KR20010094136A - A process for the preparation of polycarbonate transparent plane with improved abrasion resistance - Google Patents

A process for the preparation of polycarbonate transparent plane with improved abrasion resistance

Info

Publication number
KR20010094136A
KR20010094136A KR1020000017612A KR20000017612A KR20010094136A KR 20010094136 A KR20010094136 A KR 20010094136A KR 1020000017612 A KR1020000017612 A KR 1020000017612A KR 20000017612 A KR20000017612 A KR 20000017612A KR 20010094136 A KR20010094136 A KR 20010094136A
Authority
KR
South Korea
Prior art keywords
hmdso
plasma
thin film
feed speed
oxygen
Prior art date
Application number
KR1020000017612A
Other languages
Korean (ko)
Other versions
KR100337483B1 (en
Inventor
송준섭
김성룡
박성철
이주연
Original Assignee
김윤
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤, 주식회사 삼양사 filed Critical 김윤
Priority to KR1020000017612A priority Critical patent/KR100337483B1/en
Publication of KR20010094136A publication Critical patent/KR20010094136A/en
Application granted granted Critical
Publication of KR100337483B1 publication Critical patent/KR100337483B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A manufacturing method of a PC(Poly Carbonate) transparent plate having an improved abrasion resistance is provided to produce an abrasion-resistant thin film having no crack by controlling various factor ranges deciding the characteristics of the abrasion-resistant thin film in a process of manufacturing the thin film on the surface of PC. CONSTITUTION: To coat an abrasion-resistant film using raw material of HMDSO(hexamethyldisiloxane) over the surface of PC by direct PECVD(Plasma Enhanced Chemical Vapor Deposition), plasma is formed around a PC board at a vacuum state. The PC board is positioned on an electrode connected with a plasma generator. Then, HMDSO and oxygen gas is injected to the plasma. The HMDSO and oxygen gas is dissolved by plasma energy, and substance such as SiO2 is deposited on a PC transparent plate. At the same time, ions in the plasma collide with a film by self-bias caused by the electrode connected with the plasma generator. Thereby, a thin film having an excellent abrasion resistance is produced. The thin film has variable characteristics depending on the feed speed rate of energy and HMDSO as well as the feed speed of oxygen gas. The feed speed rate of energy and HMDSO is defined by W/FM wherein the W is power(J/sec) supplied from the plasma generator, the F is feed speed(mol/sec) of HMDSO, and the M is molecular weight(0.1624 Kg/mol) of HMDSO. Oxygen is injected to control the property and color of the deposited material. The more oxygen is injected, the more cracks are generated on the thin film. The proper feed speed of oxygen is 12-18 times of the feed speed(mol/sec) of HMDSO. In addition, HMDSO and argon gas can be injected to improve the stability of plasma. The feed speed of argon gas is 0.1-2 time of the feed speed of HMDSO.

Description

내마모성이 향상된 폴리카보네이트 투명판 제조방법{A process for the preparation of polycarbonate transparent plane with improved abrasion resistance}A process for the preparation of polycarbonate transparent plane with improved abrasion resistance}

본 발명은 내마모성이 향상된 폴리카보네이트 투명판의 제조방법에 관한 것이다. 더욱 상세하게는 플라즈마 발생장치와 헥사메틸다이실록산(HMDSO : hexamethyl disiloxane), 산소, 아르곤가스를 이용하여 폴리카보네이트 표면에 내마모막을 형성하며, 이때 생성되는 박막이 플라즈마 내의 이온과 충돌할 수 있도록 폴리카보네이트 투명판을 플라즈마 발생장치와 연결된 전극 위에 놓고 처리하는 것을 특징으로 하는 내마모성이 향상된 폴리카보네이트 투명판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a polycarbonate transparent plate with improved wear resistance. More specifically, a wear resistant film is formed on the surface of the polycarbonate using a plasma generator, hexamethyl disiloxane (HMDSO), oxygen, and argon gas, and the thin film is formed so that the thin film can collide with the ions in the plasma. The present invention relates to a method for producing a polycarbonate transparent plate having improved wear resistance, characterized in that the carbonate transparent plate placed on the electrode connected to the plasma generator.

