KR20010080412A - Diffusion barrier materials with improved step coverage - Google Patents

Diffusion barrier materials with improved step coverage Download PDF

Info

Publication number
KR20010080412A
KR20010080412A KR1020017005944A KR20017005944A KR20010080412A KR 20010080412 A KR20010080412 A KR 20010080412A KR 1020017005944 A KR1020017005944 A KR 1020017005944A KR 20017005944 A KR20017005944 A KR 20017005944A KR 20010080412 A KR20010080412 A KR 20010080412A
Authority
KR
South Korea
Prior art keywords
metal
step coverage
titanium
film
tetrakis
Prior art date
Application number
KR1020017005944A
Other languages
Korean (ko)
Inventor
로이 씨. 고든
지니 리우
Original Assignee
조이스 브린톤
프레지던트 앤드 펠로우즈 오브 하바드 칼리지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조이스 브린톤, 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 filed Critical 조이스 브린톤
Publication of KR20010080412A publication Critical patent/KR20010080412A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

금속 질화물을 함유한 정각층(conformal layer)을 형성하기 위한 화학기상증착 방법이 제공된다. 주로 질화티탄으로 구성된 필름이 테트라키스(디에틸아미도)티탄, 암모니아 및 트리메틸아민의 증기 혼합물로부터 약 350℃로 가열된 표면 상에 증착된다. 상기 방법은 컴퓨터 마이크로 회로 내의 금속 및 실리콘 사이에 확산 장벽층(diffusion barrier layer)을 형성하는데 사용될 수 있다.A chemical vapor deposition method for forming a conformal layer containing metal nitride is provided. A film consisting mainly of titanium nitride is deposited on a surface heated to about 350 ° C. from a vapor mixture of tetrakis (diethylamido) titanium, ammonia and trimethylamine. The method can be used to form a diffusion barrier layer between metal and silicon in a computer microcircuit.

Description

향상된 스텝 커버리지를 갖는 확산 장벽 물질{DIFFUSION BARRIER MATERIALS WITH IMPROVED STEP COVERAGE}Diffusion barrier material with improved step coverage {DIFFUSION BARRIER MATERIALS WITH IMPROVED STEP COVERAGE}

컴퓨터 프로세서 및 메모리 칩 내에서, 금속 회로는 실리콘 표면 근처에 형성된 트랜지스터와 커패시터(capacitor)를 연결한다. 알루미늄, 구리 및 텅스텐은 이러한 회로에 통상적으로 사용되는 금속이다. 기능적이고 내구력이 있는 컴퓨터를 제조하기 위하여, 금속은 장벽층(barrier layer)에 의해 실리콘으로부터 분리되어야 한다. 그러한 장벽층이 없는 경우, 알루미늄이 실리콘과 합금되어, 전기 회로를 단락시킬 수 있는 에칭 피트(etch pit)를 생성하거나; 구리가 실리콘 내로 확산되어 전자와 홀(hole)에 해로운 재결합(recombination) 중심을 제공하거나; 또는텅스텐이 이산화실리콘 절연층을 벗겨낸다.Within computer processors and memory chips, metal circuitry connects transistors and capacitors formed near the silicon surface. Aluminum, copper and tungsten are the metals commonly used in such circuits. In order to make a functional and durable computer, the metal must be separated from the silicon by a barrier layer. In the absence of such a barrier layer, aluminum is alloyed with silicon to create an etch pit that may short the electrical circuit; Copper diffuses into the silicon to provide a recombination center that is detrimental to electrons and holes; Or tungsten strips off the silicon dioxide insulating layer.

