain a final electrolyte solution. 30 mm x 48 mm x 6 mm square cells were prepared. In this case, the negative electrode was mixed with crystalline graphite (trade name: MCF) as an active material and vinylidene fluoride (Ployvinylidene Fluoride, PVDF) as a binder in a ratio of 92: 8, respectively, and LiCoO 2 as an active material of the positive electrode. Was used by mixing PVDF as a binder and carbon as a conductor in a ratio of 92: 4: 4.

제조된 전지의 만충전 상태에서 고온(85℃, 4일) 저장시 전지의 두께 증가률 및 방전용량을 평가하여 그 결과를 하기 표 1 및 표 2에 나타내었다.To evaluate the thickness increase rate and the discharge capacity of the battery when stored at high temperature (85 ℃, 4 days) in the fully charged state of the prepared battery and the results are shown in Table 1 and Table 2.

실시예 2Example 2

첨가제인 헥사플루오르벤젠을 1.0 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 전지성능을 평가하여 그 결과를 표 1 및 표 2에서 나타내었다.Except that 1.0% by weight of the hexafluorobenzene additive was used in the same manner as in Example 1 and then the battery performance was evaluated and the results are shown in Table 1 and Table 2.

실시예 3Example 3

첨가제인 헥사플루오르벤젠을 2.0 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 전지성능을 평가하여 그 결과를 표 1 및 표 2에서 나타내었다.Except that 2.0 wt% of hexafluorobenzene additive was used in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Tables 1 and 2.

실시예 4Example 4

첨가제인 헥사플루오르벤젠을 5.0 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 전지성능을 평가하여 그 결과를 표 1 및 표 2에서 나타내었다.Except that 5.0 wt% of the hexafluorobenzene additive was used in the same manner as in Example 1, and the battery performance was evaluated. The results are shown in Tables 1 and 2.

비교예Comparative example

헥사플루오르벤젠을 첨가하지 않은 기본 전해액만을 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 전지성능을 평가하여 그 결과를 표 1 및 표 2에 나타내었다.Except for using only the basic electrolyte solution without the addition of hexafluorobenzene, the battery performance was evaluated in the same manner as in Example 1, and the results are shown in Table 1 and Table 2.

전해액 조성Electrolyte composition 0시간0 hours 4시간4 hours 24시간24 hours 48시간48 hours 72시간72 hours 96시간96 hours 비교예Comparative example 7.9 %7.9% 8.8 %8.8% 11.6 %11.6% 13.4 %13.4% 17.4 %17.4% 21.5 %21.5% 실시예1Example 1 4.3 %4.3% 4.9 %4.9% 8.3 %8.3% 9.8 %9.8% 14.2 %14.2% 17.9 %17.9% 실시예2Example 2 4.0 %4.0% 4.5 %4.5% 5.7 %5.7% 8.3 %8.3% 12.7 %12.7% 15.3 %15.3% 실시예3Example 3 3.4 %3.4% 4.1 %4.1% 5.2 %5.2% 8.0 %8.0% 12.0 %12.0% 14.5 %14.5% 실시예4Example 4 3.3 %3.3% 3.9 %3.9% 5.0 %5.0% 8.3 %8.3% 13.3 %13.3% 16.3 %16.3%

전해액 조성Electrolyte composition 잔류방전용량Residual discharge capacity 비교예Comparative example 82.0 %82.0% 실시예1Example 1 83.1 %83.1% 실시예2Example 2 84.5 %84.5% 실시예3Example 3 85.9 %85.9% 실시예4Example 4 83.0 %83.0%

본 발명에 따른 전지용 비수전해액에 의하면 만충전 상태에서 고온 저장시 기체발생을 줄여 전지의 두께 팽창을 크게 감소시킬 수 있어 리튬 2차 전지의 장착 불량 발생율을 감소시킬 수 있다.According to the nonaqueous electrolyte solution for batteries according to the present invention, gas generation during high temperature storage in a fully charged state can greatly reduce the thickness expansion of the battery, thereby reducing the occurrence rate of mounting failure of the lithium secondary battery.