폴리카보네이트 수지는 우수한 기계적, 화학적 특성을 가지고 있어 다양한 분야에 범용적으로 사용되고 있다. 특히 유리에 비해 적은 중량과 높은 투명성, 강한 내충격성을 가지고 있어 유리 소재를 대체하여 자동차 전조등, 투명 방음벽 등에 많이 사용되고 있다. 그러나 유리에 비해 마모가 쉽게 발생하여 응용 범위가 제한된다. 이와 같은 폴리카보네이트의 낮은 내마모성 문제를 극복하기 위하여 다양한 방법들이 고안되고 연구되고 있다. 일례로, 폴리카보네이트 수지 위에 유기물이나 무기물을 코팅하여 내마모성을 증대시키는 방법이 있다.Polycarbonate resins have excellent mechanical and chemical properties and are widely used in various fields. In particular, it has a low weight, high transparency, and strong impact resistance compared to glass, so it is widely used in automobile headlights and transparent soundproof walls in place of glass materials. However, wear occurs more easily than glass, which limits the scope of application. Various methods have been devised and studied to overcome the problem of low wear resistance of such polycarbonate. For example, there is a method of increasing the wear resistance by coating an organic material or an inorganic material on a polycarbonate resin.

범용적으로 많이 사용되는 방법은 폴리카보네이트 수지 위에 가교화 될 수 있는 유기물을 코팅한 후 열 또는 자외선에 의해 가교화하여 내마모성을 향상시키고 있으나, 내마모성의 향상이 유리에 비해 매우 나빠 유리를 대체할 수 있는 분야가 매우 한정된다.The widely used method is to improve the wear resistance by coating the organic material which can be crosslinked on the polycarbonate resin and then crosslinking by heat or ultraviolet rays, but the wear resistance is very poor compared to the glass, which can replace the glass. There is a very limited field.

폴리카보네이트 수지의 내마모성을 더욱 향상시키기 위하여 진공에서 플라즈마를 이용하여 내마모성 박막을 제조하는 방법이 활발히 연구되고 있다. 이러한 예가 미국 특허 제 5,320,875호에 게재되어 있다. 이 특허에서는 전력 밀도(Power density)가 106~108J/kg에서 실리콘, 산소, 탄소 그리고 수소로 이루어진 고분자 코팅을 폴리카보네이트 수지 위에 플라즈마 중합시켜서 제조하고 있다. 이 특허에서 기술한 방법으로 폴리카보네이트 수지 위에 고분자 코팅을 제조할 경우, 장치에 공급되는 가스의 분압이 변화되어도 같은 전력 밀도을 가질 수 있게 되어 단순히 전력밀도 값으로만 제조 조건을 설정했기 때문에 투입한 가스와 단량체 공급량에 대해 동일한 특성의 고분자 코팅을 제조하기 힘들다는 문제점이 있으며, 또한 얻어지는 내마모성도 유기물 코팅에 비해 높지만 유리에 비하면 여전히 낮은 값을 나타낸다.In order to further improve the wear resistance of polycarbonate resins, a method of manufacturing a wear resistant thin film using plasma in a vacuum has been actively studied. Such an example is disclosed in US Pat. No. 5,320,875. In this patent, a polymer coating made of silicon, oxygen, carbon and hydrogen is plasma polymerized on a polycarbonate resin at a power density of 10 6 to 10 8 J / kg. When manufacturing a polymer coating on a polycarbonate resin by the method described in this patent, even if the partial pressure of the gas supplied to the device is changed, the same power density can be obtained, and the gas is simply added because the manufacturing conditions are set only at the power density value. There is a problem in that it is difficult to prepare a polymer coating of the same properties for the monomer and the amount supplied, and the wear resistance obtained is also higher than that of the organic coating, but still shows a low value compared to the glass.

폴리카보네이트 수지의 내마모성을 유리 수준으로 향상시키기 위하여 플라즈마 발생 방식을 조절하여 수지 위에 제조되는 내마모성 박막의 특성을 조절하는연구가 진행되고 있다. 그 예가 미국 특허 제 5,618,619호에 게재되어 있다. 이 특허에서는 실리콘, 산소, 탄소 그리고 수소로 이루어진 내마모성 박막을 폴리카보네이트 수지 위에 플라즈마 중합으로 제조할 때, 플라즈마 발생장치와 연결된 전극 위에 폴리카보네이트 수지를 위치시켜서 플라즈마 내에서 발생하는 이온들이 증착되는 내마모성 박막에 충돌하도록 함으로써 내마모성이 유리와 유사한 박막을 제조하는 것을 특징으로 하고 있고, 또한 이렇게 만들어지는 내마모성 박막은 나노인덴테이션(nanoindentation) 경도가 2 내지 5 기가파스칼(GPa)범위, 마이크로 클랙킹(microcracking)이 발생하는 신율은 2 내지 3% 를 갖는 것을 특징으로 한다.In order to improve the abrasion resistance of the polycarbonate resin to the glass level, a study for adjusting the characteristics of the wear-resistant thin film prepared on the resin by adjusting the plasma generation method is in progress. An example is disclosed in US Pat. No. 5,618,619. In this patent, when a wear resistant thin film made of silicon, oxygen, carbon, and hydrogen is prepared by plasma polymerization on a polycarbonate resin, the wear resistant thin film is deposited by placing polycarbonate resin on an electrode connected to a plasma generator to deposit ions generated in the plasma. It is characterized by producing a thin film similar to wear resistance by impinging on the wear resistant thin film. The wear resistant thin film thus produced has a nanoindentation hardness in the range of 2 to 5 gigapascals (GPa) and microcracking. ) Elongation is generated is characterized by having 2 to 3%.