질화티탄은 장벽층으로 일반적으로 사용되는 물질이다. 질화티탄은 보통 저압 질소기체 내에서 티탄 타겟의 반응성 스퍼터링(reactive sputtering) 공정에 의해 생성된다. 스퍼터된 물질은 최하 1/4 마이크론 까지의 최소 배선폭(feature size)을 갖는 컴퓨터 칩 생산용으로는 만족스러웠다. 산업이 보다 빨리 작동하고 보다 많은 정보를 저장할 수 있는 회로를 만들고자 시도함에 따라, 최소 배선폭은 감소하고 있다. 약 1/4 마이크론 이하의 최소 배선폭의 경우, 스퍼터링은 기판 내부로 1 마이크론 깊이로 에칭된 협소한 홀(hole)과 트렌치(trench)의 측면 및 저면을 적절하게 커버하지 못한다.Titanium nitride is a material commonly used as a barrier layer. Titanium nitride is usually produced by a reactive sputtering process of a titanium target in a low pressure nitrogen gas. Sputtered materials have been satisfactory for the production of computer chips with minimum feature sizes of up to 1/4 micron. As the industry attempts to create circuits that can operate faster and store more information, the minimum wire width is decreasing. For a minimum wiring width of about 1/4 micron or less, sputtering does not adequately cover the sides and bottom of the narrow holes and trenches etched one micron deep into the substrate.

에칭된 피쳐(feature)의 측벽 및 저면의 커버리지는 외면과 동일한 필름 두께를 갖는 것이 바람직하다. 이러한 상관관계는 스텝 커버리지(step coverage)로 설명된다. "스텝 커버리지"란 이산화실리콘 층 첨부의 필름 두께에 대한 홀 저면에 증착된 필름 두께의 비율이다. 전자 피쳐(electronic feature)는 1에 가까운 스텝 커버리지를 갖는 것이 바람직하다. 따라서, 스퍼터링 보다 우수한 스텝 커버리지를 갖는 공정에 의해 증착된 장벽층이 요구된다.The coverage of the sidewalls and bottom of the etched features preferably has the same film thickness as the outer surface. This correlation is described as step coverage. "Step coverage" is the ratio of the film thickness deposited on the bottom of the hole to the film thickness with the silicon dioxide layer. The electronic feature preferably has a step coverage close to one. Thus, there is a need for a barrier layer deposited by a process that has better step coverage than sputtering.

화학기상증착(CVD)은 증기상(vapor phase)의 반응물로부터 코팅막(coating)과 같은 고형 물질을 형성하는데 널리 사용되는 방법이다. 종종, CVD 방법은 조준선 커버리지(line-of-sight coverage)에 제한되기 때문에 스퍼터링 보다 우수한 스텝 커버리지를 낳는다. CVD 방법에 대한 포괄적인 리뷰는 최근 "CVD of Nonmetals," W.S. Rees, Jr., Editor, VCH Publishers, Weinheim, Germany, 1996;"CVD of Compound Semiconductors," A.C. Jones and P. O'Brien, VCH, 1996; and "The Chemistry of Metal CVD," T. Kodas and M. Hampden-Smith, Editors, VCH, 1994에 제공된 바 있다.Chemical vapor deposition (CVD) is a widely used method for forming solid materials, such as coatings, from reactants in the vapor phase. Often, CVD methods result in better step coverage than sputtering because they are limited to line-of-sight coverage. A comprehensive review of the CVD method is available recently in the "CVD of Nonmetals," W.S. Rees, Jr., Editor, VCH Publishers, Weinheim, Germany, 1996; "CVD of Compound Semiconductors," A.C. Jones and P. O'Brien, VCH, 1996; and "The Chemistry of Metal CVD," T. Kodas and M. Hampden-Smith, Editors, VCH, 1994.

