KR20010091479A - Hydrogen storage techniques using carbon nanotubes - Google Patents

Hydrogen storage techniques using carbon nanotubes Download PDF

Info

Publication number
KR20010091479A
KR20010091479A KR1020000013220A KR20000013220A KR20010091479A KR 20010091479 A KR20010091479 A KR 20010091479A KR 1020000013220 A KR1020000013220 A KR 1020000013220A KR 20000013220 A KR20000013220 A KR 20000013220A KR 20010091479 A KR20010091479 A KR 20010091479A
Authority
KR
South Korea
Prior art keywords
hydrogen
carbon nanotube
carbon nanotubes
electrochemically
storing
Prior art date
Application number
KR1020000013220A
Other languages
Korean (ko)
Inventor
남기석
박기수
이영희
Original Assignee
남기석
이영희
박기수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남기석, 이영희, 박기수 filed Critical 남기석
Priority to KR1020000013220A priority Critical patent/KR20010091479A/en
Publication of KR20010091479A publication Critical patent/KR20010091479A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE: A hydrogen storage method using carbon nanotube is provided which increases hydrogen storage efficiency, safe and stores a large amount of hydrogen using less energy compared with an existing hydrogen storage method. CONSTITUTION: The hydrogen storage method using carbon nanotube comprises the process of electrochemically storing hydrogen into carbon nanotube, wherein hydrogen is stored into carbon nanotube using electrons supplied from the outer circuit while hydrogen stored is seceded from the carbon nanotube when gradually emitting current; electrochemically storing hydrogen into copper doped carbon nanotube using electroless plating; electrochemically storing hydrogen into lithium doped carbon nanotube, wherein hydrogen is electrochemically stored into the carbon nanotube after impregnating pure carbon nanotube with an excessive amount of lithium solution and vacuum drying the impregnated carbon nanotube at a pressure of 40 torr and a temperature of 373 deg.K; electrochemically storing hydrogen into potassium doped carbon nanotube, wherein hydrogen is electrochemically stored into the carbon nanotube after impregnating pure carbon nanotube with an excessive amount of potassium solution and vacuum drying the impregnated carbon nanotube at a pressure of 40 torr and a temperature of 373 deg.K; thermally storing hydrogen into carbon nanotube, wherein hydrogen is absorbed when a temperature inside a reactor is 150 deg.K; thermally storing hydrogen into lithium doped carbon nanotube; or storing hydrogen into potassium doped carbon nanotube.

Description

탄소나노튜브를 이용한 수소저장기술 {Hydrogen storage techniques using carbon nanotubes}Hydrogen storage techniques using carbon nanotubes}

본 발명은 기존의 수소저장방법보다 수소저장 효율을 높이고, 안전하며, 적은 에너지를 이용하여 많은 양의 수소를 저장함에 있다.The present invention is to increase the hydrogen storage efficiency than the conventional hydrogen storage method, is safe, and to store a large amount of hydrogen using less energy.

수소의 장점은 연소시 극소량의 질소산화물만을 발생할 뿐 다른 공해물질이 생기지 않는 청정에너지라는 점이다. 수소를 직접 연소시켜 에너지를 얻을 수도 있고, 연료전지 등의 연료로서도 사용이 간편하다. 또한 수소는 지구상에 존재하는 거의 무한한 양의 물을 원료로 만들어낼 수 있으며, 사용후에는 다시 물로 재순환되기 때문에 고갈될 걱정이 없는 무한 에너지원이다. 수소는 산업용의 기초 소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 가능성을 지니고 있다.The advantage of hydrogen is that it is a clean energy that generates only a small amount of nitrogen oxide during combustion and does not generate other pollutants. Energy can be obtained by directly burning hydrogen, and it is also easy to use as a fuel such as a fuel cell. In addition, hydrogen can make almost unlimited amount of water present on earth as a raw material, and after use, it is recycled back to water, so it is an infinite source of energy that is not depleted. Hydrogen has the potential to be used in almost all applications in today's energy systems, from industrial basic materials to general fuels, hydrogen vehicles, hydrogen airplanes, and fuel cells.