이 특허에서 기술한 방법에서는 내마모성 박막 제조에 필요한 인자인 단량체 공급속도, 산소의 공급속도, 사용되는 전력 밀도에 대한 연구가 되어 있지 않아 박리현상이나 크랙이 발생하지 않는 내마모 코팅 조건을 얻기 힘든 단점이 있다.In the method described in this patent, it is difficult to obtain abrasion-resistant coating conditions that do not cause peeling or cracking because there is no study on the monomer supply rate, oxygen supply rate, and power density used for manufacturing the wear resistant thin film. There is this.

본 발명은 상술한 문제들의 해결을 위한 것으로, 폴리카보네이트 표면 위에 내마모성 박막을 제조할 때 내마모성 박막의 특성을 결정하는 다양한 인자의 범위를 조절하는 것에 의해 박리나 크랙(crack)이 발생하지 않는 내마모성 박막을 제조하는 것을 과제로 한다.The present invention is to solve the above-mentioned problems, wear-resistant thin film that does not occur peeling or crack (crack) by adjusting the range of various factors that determine the characteristics of the wear-resistant thin film when manufacturing the wear-resistant thin film on the polycarbonate surface Let it be a subject to manufacture.

본 발명은 내마모성이 향상된 폴리카보네이트 투명판의 제조방법을 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a method for producing a polycarbonate transparent plate having improved wear resistance.

본 발명은 폴리카보네이트 표면을 플라즈마 처리함에 있어서, 폴리카보네이트 수지를 플라즈마 발생장치와 연결된 전극 위에 위치시키고 헥사메틸다이실록산(HMDSO)과 아르곤의 혼합 가스와 산소를 투입하여 플라즈마 도움 화학 증착법으로 내마모막을 형성하되 이때 공급되는 에너지와 헥사메틸다이실록산의 공급속도는 전력밀도(W/FM)가 107내지 109(J/Kg)의 범위를 가지는 범위를 갖고, 산소의 투입량은 헥사메틸다이실록산(HMDSO)의 공급속도의 12 내지 18배의 범위를 갖게 하고, 아르곤 가스의 공급속도는 헥사메틸다이실록산(HMDSO) 공급속도의 0.1 내지 2배 범위로 실시함으로써 상기 목적을 달성하게 된다.In the present invention, in the plasma treatment of the surface of the polycarbonate, the polycarbonate resin is placed on an electrode connected to the plasma generator, and a mixed gas of hexamethyldisiloxane (HMDSO) and argon and oxygen are added to the wear-resistant film by plasma assisted chemical vapor deposition. At this time, the energy supplied and the supply rate of hexamethyldisiloxane have a range in which the power density (W / FM) is in the range of 10 7 to 10 9 (J / Kg), and the amount of oxygen is hexamethyldisiloxane ( The above object is achieved by making the feed rate of HMDSO) range from 12 to 18 times and the feed rate of argon gas from 0.1 to 2 times the hexamethyldisiloxane (HMDSO) feed rate.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

플라스틱 중에서도 내충격성이 가장 우수하고 투명성에서도 우수한 폴리카보네이트가 유리를 대체하여 사용되기 위해서는 무엇보다도 내마모성을 향상시켜야 한다.Among the plastics, polycarbonate, which has the highest impact resistance and excellent transparency, needs to improve wear resistance, among other things, in order to replace glass.

내마모성을 향상시키기 위해 본 발명에서는 폴리카보네이트 표면 위에 플라즈마 도움 화학 증착법으로 헥사메틸다이실록산(HMDSO)을 원료로 하는 내마모막을 입히는 방법을 사용한다.In order to improve the wear resistance, the present invention uses a method of coating a wear resistant film made of hexamethyldisiloxane (HMDSO) on the polycarbonate surface by plasma assisted chemical vapor deposition.