테트라키스(디메틸아미도)티탄 또는 테트라키스(디에틸아미도)티탄 단독, 즉 암모니아 부재의 열 CVD는 양호한 스텝 커버리지를 초래하는 것으로 알려져 있다(Eizenberget al., J. Vac. Sci. Technol. A,13:590(1995)). 양호한 스텝 커버리지는 티탄 아미도 화합물과 임의의 반응 중간체의 낮은 고착계수(sticking coefficient)에 기인하는 것으로 여겨진다. 낮은 고착계수를 갖는 분자는 피쳐의 측벽과의 수회의 충돌을 그 위에 증착되지 않고 견딘다. 따라서, 그러한 분자는 최종적으로 피쳐의 트렌치 내에 더 많이 증착되어 우수한 스텝 커버리지를 제공하기 쉽다. 하지만 불행하게도, 필름의 높은 탄소 오염도, 높은 전기 저항율 및 다공성(저밀도)이 관찰된 우수한 스텝 커버리지와 함께 관찰된다.Thermal CVD of tetrakis (dimethylamido) titanium or tetrakis (diethylamido) titanium alone, i.e. without ammonia is known to result in good step coverage (Eizenberg et al., J. Vac. Sci. Technol. A, 13: 590 (1995). Good step coverage is believed to be due to the low sticking coefficient of the titanium amido compound and any reaction intermediates. Molecules with a low fixation coefficient withstand several collisions with the sidewalls of the feature without being deposited thereon. Thus, such molecules are likely to eventually deposit more into the trenches of the features to provide good step coverage. Unfortunately, however, high carbon contamination, high electrical resistivity and porosity (low density) of the film are observed with good step coverage observed.

보다 양질의 질화티탄 필름이 고든 등(Gordonet al.)의 미국특허 제 5,139, 825(1990)호에 개시된 CVD 방법에 의해 테트라키스(디에틸아미도)티탄 및 암모니아로부터 수득되어 왔다. 이 방법은 반도체 마이크로 회로에 사용하기에 충분히 낮은 온도인 400℃ 이하의 기판 온도에서 수행된다. 이 방법에 의해 얻어지는 스텝 커버리지는 약 1/4 마이크론의 최소 배선폭 및 최대 4:1에 달하는 종횡비를 갖도록 생산되는 통상의 마이크로 회로 상에 장벽층을 형성하는데 적당하다. 그러나, 이 방법에 의해 얻어지는 스텝 커버리지는 미래의 마이크로 회로 생산용으로 생각될 수 있는 훨씬 더 작은 피쳐 크기에 충분할 만큼 높지 않을 수 있다.Higher quality titanium nitride films have been obtained from tetrakis (diethylamido) titanium and ammonia by the CVD method disclosed in Gordon et al ., US Pat. No. 5,139, 825 (1990). This method is performed at a substrate temperature of 400 ° C. or lower, which is low enough for use in semiconductor microcircuits. The step coverage obtained by this method is suitable for forming barrier layers on conventional microcircuits produced with a minimum wiring width of about 1/4 micron and an aspect ratio of up to 4: 1. However, the step coverage obtained by this method may not be high enough for much smaller feature sizes that can be considered for future microcircuit production.

따라서, 저-탄소, 저-저항율 TiN 필름을 생산하기 위하여, 암모니아와의 반응이 필요한 것으로 여겨졌다. 디알킬아미도티탄 착물과 암모니아와의 반응은 아미노기 전달반응(transamination) 및 상응하는 자유 디알킬아민의 형성을 초래한다. 와일러(Weiller)는Journal of the Electrochemical Society, 144:L40-L43(1997) 및 미국특허 제 5,763,007호에 개시된 바와 같이, 아미노기 전달반응 산물인 디알킬아민을 CVD 반응 기체인 테트라키스(디메틸아미도)티탄 증기 및 암모니아 기체에 첨가함으로써, 금속-아미도 화합물의 반응 속도 및 가능하게는 스텝 커버리지의 질을 조절하고자 하였다. 디알킬아민의 첨가는 반응 시간을 증가시키는데는 성공하였으나, 디메틸아민의 첨가가 질화티탄 필름의 스텝 커버리지를 실제적으로 증가시킨다는 명확한 증거는 없었다.Thus, in order to produce low-carbon, low-resistance TiN films, it was believed that a reaction with ammonia was necessary. The reaction of the dialkylamidotitanium complex with ammonia results in amino group transamination and the formation of the corresponding free dialkylamine. Weiller, as disclosed in the Journal of the Electrochemical Society , 144: L40-L43 (1997) and US Pat. No. 5,763,007, uses a dialkylamine, an amino group transfer reaction product, as a CVD reaction gas, tetrakis (dimethylamido). By adding to the titanium vapor and ammonia gas, it was intended to control the reaction rate and possibly the quality of the step coverage of the metal-amido compound. The addition of dialkylamines was successful in increasing the reaction time, but there was no clear evidence that the addition of dimethylamine actually increased the step coverage of the titanium nitride film.