수소는 표준상태 (0℃, 1기압)에서 2 g이 22.4 L의 큰 부피를 차지한다. 수소를 저장하기 위해서 120 - 150 atm의 높은 압력으로 수소를 압축하여 저장한다. 이러한 저장방법을 기체수소저장 방법이라 한다.Hydrogen occupies a large volume of 22.4 L at 2 g at standard conditions (0 ° C, 1 atmosphere). To store hydrogen, the hydrogen is compressed and stored at a high pressure of 120-150 atm. This storage method is called a gas hydrogen storage method.

액체수소저장방법은 수소기체를 극히 낮은 온도에서 압축시키면 액체수소를만들 수 있고 부피가 크게 줄지만, 이를 위해서는 많은 에너지가 필요하다. 액체수소의 부피는 상온에서의 기체수소 부피의 8백분의 1로 많은 양의 수소를 저장할 수 있다. 그러나 액체수소의 끓는점이 영하 252.6 ℃ (20.5 K)로 아주 낮아 액체수소의 보관을 위해서는 단열이 완벽한 저온용기가 필요하고, 저장 중에도 계속 기체상태로 증발하는 어려움이 있다.Liquid hydrogen storage method can produce liquid hydrogen and reduce volume by compressing hydrogen gas at extremely low temperature, but it requires a lot of energy. The volume of liquid hydrogen can store large amounts of hydrogen at one-eighth of the volume of gaseous hydrogen at room temperature. However, the boiling point of the liquid hydrogen is very low to minus 252.6 ℃ (20.5 K), the low-temperature container is perfect for the insulation of the liquid hydrogen, there is a difficulty in evaporating to a gaseous state during storage.

또한 활성화 탄소흡착법은 저온에서 활성화 탄소의 표면에 수소를 흡착시켜 저장하는 방법이며 저온 유지 장치 (77 K) 가 필요하다.In addition, activated carbon adsorption is a method of adsorbing and storing hydrogen on the surface of activated carbon at a low temperature, and requires a cryostat (77 K).

현재까지 개발된 수소 저장방법 중 가장 효율적인 것은 수소저장합금을 이용하는 것이다. 어떤 종류의 금속이나 합금은 수소와 반응해 금속수소화물을 만들어 수소를 자체 내에 포함한다. 이때 저장되는 수소의 양은 같은 부피의 액체수소보다 밀도가 높아 저장성이 뛰어나다. 0 ℃ 1기압의 수소로 환산하면 수소저장 합금은 1 cm3당 1천cc를 저장할 수 있다. 수소 저장 합금이수소와 가역적으로 반응하여 금속 수소 화합물을 형성하는 반응을 이용하여 수소를 저장하는 방법이며 이의 특징은 다음과 같다. 또한, 수소 저장 밀도가 상당히 높고, 고압 용기나 극 저온용 단열 용기가 필요 없어서 안정성이 높다. 그리고 액체 수소에서의 증발 손실과 같은 손실이 없으므로 장시간 저장이 가능하고, 순도 높은 수소를 얻을 수 있다. 그러나, 수소의 흡수·방출 cycling시 합금이 퇴화되거나, 수소내에 함유된 미량의 불순 가스에 의해서도 수소 저장 용량이 감소하는 것으로 알려져있다. 또한 수소를 저장하는 합금이 매우 무겁기 때문에 수소를 저장해서 자유자재로 옮겨다니기가 어렵다. 이 때문에 가능한 한 가벼우면서도 수소저장능력이 높은 합금을 개발하려는 노력이계속되고 있다.The most efficient hydrogen storage method developed so far is to use a hydrogen storage alloy. Some types of metals or alloys react with hydrogen to form metal hydrides that contain hydrogen within itself. At this time, the amount of hydrogen stored is higher in density than liquid hydrogen of the same volume is excellent storage. In terms of hydrogen at 0 ° C and 1 atm, the hydrogen storage alloy can store 1,000 cc per cm 3 . The hydrogen storage alloy is a method of storing hydrogen using a reaction that reversibly reacts with hydrogen to form a metal hydrogen compound, and its characteristics are as follows. In addition, the hydrogen storage density is considerably high, and there is no need for a high pressure vessel or an ultra-low temperature insulating vessel, which results in high stability. And since there is no loss such as evaporation loss in the liquid hydrogen, it is possible to store for a long time, it is possible to obtain a high purity hydrogen. However, it is known that the hydrogen storage capacity is reduced even when the alloy degenerates during the absorption and release cycling of hydrogen or a trace amount of impurity gas contained in the hydrogen. Also, because the alloy that stores hydrogen is very heavy, it is difficult to store hydrogen and move freely. For this reason, efforts are being made to develop alloys that are as light as possible and have a high hydrogen storage capacity.