구체적으로, 폴리카보네이트 표면에 직접 플라즈마 도움 화학 증착법으로 헥사메틸다이실록산(HMDSO)을 원료로 하는 내마모막을 입히는 방법은 진공상태에서 플라즈마 발생 장치와 연결된 전극 위에 위치한 폴리카보네이트 기판 주변에 플라즈마를 형성한 후 헥사메틸다이실록산(HMDSO)과 산소가스를 투입하면 플라즈마의 에너지에 의해 분해되고 폴리카보네이트 투명판에 SiO2와 유사한 성분의 물질이 증착된다. 그와 동시에 플라즈마 발생장치와 연결된 전극에 의해 발생하는 전압 강하(Self-Bias)에 의해 플라즈마 내의 이온들이 막과 충돌하여 내마모성이 우수한 박막이 생성된다.Specifically, a method of coating a wear resistant film made of hexamethyldisiloxane (HMDSO) as a raw material by plasma assisted chemical vapor deposition on a polycarbonate surface is to form a plasma around a polycarbonate substrate located on an electrode connected to a plasma generator in a vacuum state. Then, when hexamethyldisiloxane (HMDSO) and oxygen gas are added, it is decomposed by the energy of plasma and a material of SiO 2 similar component is deposited on the polycarbonate transparent plate. At the same time, ions in the plasma collide with the film due to the voltage drop generated by the electrode connected to the plasma generator to produce a thin film having excellent wear resistance.

이때 사용되는 에너지와 헥사메틸다이실록산(HMDSO)의 공급속도의 비율, 산소가스 공급속도에 의해 막의 성분이 변하게 되어 박막의 특성이 크게 바뀌게 된다. 내마모성 박막 제조에 사용되는 에너지와 헥사메틸다이실록산(HMDSO)의 공급속도의 비율은 전력 밀도 (W/FM)로 정의할수 있다. 여기서 W는 플라즈마 발생기에서 공급하는 전력(W=J/sec), F는 헥사메틸다이실록산(HMDSO)의 공급 속도(mol/sec)그리고 M은 헥사메틸다이실록산(HMDSO)의 분자량(0.1624 Kg/mol)이다.At this time, the composition of the membrane is changed by the ratio of the energy used, the supply rate of hexamethyldisiloxane (HMDSO), and the oxygen gas supply rate, thereby greatly changing the characteristics of the thin film. The ratio of the energy used to manufacture the wear resistant thin film to the supply rate of hexamethyldisiloxane (HMDSO) can be defined as the power density (W / FM). Where W is the power supplied by the plasma generator (W = J / sec), F is the supply rate of hexamethyldisiloxane (HMDSO) (mol / sec) and M is the molecular weight of hexamethyldisiloxane (HMDSO) (0.1624 Kg / mol).

내마모성 박막 제조에 적당한 전력 밀도는 107내지 109J/kg이며, 만일 107J/kg 이하의 전력 밀도에서는 박막이 불투명하게 생성되고 109J/Kg 에서는 막에 박리가 발생하므로 상기 범위로 하는 것이 바람직하다.Suitable power density for the wear-resistant thin film is 10 7 to 10 9 J / kg, if the power density of 10 7 J / kg or less thin film is formed opaque and at 10 9 J / Kg film peeling occurs in the above range It is desirable to.

증착되는 물질의 성질 및 색상을 조절하기 위해 산소를 투입한다. 산소가 투입되면 생성되는 막의 색상이 투명해지지만 투입되는 양이 더 증가되면 박막에 크랙(crack) 및 박리가 발생하는 원인이 된다. 내마모성 박막 제조에 적당한 산소 공급속도는 헥사메틸다이실록산(HMDSO)의 공급 속도(mol/sec)의 12 내지 18배 정도이다.Oxygen is added to control the nature and color of the deposited material. When oxygen is added, the color of the formed film becomes transparent, but when the amount of the added film is further increased, cracks and peeling occur in the thin film. Suitable oxygen feed rates for the production of wear resistant thin films are on the order of 12 to 18 times the feed rate of hexamethyldisiloxane (HMDSO) (mol / sec).

플라즈마의 안정성을 향상시키기 위해 헥사메틸다이실록산(HMDSO) 기체와 아르곤 가스를 혼합하여 투입할 수 있다. 그러나, 너무 많은 양의 아르곤 가스를 공급하면 헥사메틸다이실록산(HMDSO)의 분압을 떨어뜨려 증착속도를 감소시킨다. 내마모성 박막 제조에 적당한 아르곤 가스의 공급속도는 헥사메틸다이실록산(HMDSO)의 공급 속도(mol/sec)의 0.1 내지 2배 정도이다.In order to improve the stability of the plasma, hexamethyldisiloxane (HMDSO) gas and argon gas may be mixed and added. However, supplying too much argon gas lowers the partial pressure of hexamethyldisiloxane (HMDSO) to reduce the deposition rate. The supply rate of argon gas suitable for the wear resistant thin film is about 0.1 to 2 times the supply rate of hexamethyldisiloxane (HMDSO) (mol / sec).