따라서, 지금까지, 종래기술은 양호한 필름 질 및 양호한 스텝 커버리지를 동시에 갖는 금속 질화물 필름의 증착방법을 제공할 수 없었다.Thus, until now, the prior art has not been able to provide a method for depositing a metal nitride film having both good film quality and good step coverage.

질화티탄 필름의 탄소 함량, 전기 저항율 또는 밀도에 악영향을 끼치지 않고 스텝 커버리지를 증가시키는 방법이 절실히 요구되고 있으나, 와일러(Weiller)의 미국특허 제 5,763,007호는 그러한 방법을 제공하지 않는다.While there is an urgent need for a method of increasing step coverage without adversely affecting the carbon content, electrical resistivity or density of titanium nitride films, US Pat. No. 5,763,007 to Weiler does not provide such a method.

[발명의 요약][Summary of invention]

본 발명의 주요 목적은 향상된 스텝 커버리지를 갖는 금속 질화물 층의 증착방법을 제공하는 것이다.It is a primary object of the present invention to provide a method of depositing a metal nitride layer with improved step coverage.

본 발명의 다른 목적은 고순도, 높은 전기 도전성 및 효과적인 확산 장벽 특성을 갖는, 전이금속 질화물을 포함한 금속 질화물 필름의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a metal nitride film including transition metal nitride, which has high purity, high electrical conductivity and effective diffusion barrier properties.

본 발명의 추가적인 목적은 안정하고 균일한 액상 용액의 증기로부터의 정각(conformal) 금속 질화물 필름의 화학기상증착 방법을 제공하는 것이다.It is a further object of the present invention to provide a method for chemical vapor deposition of a conformal metal nitride film from the vapor of a stable and uniform liquid solution.

본 발명의 한가지 특별한 목적은 양호한 스텝 커버리지, 낮은 전기 저항율 및 낮은 탄소 함량을 갖는 질화티탄 코팅막(coating)의 증착방법을 제공하는 것이다.One particular object of the present invention is to provide a method for depositing a titanium nitride coating having good step coverage, low electrical resistivity and low carbon content.

본 발명의 또다른 특별한 목적은 필름을 통한 물질의 확산에 대하여 우수한 저항성을 갖는 정각 질화티탄 필름의 증착방법을 제공하는 것이다.Another particular object of the present invention is to provide a method for depositing a regular titanium nitride film having excellent resistance to diffusion of material through the film.

본 발명의 관련 목적은 화학기상증착 공정에서 몇 가지 금속 질화물을 함유한 정각층(conformal layer)을 증착하는 것이다.A related object of the present invention is to deposit a conformal layer containing several metal nitrides in a chemical vapor deposition process.

본 발명의 또다른 특별한 목적은 실리콘 및 이산화실리콘에 강력하게 접착되는 갖는 정각 질화티탄 필름의 증착방법을 제공하는 것이다.Another particular object of the present invention is to provide a method for depositing a regular titanium nitride film having strong adhesion to silicon and silicon dioxide.

본 발명의 추가의 특별한 목적은 텅스텐 필름이 강력하게 접착되는 정각 질화티탄 필름을 제공하는 것이다.A further special object of the present invention is to provide a right angle titanium nitride film to which a tungsten film is strongly bonded.

본 발명의 또다른 특별한 목적은 필름을 통한 물질의 확산에 대하여 우수한 저항성을 갖는 정각 도전성 질화니오브 필름의 증착방법을 제공하는 것이다.Another particular object of the present invention is to provide a method for depositing a right-angle conductive niobium nitride film having excellent resistance to diffusion of material through the film.

본 발명의 다른 목적은 본 발명을 읽을 때 당업계의 숙련가에게 명백할 것이다.Other objects of the present invention will be apparent to those skilled in the art upon reading the present invention.