본 발명은 상기와 같은 문제점을 개선하기 위하여 창안된 것으로서, 열적 또는 전기화학적인 수소 저장방법을 이용하여 수소를 저장할 경우 전기의 충·방전 조작과 온도에 의해 수소를 삽입·탈리 시킬 수 있기 때문에 기존의 수소를 저장할 때보다 간편하며 적은 양의 탄소나노튜브를 이용하여 많은 양의 수소를 저장할 수 있고, 고압이나 극한 온도를 요구하지 않기 때문에 안전하다. 또한 나노튜브는 탄성력을 갖기 때문에 재활용이 가능하고, 반복적으로 수소를 삽입·탈리 하여도 자체의 구조가 변하지 않는 구조적 안정성을 갖는다.The present invention was devised to improve the above problems, and when hydrogen is stored using a thermal or electrochemical hydrogen storage method, hydrogen can be inserted and desorbed by electric charge / discharge operation and temperature. It is simpler than storing hydrogen and can store a large amount of hydrogen using a small amount of carbon nanotubes and is safe because it does not require high pressure or extreme temperature. In addition, since nanotubes have elasticity, they can be recycled and have structural stability in which their structure does not change even if hydrogen is repeatedly inserted and removed.

상기 목적을 달성하기 위해 본 발명은 (가) 탄소나노튜브에 전기화학적으로 수소를 저장하는 방법; (나) 구리가 도핑된 탄소나노튜브에 전기화학적으로 수소를 저장하는 방법; (다) 리튬이 도핑된 탄소나노튜브에 전기화학적으로 수소를 저장하는 방법; (라) 칼륨이 도핑된 탄소나노튜브에 전기화학적으로 수소를 저장하는 방법; (마) 탄소나노튜브에 열적으로 수소를 저장하는방법; (바) 리튬이 도핑된 탄소나노튜브에 열적으로 수소를 저장하는 방법; (사) 칼륨이 도핑된 탄소나노튜브에 수소를 저장하는 방법으로서 기존의 수소저장합금을 이용하여 수소를 저장하는 방법보다 가볍고 많은 양의 수소를 저장하는 것을 특징으로 한다.The present invention to achieve the above object is (a) a method of electrochemically storing hydrogen in carbon nanotubes; (B) electrochemically storing hydrogen in copper-doped carbon nanotubes; (C) electrochemically storing hydrogen in lithium-doped carbon nanotubes; (D) electrochemically storing hydrogen in potassium-doped carbon nanotubes; (E) thermally storing hydrogen in carbon nanotubes; (F) thermally storing hydrogen in lithium-doped carbon nanotubes; (G) A method of storing hydrogen in potassium-doped carbon nanotubes, which is lighter than a method of storing hydrogen using a conventional hydrogen storage alloy, and stores a large amount of hydrogen.

본 발명에서 (가)항은 전기화학적으로 수소를 저장하는 방법으로서 외부회로에서 공급된 전자를 이용하여 탄소나노튜브에 수소를 저장할 수 있다. 이와 반대로, 점차 전류를 방출하면 저장되어있던 수소를 탄소나노튜브로부터 탈리 한다. 이때 사용된 전류는 0.4 ∼ 4 mA/cm2이며 저장된 양은 110 mAh/g이다.In the present invention (a) is a method for storing hydrogen electrochemically can store the hydrogen in the carbon nanotubes using the electrons supplied from the external circuit. On the contrary, gradually releasing current releases stored hydrogen from carbon nanotubes. The current used was 0.4 to 4 mA / cm 2 and the amount stored was 110 mAh / g.

(나)항은 무전해 도금을 이용하여 탄소나노튜브를 구리로 도핑하여 전기화학적으로 저장하는 방법이다. 무전해도금은 다음과 같은 방법으로 실시한다. 10 wt% 황산을 이용하여 활성화 처리를 행한 후 0.0014 M PdCl2/0.25 M HCl과 0.1 M SnCl2를 0.1 M HCl 염산에 녹여 전처리액을 만들었다.Paragraph (b) is a method of electrochemically storing carbon nanotubes by copper using electroless plating. Electroless plating is carried out in the following manner. After activating with 10 wt% sulfuric acid, 0.0014 M PdCl 2 /0.25 M HCl and 0.1 M SnCl 2 were dissolved in 0.1 M HCl hydrochloric acid to prepare a pretreatment solution.