상기 본 발명에 따른 내마모성이 향상된 폴리카보네이트 투명판의 제조방법에서, 폴리카보네이트 투명판의 표면을 세척하는데 사용하는 유기 용제는 폴리카보네이트가 녹지 않는, 예를 들면 에탄올이나 메탄올을 선택하여 사용할 수 있다.In the method for producing a polycarbonate transparent plate having improved wear resistance according to the present invention, the organic solvent used to clean the surface of the polycarbonate transparent plate may be selected, for example, ethanol or methanol in which the polycarbonate is not dissolved.

이하, 본 발명을 다음의 실시예를 들어 보다 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예 1Example 1

표면이 매끄러운 폴리카보네이트 투명판을 준비하고 표면을 에탄올로 깨끗이 닦았다. 전극이 설치된 진공 챔버에 폴리카보네이트 투명판을 플라즈마 발생 장치와 연결된 전극 위에 설치하고 배기하여 챔버내 압력을 2.5 X 10-2토르(torr)로 낮추었다. 챔버에 산소 가스를 100sccm(7.44 X 10-5mol/sec) 을 투입하면서 전극에 50W의 RF 전압을 걸어 플라즈마를 형성하였다.A smooth polycarbonate transparent plate was prepared and the surface was cleaned with ethanol. The polycarbonate transparent plate was installed on the electrode connected to the plasma generator in the vacuum chamber in which the electrode was installed and exhausted to lower the pressure in the chamber to 2.5 × 10 −2 Torr. 100 sccm (7.44 × 10 −5 mol / sec) of oxygen gas was introduced into the chamber to form a plasma by applying an RF voltage of 50 W to the electrode.

플라즈마가 형성된 챔버에 액상인 헥사메틸다이실록산(HMDSO)을 3.6g/hr(6.16 X 10-6mol/sec) 속도로 공급하여 기화시킨후, 아르곤 가스를 10sccm(7.44 X 10-6mol/sec)의 속도로 투입해 폴리카보네이트 투명판 위에 내마모막을 40분간 증착시켰다. 증착시 챔버의 압력은 6 X 10-1토르(torr)로 유지하였다. 본 실험의 전력밀도(W/FM)를 구하면After supplying liquid hexamethyldisiloxane (HMDSO) at a rate of 3.6 g / hr (6.16 X 10 -6 mol / sec) to the chamber in which the plasma was formed, the gas was evaporated, followed by argon gas (10 sccm (7.44 X 10 -6 mol / sec). The wear resistant film was deposited for 40 minutes on a polycarbonate transparent plate at a rate of). During deposition, the pressure in the chamber was maintained at 6 × 10 −1 Torr. If we find the power density (W / FM) of this experiment

W/FM = 50(W=J/sec) /(6.16 X 10-6mol/sec X 0.1624 Kg/mol)W / FM = 50 (W = J / sec) / (6.16 X 10 -6 mol / sec X 0.1624 Kg / mol)

= 5 X 107J/sec 이다.= 5 X 10 7 J / sec.

전압을 끄고 기체 투입을 중단한 후 공기를 챔버에 불어넣어 압력을 대기상태로 높인 후 내마모막이 증착된 폴리카보네이트 투명판을 꺼내었다. 제조된 내마모 폴리카보네이트는 투명하고 박리가 발생하지 않았다.After the voltage was turned off and the gas was stopped, air was blown into the chamber to raise the pressure to the atmospheric state, and the polycarbonate transparent plate on which the wear-resistant film was deposited was taken out. The wear resistant polycarbonates produced were transparent and no delamination occurred.

이에 대한 물성을 표 1에 나타내었다.The physical properties thereof are shown in Table 1.

실시예 2Example 2

표면이 매끄러운 폴리카보네이트 투명판을 준비하고 표면을 에탄올로 깨끗이 닦았다. 전극이 설치된 진공 챔버에 폴리카보네이트 투명판을 플라즈마 발생장치와 연결된 전극 위에 설치하고 배기하여 챔버내 압력을 2.5 X 10-2토르(torr)로 낮추었다. 챔버에 산소 가스를 68sccm(5.06 X 10-5mol/sec)을 투입하면서 전극에 150W의 RF 전압을 걸어 플라즈마를 형성하였다.A smooth polycarbonate transparent plate was prepared and the surface was cleaned with ethanol. The polycarbonate transparent plate was installed on the electrode connected to the plasma generator in the vacuum chamber in which the electrode was installed and exhausted to lower the pressure in the chamber to 2.5 × 10 −2 Torr. 68 sccm (5.06 X 10 -5 mol / sec) of oxygen gas was introduced into the chamber to form a plasma by applying an RF voltage of 150 W to the electrode.