상기 목적들은 금속 알킬아미드, 암모니아 및 3차 아민의 증기를 포함하는기체 혼합물이 금속 질화물의 정각 필름이 증착될 뜨거운 기판과 접촉되는 화학기상증착 방법을 사용함으로써 실질적으로 달성되었다. 예를 들면, 기판 내의 홀 및 트렌치를 균일하게 커버하는 질화티탄 필름을 증착하기 위해, 테트라키스(디에틸아미도)티탄 증기, 암모니아 기체 및 트리메틸아민 기체가 350℃로 유지된 패턴 기판(patterned substrate) 상으로 유입된다.These objects have been substantially achieved by using a chemical vapor deposition method in which a gas mixture comprising a vapor of metal alkylamide, ammonia and tertiary amine is contacted with a hot substrate on which a conformal film of metal nitride is to be deposited. For example, a patterned substrate in which tetrakis (diethylamido) titanium vapor, ammonia gas and trimethylamine gas were kept at 350 ° C. to deposit a titanium nitride film uniformly covering the holes and trenches in the substrate. ) Flows into the phase.

본 발명의 방법에 사용되는 금속 디알킬아미드는 일반식 M(NR1R2)n을 가질 수 있으며, 여기서 R1및 R2는 알킬기, 또는 질소와 같은 이종원자가 포함된 치환된 알킬기이고, n은 금속의 산화상태를 나타내는 정수이다. 금속 디알킬아미드의 가장 바람직한 조성은 테트라키스(디에틸아미도)티탄 또는 테트라키스(디에틸아미도)니오브와 같은, 디에틸아민으로부터 유도된 리간드를 포함한다.The metal dialkylamides used in the process of the invention may have the general formula M (NR 1 R 2 ) n , wherein R 1 and R 2 are alkyl groups or substituted alkyl groups containing heteroatoms such as nitrogen, n Is an integer representing the oxidation state of the metal. Most preferred compositions of metal dialkylamides include ligands derived from diethylamine, such as tetrakis (diethylamido) titanium or tetrakis (diethylamido) niob.

바람직하게는, 3차 아민은 동일하거나 또는 상이한 알킬기들을 갖는 트리알킬아민이다. 알킬기는 바람직하게는 6개 이하의 탄소를 가지며, 보다 바람직하게는 3개 이하의 탄소를 갖는다. 본 발명의 방법에 있어서, 트리메틸아민은 액상 트리에틸아민 또는 피리딘의 증기와 같은 다른 3차 알킬아민으로 대체될 수 있다.Preferably, the tertiary amine is a trialkylamine having the same or different alkyl groups. The alkyl group preferably has up to 6 carbons, more preferably up to 3 carbons. In the process of the invention, trimethylamine can be replaced with other tertiary alkylamines, such as liquid triethylamine or steam of pyridine.

본 발명의 또다른 바람직한 실시양태는 하나 또는 그 이상의 금속 디알킬아미드와 액상 3차 아민의 액상 혼합물의 순간기화(flash vaporization)에 의해 생산되는 반응물 증기를 사용한 금속 질화물의 화학기상증착 방법을 제공한다. 이러한 혼합 증기는 이어서 기체상으로 암모니아 기체 및 선택적으로 질소와 같은 불활성 캐리어 가스(inert carrier gas)와 혼합된 다음, 가열된 기판에 접촉된다. 이러한방법은 티탄 및 니오브의 질화물을 포함하나 그에 국한되지 않는 필름을 형성하는데 사용될 수 있다.Another preferred embodiment of the present invention provides a process for chemical vapor deposition of metal nitrides using reactant vapors produced by flash vaporization of a liquid mixture of one or more metal dialkylamides with a liquid tertiary amine. . This mixed vapor is then mixed in a gaseous phase with an ammonia gas and optionally an inert carrier gas such as nitrogen and then contacted with the heated substrate. Such methods can be used to form films including, but not limited to, nitrides of titanium and niobium.