Claims (4)

유기용매 및 리튬염으로 이루어진 전지용 비수전해액에 있어서, 하기 화학식 1의 헥사플루오르벤젠을 포함하는 것을 특징으로 하는 전지용 비수전해액.A nonaqueous electrolyte solution for batteries comprising an organic solvent and a lithium salt, wherein the nonaqueous electrolyte solution for battery comprises hexafluorobenzene of the following formula (1). [화학식 1][Formula 1] 제 1항에 있어서, 상기 헥사플루오르벤젠의 함량이 전체 비수전해액에 대하여 0.1~10 중량%인 것을 특징으로 하는 전지용 비수전해액.The battery non-aqueous electrolyte according to claim 1, wherein the content of hexafluorobenzene is 0.1 to 10% by weight based on the total non-aqueous electrolyte. 제1항에 있어서, 상기 유기용매는 에틸렌카보네이트, 프로필렌카보네이트,-부티로락톤, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸아세테이트, 에틸아세테이트, 프로필아세테이트, 메틸프로피오네이트, 에틸프로피오네이트로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 전지용 비수전해액.The method of claim 1, wherein the organic solvent is ethylene carbonate, propylene carbonate, From the group consisting of butyrolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate Non-aqueous electrolyte solution for batteries, characterized in that at least one selected. 제1항에 있어서, 상기 리튬염은 LiPF6, LiClO4, LiAsF5, LiBF4, LiCF3SO3로 구성되는 군으로부터 선택되는 1종 이상이고, 그 농도가 0.7 내지 2.0몰인 것을 특징으로 하는 전지용 비수전해액.The method of claim 1, wherein the lithium salt is at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 5 , LiBF 4 , LiCF 3 SO 3 , the concentration is 0.7 to 2.0 mol for batteries Nonaqueous electrolyte.
KR1020000018636A 2000-04-10 2000-04-10 Nonaqueous Battery Electrolyte KR100328153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000018636A KR100328153B1 (en) 2000-04-10 2000-04-10 Nonaqueous Battery Electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000018636A KR100328153B1 (en) 2000-04-10 2000-04-10 Nonaqueous Battery Electrolyte

Publications (2)

Publication Number Publication Date
KR20010095512A true KR20010095512A (en) 2001-11-07
KR100328153B1 KR100328153B1 (en) 2002-03-12

Family

ID=19663068

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000018636A KR100328153B1 (en) 2000-04-10 2000-04-10 Nonaqueous Battery Electrolyte

Country Status (1)

Country Link
KR (1) KR100328153B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473433B1 (en) * 2000-07-17 2005-03-08 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte and non-aqueous electrolytic cell and electrolytic condenser comprising the same
KR100490619B1 (en) * 2001-12-21 2005-05-17 삼성에스디아이 주식회사 Electrolyte, lithium secondary battery, and method of preparing lithium secondary battery
US7943257B2 (en) 2001-12-21 2011-05-17 Samsung Sdi Co., Ltd. Electrolyte solvent and rechargeable lithium battery
US20110262815A1 (en) * 2010-04-26 2011-10-27 Samsung Sdi Co., Ltd. (Sdi) Lithium polymer battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473433B1 (en) * 2000-07-17 2005-03-08 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte and non-aqueous electrolytic cell and electrolytic condenser comprising the same
KR100490619B1 (en) * 2001-12-21 2005-05-17 삼성에스디아이 주식회사 Electrolyte, lithium secondary battery, and method of preparing lithium secondary battery
US7943257B2 (en) 2001-12-21 2011-05-17 Samsung Sdi Co., Ltd. Electrolyte solvent and rechargeable lithium battery
US20110262815A1 (en) * 2010-04-26 2011-10-27 Samsung Sdi Co., Ltd. (Sdi) Lithium polymer battery

Also Published As

Publication number Publication date
KR100328153B1 (en) 2002-03-12

Similar Documents

Publication Publication Date Title
US7172834B1 (en) Additive for enhancing the performance of electrochemical cells
US7709154B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100328151B1 (en) Nonaqueous Battery Electrolyte
KR100328153B1 (en) Nonaqueous Battery Electrolyte
KR100328152B1 (en) Nonaqueous Battery Electrolyte
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100642435B1 (en) Nonaqueous Electrolyte for Battery
KR100412527B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100860441B1 (en) Nonaqueous battery electrolyte
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20010055830A (en) Nonaqueous battery electrolyte
KR100510865B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100370388B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370389B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100510863B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100534010B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100642434B1 (en) Nonaqueous electrolyte battery
JP2008518392A (en) Non-aqueous electrolyte for batteries
KR20000067345A (en) Nonaqueous electrolyte battery
KR20050062211A (en) Non-aqueous electrolyte for lithium battery
KR20050062213A (en) Non-aqueous electrolyte for lithium battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180122

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190117

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 19