플라즈마가 형성된 챔버에 헥사메틸다이실록산(HMDSO)을 3.6g/hr(6.16 X 10-6mol/sec) 속도로 공급하여 기화시킨 후, 아르곤 가스를 10sccm(7.44 X 10-6mol/sec)의 속도로 투입해 폴리카보네이트 투명판 위에 내마모막을 40분간 증착시켰다. 증착시 챔버의 압력은 6 X 10-1토르(torr)로 유지하였다. 전압을 끄고 기체투입을 중단한 후 공기를 챔버에 불어넣어 압력을 대기상태로 높인 후 내마모막이 증착된 폴리카보네이트 투명판을 꺼내었다. 제조된 내마모 폴리카보네이트는 투명하고 박리가 발생하지 않았다. 본 실험에서 사용한 전력밀도(W/FM)은 1.5 X 108J/sec 이다.Hexamethyldisiloxane (HMDSO) was supplied to the chamber where the plasma was formed at a rate of 3.6 g / hr (6.16 X 10 -6 mol / sec) to vaporize, followed by argon gas at 10 sccm (7.44 X 10 -6 mol / sec). Abrasion resistant film was deposited for 40 minutes on a polycarbonate transparent plate at a speed. During deposition, the pressure in the chamber was maintained at 6 × 10 −1 Torr. After turning off the voltage and stopping the gas injection, the air was blown into the chamber to raise the pressure to atmospheric state, and then the polycarbonate transparent plate on which the wear-resistant film was deposited was taken out. The wear resistant polycarbonates produced were transparent and no delamination occurred. The power density (W / FM) used in this experiment is 1.5 X 10 8 J / sec.

이에 대한 물성을 표 1에 나타내었다.The physical properties thereof are shown in Table 1.

비교예 1Comparative Example 1

표면이 매끄러운 폴리카보네이트 투명판을 준비하고 표면을 에탄올로 깨끗이 닦았다. 전극이 설치된 진공 챔버에 폴리카보네이트 투명판을 접지된 전극 위에 설치하고 배기하여 챔버내 압력을 2.5 X 10-2토르(torr)로 낮추었다. 챔버에 산소 가스를 100sccm(7.44 X 10-5mol/sec)을 투입하면서 전극에 400W의 RF 전압을 걸어 플라즈마를 형성하였다.A smooth polycarbonate transparent plate was prepared and the surface was cleaned with ethanol. The polycarbonate transparent plate was installed on the grounded electrode and evacuated in the vacuum chamber where the electrode was installed to lower the pressure in the chamber to 2.5 × 10 −2 torr. 100 sccm (7.44 × 10 −5 mol / sec) of oxygen gas was introduced into the chamber to form a plasma by applying an RF voltage of 400 W to the electrode.

플라즈마가 형성된 챔버에 헥사메틸다이실록산(HMDSO)을 2.4g/hr(4.11 X 10-6mol/sec) 속도로 공급하여 기화시킨 후, 아르곤 가스를 10sccm(7.44 X 10-6mol/sec)의 속도로 투입하여 폴리카보네이트 투명판 위에 내마모막을 40분간 증착시켰다. 증착시 챔버의 압력은 6 X 10-1토르(torr)로 유지하였다. 전압을 끄고 기체 투입을 중단한 후 공기를 챔버에 불어넣어 압력을 대기상태로 높인 후 내마모막이 증착된 폴리카보네이트 투명판을 꺼낸다. 제조된 내마모박막은 투명하지만표면에 많은 크랙이 발생하고 박리되는 것을 확인 할 수 있었다. 본 실험에서 사용한 전력밀도(W/FM)은 6 X 108J/sec 이다.Hexamethyldisiloxane (HMDSO) was supplied at a rate of 2.4 g / hr (4.11 X 10 -6 mol / sec) to the chamber where the plasma was formed, followed by vaporization, and then argon gas was added at 10 sccm (7.44 X 10 -6 mol / sec). Abrasion resistant film was deposited for 40 minutes on a polycarbonate transparent plate at a speed. During deposition, the pressure in the chamber was maintained at 6 × 10 −1 Torr. After the voltage was turned off and the gas was stopped, air was blown into the chamber to raise the pressure to atmospheric state, and the polycarbonate transparent plate on which the wear-resistant film was deposited was taken out. The wear-resistant thin film produced was transparent but many cracks were generated on the surface and it could be confirmed that it was peeled off. The power density (W / FM) used in this experiment is 6 X 10 8 J / sec.