본 발명의 또다른 실시양태에 있어서, 혼합 금속 질화물은 둘 또는 그 이상의 금속 디알킬아미드를 기화시킨 후, 그들의 증기를 암모니아 기체, 3차 아민의 증기 및 선택적으로 불활성 캐리어 가스와 혼합함으로써 생성된다. 이러한 증기혼합물은 둘 또는 그 이상의 금속 질화물을 증착하기에 충분한 온도로 가열된 기판과 접촉된다. 상기 방법은 티탄, 지르코늄, 하프늄, 바나듐, 니오브, 탄탈, 크롬, 몰리브덴, 텅스텐, 알루미늄, 갈륨, 인듐 및 주석을 포함하나 그에 국한되지 않는 다중금속 질화물 필름(multimetal nitride film)을 형성하는데 사용될 수 있다.In another embodiment of the present invention, mixed metal nitrides are produced by vaporizing two or more metal dialkylamides and then mixing their vapors with ammonia gas, a vapor of tertiary amines and optionally an inert carrier gas. This vapor mixture is contacted with a substrate heated to a temperature sufficient to deposit two or more metal nitrides. The method can be used to form multimetal nitride films, including but not limited to titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, aluminum, gallium, indium and tin. .

본 발명은 향상된 스텝 커버리지(step coverage) 또는 정각성(conformality)을 갖는 금속 질화물 필름용 화학기상증착(CVD: chemical vapor deposition) 방법에 관한 것이다. 상기 방법의 주요 적용은 금속 질화물이 알루미늄 또는 구리가 실리콘 트랜지스터 내로 확산되는 것을 방지하는 장벽(barrier) 역할을 하는 반도체 마이크로 회로를 제조하는 것이다.The present invention relates to a chemical vapor deposition (CVD) method for metal nitride films with improved step coverage or conformality. The main application of the method is to fabricate semiconductor microcircuits that act as a barrier to prevent metal nitrides from diffusing aluminum or copper into silicon transistors.

본 발명을 도면을 참조하여 설명하기로 한다. 도면은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 의도되어서는 안된다.The present invention will be described with reference to the drawings. The drawings are for illustrative purposes only and are not intended to limit the invention.

도 1은 실시예 1에 기술된 바와 같이 코팅된 피쳐의 (A) 상부, (B) 하부 및 (C) 전체의 동배율 현미경사진이다.1 is a magnification micrograph of (A) top, (B) bottom, and (C) overall of a coated feature as described in Example 1. FIG.

도 2는 비교실시예 2에 기술된 바와 같이 코팅된 피쳐의 (A) 상부, (B) 하부 및 (C) 전체의 동배율 현미경사진이다.FIG. 2 is a magnification photomicrograph of (A) top, (B) bottom and (C) total of the coated feature as described in Comparative Example 2. FIG.

본 발명은 우수한 스텝 커버리지, 낮은 탄소함량 및 낮은 저항율을 갖는 금속 질화물 필름을 제공한다. 본 발명의 방법은 금속 알킬아미드, 암모니아 및 3차 아민의 증기를 포함하는 기체 혼합물이 금속 질화물의 정각 필름이 증착될 뜨거운 표면에 접촉되는 화학기상증착 공정을 포함한다. 예를 들면, 테트라키스(디에틸아미도)티탄 증기, 암모니아 기체 및 트리메틸아민 기체가 기판 내의 홀 및 트렌치를 균일하게 커버하는 질화티탄 필름이 증착될 350℃로 유지된 패턴 기판 상으로 유입된다. 이러한 방법은 직경 0.25 마이크론 이하의 면적 및 4:1 이상의 종횡비(깊이:직경)를 갖는 피쳐에 양호한 스텝 커버리지를 제공하기 위해 사용될 수 있다. 이러한 외형에 대한 70% 이상, 그리고 95-100%에 근접하는 스텝 커버리지가 본 발명의 방법에 의해 달성될 수 있다.The present invention provides a metal nitride film having excellent step coverage, low carbon content and low resistivity. The process of the present invention involves a chemical vapor deposition process in which a gas mixture comprising vapors of metal alkylamides, ammonia and tertiary amines is contacted with a hot surface on which a conformal film of metal nitride will be deposited. For example, tetrakis (diethylamido) titanium vapor, ammonia gas, and trimethylamine gas are introduced onto a patterned substrate maintained at 350 ° C. on which a titanium nitride film uniformly covering holes and trenches in the substrate is deposited. This method can be used to provide good step coverage for features having an area of 0.25 microns in diameter and an aspect ratio (depth: diameter) of 4: 1 or greater. More than 70%, and close to 95-100% of this appearance can be achieved by the method of the present invention.