전처리가 끝난 시료를 60 ℃에서 24시간 건조한 후 황산구리수화물 (0.00875mol)과 EDTA (0.0244 mol), 그리고 글리신 (0.00858 mol)과 포르말린 (0.163mo1)을 이용하여 무전해도금을 실시하였다. 도금이 된 탄소나노튜브를 160℃에서 12시간 동안 건조한 후 건조된 탄소나노튜브를 전기화학적으로 수소를 저장할 경우 740 mAh/g ( 2.7 H wt%)의 수소를 저장할 수 있다.The pretreated samples were dried at 60 ° C. for 24 hours and then electroless plated using copper sulfate hydrate (0.00875 mol), EDTA (0.0244 mol), glycine (0.00858 mol) and formalin (0.163mo1). After the plated carbon nanotubes are dried at 160 ° C. for 12 hours, the dried carbon nanotubes may store 740 mAh / g (2.7 H wt%) of hydrogen when electrochemically stores hydrogen.

(다)항은 순수한 탄소나노튜브를 과량의 리튬용액에 함침한 후 40 torr, 373K에서 진공건조하여 전기화학적인 방법으로 수소를 저장하였다. 사용된 전류밀도는 0.4 ∼ 4 mAh/cm2이었고, 용량은 740 mAh/g ( 2.7H wt%) 이었다.Paragraph (c) impregnated pure carbon nanotubes with an excess of lithium solution, and then vacuum-dried at 40 torr and 373K to store hydrogen by an electrochemical method. The current density used was 0.4-4 mAh / cm 2 and the capacity was 740 mAh / g (2.7H wt%).

(라)항은 순수한 탄소나노튜브를 과량의 칼륨용액에 함침한 후 40 torr, 373 K에서 진공건조하여 전기화학적인 방법으로 수소를 저장하였다. 사용된 전류밀도는 0.4 ∼ 4 mAh/cm2이었고, 740 mAh/g ( 2.7 H wt%)이었다.Paragraph (D) impregnated pure carbon nanotubes with an excess of potassium solution, and vacuum-dried at 40 torr and 373 K to store hydrogen by electrochemical methods. The current density used was 0.4-4 mAh / cm 2 and 740 mAh / g (2.7 H wt%).

전기화학적으로 수소를 저장하는 반응식은 다음과 같다.The reaction scheme for storing hydrogen electrochemically is as follows.

충전이 될 경우 전류의 공급에 의해 외부회로에서 공급된 전자는 물을 분해하여 탄소나노튜브안에 수소를 저장하게하고, 방전될 경우 탄소나노튜브안에 저장해 있던 수소가 탈리된다.When charged, electrons supplied from an external circuit by the supply of electric current decompose water to store hydrogen in carbon nanotubes, and when discharged, hydrogen stored in carbon nanotubes is desorbed.

(마)항은 순수한 탄소나노튜브를 열적인 방법에 의해 수소를 저장하는 방법이다. 상압하에서 반응기안의 온도가 150 K일 때 수소의 흡장이 발생한다. 이 때의 수소저장량은 4 wt%이다.Paragraph (e) is a method of storing hydrogen in pure carbon nanotubes by thermal method. Under normal pressure, when the temperature in the reactor is 150 K, hydrogen occlusion occurs. At this time, the hydrogen storage amount is 4 wt%.

(바)항은 순수한 탄소나노튜브를 과량의 리튬용액에 함침한 후 진공건조하여 반응기안의 온도를 상온에서 653 K까지 5 ℃/min으로 증가한 후 653K 에서 2시간동안 수소에 노출하였을 때 20 wt%의 수소를 저장하였다. 다시 온도를 상온으로 냉각함으로서 수소를 리튬이 도핑된 탄소나노튜브로부터 탈리 할 수 있다.Subclause (b) impregnates pure carbon nanotubes with excess lithium solution and vacuum-dried to increase the temperature in the reactor to 5 ° C / min from room temperature to 653 K and then to 20 wt% when exposed to hydrogen at 653 K for 2 hours. Hydrogen was stored. By cooling the temperature to room temperature again, hydrogen can be released from the lithium-doped carbon nanotubes.