이에 대한 물성을 표 1에 나타내었다.The physical properties thereof are shown in Table 1.

비교예 2Comparative Example 2

표면이 매끄러운 폴리카보네이트 투명판을 준비하고 표면을 에탄올로 깨끗이 닦았다. 전극이 설치된 진공 챔버에 폴리카보네이트 투명판을 접지된 전극 위에 설치하고 배기하여 챔버내 압력을 2.5 X 10-2토르(torr)로 낮추었다. 챔버에 산소 가스를 4 sccm(2.98 X 10-6mol/sec)을 투입하면서 전극에 400W의 RF 전압을 걸어 플라즈마를 형성하였다.A smooth polycarbonate transparent plate was prepared and the surface was cleaned with ethanol. The polycarbonate transparent plate was installed on the grounded electrode and evacuated in the vacuum chamber where the electrode was installed to lower the pressure in the chamber to 2.5 × 10 −2 torr. 4 sccm (2.98 × 10 −6 mol / sec) of oxygen gas was introduced into the chamber to form a plasma by applying an RF voltage of 400 W to the electrode.

플라즈마가 형성된 챔버에 헥사메틸다이실록산(HMDSO)을 2.4g/hr (4.11 X 10-6mol/sec) 속도로 공급하여 기화시킨 후, 아르곤 가스를 10sccm(7.44 X 10-6mol/sec)의 속도로 투입하여 폴리카보네이트 투명판 위에 내마모막을 40분간 증착시켰다. 증착시 챔버의 압력은 6 X 10-1토르(torr)로 유지하였다. 전압을 끄고 기체 투입을 중단한 후 공기를 챔버에 불어넣어 압력을 대기상태로 높인 후 내마모막이 증착된 폴리카보네이트 투명판을 꺼내었다. 제조된 내마모 박막은 뿌옇게 변해 투명도가 떨어지는 것을 확인 할 수 있었다. 본 실험에서 사용한 전력밀도(W/FM)은 6 X 108J/sec 이다.After supplying hexamethyldisiloxane (HMDSO) at a rate of 2.4 g / hr (4.11 X 10 -6 mol / sec) to the chamber in which the plasma was formed, the gas was evaporated, followed by argon gas of 10 sccm (7.44 X 10 -6 mol / sec). Abrasion resistant film was deposited for 40 minutes on a polycarbonate transparent plate at a speed. During deposition, the pressure in the chamber was maintained at 6 × 10 −1 Torr. After the voltage was turned off and the gas was stopped, air was blown into the chamber to raise the pressure to the atmospheric state, and the polycarbonate transparent plate on which the wear-resistant film was deposited was taken out. The produced wear-resistant thin film turned cloudy and could be confirmed that the transparency is poor. The power density (W / FM) used in this experiment is 6 X 10 8 J / sec.

이에 대한 물성을 표 1에 나타내었다.The physical properties thereof are shown in Table 1.

Δ헤이즈Δhaze 실시예 1Example 1 2.22.2 실시예 2Example 2 2.32.3 비교예 1Comparative Example 1 8.08.0 비교예 2Comparative Example 2 6.06.0

※ 내마모성 : ASTM D1044- 테이모 마모 시험과 ASTM D1003 헤이즈 (Haze) 측정법에 의거 측정하였다. (테이버 회전수:500회, 하중:500그램(g))※ Wear resistance: It measured according to ASTM D1044-Taemo abrasion test and ASTM D1003 Haze measurement method. (Tape rotation number: 500 times, load: 500 grams (g))

이와 같이 본 발명에 따른 제조된 내마모 폴리카보네이트 투명판은 투명하고 유리와 유사한 내마모성을 보유하면서 깨지기 않아 많은 분야에서에서 유리를 대체할 수 있다.As such, the wear-resistant polycarbonate transparent plate prepared according to the present invention is transparent and retains abrasion resistance similar to glass, and thus can be replaced in many fields.

Claims (2)