본 발명의 특정 실시양태는 하나 또는 그 이상의 금속 디알킬아미드 및 3차 아민의 사용을 요한다.Certain embodiments of the present invention require the use of one or more metal dialkylamides and tertiary amines.

본 발명의 방법에 사용된 금속 디알킬아미드는 일반식 M(NR1R2)n을 가질 수 있으며, 여기서 R1및 R2는 알킬기, 또는 질소와 같은 이종원자가 포함된 치환된 알킬기이고, n은 금속의 산화상태를 나타내는 정수이다. 알킬기 또는 알킬이미도기와 같은 다른 리간드 또한 금속 원자에 결합될 수 있다. 바람직한 실시양태에서, 알킬기는 6개 이하의 탄소, 보다 바람직하게는 3개 이하의 탄소를 포함한다. 금속 디알킬아미드의 가장 바람직한 조성은 테트라키스(디에틸아미도)티탄 또는 테트라키스(디에틸아미도)니오브와 같은, 디에틸아민으로부터 유도된 리간드를 포함한다.The metal dialkylamides used in the process of the invention may have the general formula M (NR 1 R 2 ) n , wherein R 1 and R 2 are alkyl groups or substituted alkyl groups containing heteroatoms such as nitrogen, n Is an integer representing the oxidation state of the metal. Other ligands, such as alkyl groups or alkylimido groups, may also be attached to metal atoms. In a preferred embodiment, the alkyl group comprises up to 6 carbons, more preferably up to 3 carbons. Most preferred compositions of metal dialkylamides include ligands derived from diethylamine, such as tetrakis (diethylamido) titanium or tetrakis (diethylamido) niob.

3차 아민은 바람직하게는 동일하거나 또는 상이한 알킬기들을 갖는 트리알킬아민이다. 알킬기는 바람직하게는 6개 이하의 탄소, 보다 바람직하게는 3개 이하의 탄소를 포함한다. 본 발명의 방법에서, 트리메틸아민은 액체 트리에틸아민 또는 피리딘의 증기와 같은 다른 3차 알킬아민으로 대체될 수 있다. 바람직한 실시양태에서, 3차 아민은 트리메틸아민 또는 트리에틸아민이다. 다른 바람직한 실시양태에서, 3차 아민은 피리딘일 수 있다.Tertiary amines are preferably trialkylamines having the same or different alkyl groups. The alkyl group preferably comprises up to 6 carbons, more preferably up to 3 carbons. In the process of the invention, trimethylamine can be replaced with other tertiary alkylamines such as liquid triethylamine or steam of pyridine. In a preferred embodiment, the tertiary amine is trimethylamine or triethylamine. In another preferred embodiment, the tertiary amine can be pyridine.

다양한 3차 아민이 본 발명의 실시에 사용될 수 있다. 바람직한 3차 아민은 모두 다수의 공급처로부터 입수 가능하다. 트리메틸아민은 평온(normal temperature) 및 대기압 하에서는 기체이며, 일반적으로 압력 실린더(pressure cylinder) 내에 액화 기체로서 제공된다. 트리에틸아민 및 피리딘은 평온 및 평압에서 액체이다. 이들 3차 아민은 그들의 질소 원자에 직접적으로 결합된 수소 원자를 가지고 있지 않으며, 따라서 그들은 미국특허 제 5,763,007호에서 사용된 2차 아민의 특징인 아미노기 전달반응에 참여하지 않는다.Various tertiary amines can be used in the practice of the present invention. Preferred tertiary amines are all available from a number of sources. Trimethylamine is a gas at normal temperature and atmospheric pressure and is generally provided as a liquefied gas in a pressure cylinder. Triethylamine and pyridine are liquid at calm and normal pressure. These tertiary amines do not have hydrogen atoms directly bonded to their nitrogen atoms and therefore they do not participate in amino group transfer reactions which are characteristic of secondary amines used in US Pat. No. 5,763,007.