(사)항은 순수한 탄소나노튜브를 과량의 칼륨용액에 함침한 후 진공건조하여 반응기안의 온도를 773 K에서 273 K까지 분당 5 ℃씩 감소한 후 상온에서 1시간동안 수소에 노출시켰다. 이 때 14wt%의 수소를 저장하였다.Paragraph (G) impregnated pure carbon nanotubes with an excess of potassium solution, and vacuum dried to reduce the temperature in the reactor by 5 ° C. per minute from 773 K to 273 K and exposed to hydrogen at room temperature for 1 hour. At this time, 14wt% of hydrogen was stored.

탄소나노튜브(carbon nanotube)는 수소를 열적 및 전기화학적 방법으로 저장할 수 있으며. 나노튜브의 직경에 따라 수 십 wt%이상의 수소를 저장하는 것으로 보고되어 기존의 수소저장합금보다 월등히 높은 수소저장능력을 갖는다. 본 발명의 연구결과에 따르면 전기화학적으로 수소를 저장하는 경우에는 상온에서1600mAh/g(5.6wt%)이상에 해당하는 수소를 저장할 수 있어서 고에너지 밀도의 2차전지와 연료전지의 전극재료로 중요하게 이용될 수 있으며, 열적으로 수소를 저장할 때는 거의 20wt%까지 수소를 저장할 수 있어서 기존의 가솔린이나 디젤 연료를 청정수소에너지로 대체할 수 있는 새로운 수소저장 재료이다.Carbon nanotubes can store hydrogen in thermal and electrochemical ways. It has been reported to store more than tens of wt% hydrogen depending on the diameter of the nanotubes, and has a much higher hydrogen storage capacity than conventional hydrogen storage alloys. According to the research results of the present invention, when storing hydrogen electrochemically, hydrogen corresponding to 1600mAh / g (5.6wt%) or more can be stored at room temperature, which is important as an electrode material for high energy density secondary batteries and fuel cells. It is a new hydrogen storage material that can store hydrogen up to almost 20wt% when thermally storing hydrogen, and can replace existing gasoline or diesel fuel with clean hydrogen energy.

Claims (9)

전기화학적인 방법을 이용하여 탄소나노튜브에 수소를 저장하는 방법How to store hydrogen in carbon nanotubes using an electrochemical method 제1항에 있어서,The method of claim 1, 순수한 탄소나노튜브에 전기화학적인 방법을 이용하여 수소를 저장하는 방법How to store hydrogen in pure carbon nanotubes using electrochemical methods 제 1항에 있어서,The method of claim 1, 구리가 도핑된 탄소나노튜브에 전기화학적인 방법을 이용하여 수소를 저장하는 방법A method of storing hydrogen in copper-doped carbon nanotubes using an electrochemical method 제 1항에 있어서,The method of claim 1, 리튬이 도핑된 탄소나노튜브에 전기화학적인 방법을 이용하여 수소를 저장하는 방법A method of storing hydrogen in lithium-doped carbon nanotubes using an electrochemical method 제 1항에 있어서,The method of claim 1, 칼륨이 도핑된 탄소나노튜브에 전기화학적인 방법을 이용하여 수소를 저장하는 방법A method of storing hydrogen in potassium-doped carbon nanotubes using an electrochemical method 열적인 방법을 이용하여 탄소나노튜브에 수소를 저장하는 방법How to Store Hydrogen in Carbon Nanotubes by Thermal Method 제 6항에 있어서,The method of claim 6, 순수한 탄소나노튜브에 열적인 방법을 이용하여 수소를 저장하는 방법How to store hydrogen in pure carbon nanotubes by thermal method 제 6항에 있어서,The method of claim 6, 리튬이 도핑된 탄소나노튜브에 열적인 방법을 이용하여 수소를 저장하는 방법Hydrogen Storage by Lithium Doped Carbon Nanotubes by Thermal Method 제 6항에 있어서,The method of claim 6, 칼륨이 도핑된 탄소나노튜브에 열적인 방법을 이용하여 수소를 저장하는 방법Hydrogen storage method using potassium method doped carbon nanotubes by thermal method
KR1020000013220A 2000-03-15 2000-03-15 Hydrogen storage techniques using carbon nanotubes KR20010091479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000013220A KR20010091479A (en) 2000-03-15 2000-03-15 Hydrogen storage techniques using carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000013220A KR20010091479A (en) 2000-03-15 2000-03-15 Hydrogen storage techniques using carbon nanotubes