폴리카보네이트 표면을 플라즈마 처리함에 있어서, 폴리카보네이트 수지를 플라즈마 발생장치와 연결된 전극위에 위치시키고 헥사메틸다이실록산(HMDSO)과 아르곤의 혼합 가스와 산소를 투입하여 플라즈마 도움 화학증착법으로 내마모막을 형성하며 이때 공급되는 에너지와 헥사메틸다이실록산의 공급량은 전력밀도(W/FM)가 107내지 109(J/Kg)의 범위를 가지고, 산소의 투입량은 헥사메틸다이실록산(HMDSO)의 공급량에 12 내지 18배의 범위를 갖게 하는 것을 특징으로 하는 내마모성이 향상된 폴리카보네이트 투명판의 제조방법.Plasma treatment of the surface of the polycarbonate, the polycarbonate resin is placed on the electrode connected to the plasma generating device, and a mixed gas of hexamethyldisiloxane (HMDSO) and argon and oxygen are added to form a wear-resistant film by plasma assisted chemical vapor deposition. The supplied energy and the amount of hexamethyldisiloxane have a power density (W / FM) in the range of 10 7 to 10 9 (J / Kg), and the amount of oxygen is 12 to the amount of hexamethyldisiloxane (HMDSO) supplied. A method for producing a polycarbonate transparent plate having improved wear resistance, characterized in that it has a range of 18 times. 제 1항에 있어서, 상기 아르곤 가스의 투입량은 헥사메틸다이실록산(HMDSO)의 공급량의 0.1 내지 2배 범위를 갖는 것을 특징으로 하는 방법.The method of claim 1, wherein the dose of argon gas is in the range of 0.1 to 2 times the supply amount of hexamethyldisiloxane (HMDSO).
KR1020000017612A 2000-04-04 2000-04-04 A process for the preparation of polycarbonate transparent plane with improved abrasion resistance KR100337483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000017612A KR100337483B1 (en) 2000-04-04 2000-04-04 A process for the preparation of polycarbonate transparent plane with improved abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000017612A KR100337483B1 (en) 2000-04-04 2000-04-04 A process for the preparation of polycarbonate transparent plane with improved abrasion resistance

Publications (2)

Publication Number Publication Date
KR20010094136A true KR20010094136A (en) 2001-10-31
KR100337483B1 KR100337483B1 (en) 2002-05-23

Family

ID=19661709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000017612A KR100337483B1 (en) 2000-04-04 2000-04-04 A process for the preparation of polycarbonate transparent plane with improved abrasion resistance

Country Status (1)

Country Link
KR (1) KR100337483B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022007536A1 (en) * 2020-07-06 2022-01-13 江苏菲沃泰纳米科技股份有限公司 Transparent wear-resistant film layer, plastic surface modification method, and product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022007536A1 (en) * 2020-07-06 2022-01-13 江苏菲沃泰纳米科技股份有限公司 Transparent wear-resistant film layer, plastic surface modification method, and product

Also Published As

Publication number Publication date
KR100337483B1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
EP0285870B1 (en) A method for forming abrasion-resistant polycarbonate articles
US5051308A (en) Abrasion-resistant plastic articles
US4927704A (en) Abrasion-resistant plastic articles and method for making them
CN104746050B (en) Plasma coating system for non-planar substrates
CN1237200C (en) Silicon dioxide deposition by plasma activated evaporation process
EP0854891B1 (en) Process for preparing coated plastic surfaces
Wertheimer et al. Advances in basic and applied aspects of microwave plasma polymerization
CA2147486C (en) Protective film for articles and method
EP0327639B1 (en) Abrasion-resistant plastic articles and method for making them
US5494712A (en) Method of forming a plasma polymerized film
US5156882A (en) Method of preparing UV absorbant and abrasion-resistant transparent plastic articles
CN100519822C (en) Vacuum production method for SiOx coating on organic precoating metal sheet
CN1210901A (en) Protective coating by high rate arc plasma deposition
JPS63114978A (en) Production of transparent protective coating
KR20070072899A (en) Improved deposition rate plasma enhanced chemical vapor process
JP2023533327A (en) Superhydrophobic film layer, manufacturing method and product
KR20020043702A (en) Method for making of Polymer thin films by low-temperature plasma enhanced chemical vapor deposition using
KR100337483B1 (en) A process for the preparation of polycarbonate transparent plane with improved abrasion resistance
Wrobel et al. Preparation, structure, and some properties of organosilicon thin polymer films obtained by plasma polymerization
Lee et al. Mechanical properties of aC: H and aC: H/SiOx nanocomposite thin films prepared by ion-assisted plasma-enhanced chemical vapor deposition
KR100284387B1 (en) Manufacturing method of polycarbonate transparent plate with improved abrasion resistance and scratch resistance using plasma assisted chemical vapor deposition
CN111378968A (en) Anti-corrosion nano coating and plasma preparation method thereof
KR100254012B1 (en) Process for preparing polycarbonate transparent plate enhanced abrasion resistance and scratch resistance
Tran et al. Surface tailoring of an ethylene propylene diene elastomeric terpolymer via plasma‐polymerized coating of tetramethyldisiloxane
Dong et al. Transparent SiOxCyHz barrier film prepared by PECVD with upper and lower pair electrode rolls structure

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130228

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150310

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160304

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 17