Publications (1)

Publication Number Publication Date
KR20010091479A true KR20010091479A (en) 2001-10-23

Family

ID=19655640

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000013220A KR20010091479A (en) 2000-03-15 2000-03-15 Hydrogen storage techniques using carbon nanotubes

Country Status (1)

Country Link
KR (1) KR20010091479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182582B2 (en) 2006-12-06 2012-05-22 Electronics And Telecommunications Research Institute Gas storage medium, gas storage apparatus and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653951A (en) * 1995-01-17 1997-08-05 Catalytic Materials Limited Storage of hydrogen in layered nanostructures
US5698140A (en) * 1996-05-02 1997-12-16 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Aerogel/fullerene hybrid materials for energy storage applications
JPH1072201A (en) * 1996-08-30 1998-03-17 Toyota Motor Corp Hydrogen storage method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653951A (en) * 1995-01-17 1997-08-05 Catalytic Materials Limited Storage of hydrogen in layered nanostructures
US5698140A (en) * 1996-05-02 1997-12-16 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Aerogel/fullerene hybrid materials for energy storage applications
JPH1072201A (en) * 1996-08-30 1998-03-17 Toyota Motor Corp Hydrogen storage method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182582B2 (en) 2006-12-06 2012-05-22 Electronics And Telecommunications Research Institute Gas storage medium, gas storage apparatus and method thereof

Similar Documents

Publication Publication Date Title
US4923770A (en) Amorphous metal alloy compositions for reversible hydrogen storage and electrodes made therefrom
SG183976A1 (en) Electrochemical hydrogen-catalyst power system
CN110577208B (en) Sodium-philic conductive carbon nanotube framework material and preparation method and application thereof
CN109599535B (en) Fluorinated carbon nanotube/carbon nanotube sponge composite material for lithium-sulfur battery anode and preparation method thereof
EP0197680A2 (en) Energy storage devices and amorphous metal alloy electrodes for use in acid environments
US20020015869A1 (en) Liquid fuel cell
WO2007078787A1 (en) Porous metal hydride electrode
Ruggeri et al. Correlation between charge input and cycle life of MgNi electrode for Ni–MH batteries
Iwakura et al. Surface modification of laves-phase ZrV0. 5Mn0. 5Ni alloy electrodes with an alkaline solution containing potassium borohydride as a reducing agent
CN110993919A (en) Preparation method and application of potassium ion battery negative electrode energy storage material
Heth Energy on demand: A brief history of the development of the battery
KR102319109B1 (en) Hybrid sodium-carbon dioxide secondary battery capable of obtaining energy storage along with high value-added product by electrochemical carbon dioxide reduction and secondary battery system comprising the same
Lota et al. AB5-type hydrogen storage alloy modified with carbon used as anodic materials in borohydride fuel cells
JPH0831444A (en) Electrochemical cell and actuation thereof
CN113488656A (en) 3D lithium-philic composite porous metal alloy current collector and preparation method and application thereof
US7014952B2 (en) Hydrogen-storing carbonaceous material and method for producing the same, hydrogen-stored carbonaceous material and method for producing the same and battery and fuel cell using hydrogen-stored carbonaceous material
KR20010091479A (en) Hydrogen storage techniques using carbon nanotubes
US20040058241A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JPS61269854A (en) Energy storage apparatus used in acid environment and amorphous type metal alloy electrode
JPS6154163A (en) Oxyhydrogen-system fuel cell
US20070042252A1 (en) Solid state, thin film proton exchange membrane for fuel cells
EP0196190A2 (en) Storage devices and amorphous metal alloy electrodes for use in alkaline environments
KR0137797B1 (en) Manufacturing method of electrode for the secondary battery using the hydrogen storage alloy
CN112786831B (en) CoNiP-rGO/S composite lithium-sulfur battery positive electrode material and preparation method thereof
CN115911382B (en) Self-supporting SnO of foam nickel 2 Nano array@porous carbon fiber composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application