본 발명의 금속 디알킬아미드는 알칼리 금속의 적절한 디알킬아미드 염을 금속 할로겐화물과 반응시킴으로써 생성될 수 있다. 예를 들면, 리튬 디에틸아미드는 사염화티탄과 반응되어 테트라키스(디에틸아미도)티탄을 형성할 수 있다. 테트라키스(디에틸아미도)티탄의 상업적 공급처는 Schumacher(Carlsbad, CA) 및 Advanced Technology Materials(Danbury, CT)를 포함한다. 테트라키스(디에틸아미도)니오브의 상업적 공급처는 Chemat(Northridge, CA) 및 Advanced Technology Materials(Danbury, CT)를 포함한다.Metal dialkylamides of the invention can be produced by reacting a suitable dialkylamide salt of an alkali metal with a metal halide. For example, lithium diethylamide can be reacted with titanium tetrachloride to form tetrakis (diethylamido) titanium. Commercial sources of tetrakis (diethylamido) titanium include Schumacher (Carlsbad, Calif.) And Advanced Technology Materials (Danbury, CT). Commercial sources of tetrakis (diethylamido) niob include Chemat (Northridge, Calif.) And Advanced Technology Materials (Danbury, CT).

액상 전구체의 증기는 박막증발기(thin-film evaporator) 내에서, 또는 약150℃로 예열된 캐리어 가스 내로의 분무(nebulization)에 의해 형성될 수 있다. 분무는 압축공기작용에 의해 또는 초음파에 의해 달성될 수 있다. 액상 금속 디알킬아미드는 일반적으로 도데칸, 테트라데칸, 크실렌 및 메시틸렌(mesitylene)과 같은 탄화수소를 포함하는 유기 용매와 완전히 혼화되기 쉽다. 이들 용액은 일반적으로 순수한 액체보다 낮은 점도를 가지고 있어서, 어떤 경우에는 순수한 액체보다 오히려 용액을 분무 및 기화하는 것이 더 용이할 수도 있다. 박막증발기는 Artisan Industries(Waltham, Massachusetts)에 의해 제조된다. 직접액체기화(DLI: Direct Vaporization of Liquids)를 위한 상업적인 장치는 MKS Instruments(Andover, Massachusetts), Advanced Technology Materials, Inc.(Danbury, Connecticut), Novellus Systems, Inc.(San Jose, California) 및 COVA Technologies(Tiburton, California)에 의해 제조된다. 초음파 분무기(ultrasonic nebulizer)는 Sonotek Corporation(Milton, New York) 및 Cetac Technologies(Omaha, Nebraska)에 의해 제조된다.The vapor of the liquid precursor may be formed by nebulization in a thin-film evaporator or into a carrier gas preheated to about 150 ° C. Spraying may be accomplished by compressed air or by ultrasound. Liquid metal dialkylamides are generally easily miscible with organic solvents including hydrocarbons such as dodecane, tetradecane, xylene and mesitylene. These solutions generally have a lower viscosity than pure liquids, so in some cases it may be easier to spray and vaporize the solution rather than the pure liquid. Thin film evaporators are manufactured by Artisan Industries (Waltham, Massachusetts). Commercial devices for Direct Vaporization of Liquids (DLI) include MKS Instruments (Andover, Massachusetts), Advanced Technology Materials, Inc. (Danbury, Connecticut), Novellus Systems, Inc. (San Jose, California) and COVA Technologies (Tiburton, California). Ultrasonic nebulizers are manufactured by Sonotek Corporation (Milton, New York) and Cetac Technologies (Omaha, Nebraska).

암모니아 또는 트리메틸아민과 같은 기체 반응물은 불활성 캐리어 가스와 함께 또는 불활성 캐리어 가스 없이 질량 흐름 제어기(mass flow controller)를 통해 상기 증기 내로 유입되어, 시스템 내에 원하는 기체 분압(partial pressure)을 제공할 수 있다.Gas reactants such as ammonia or trimethylamine can be introduced into the vapor through a mass flow controller with or without an inert carrier gas to provide the desired gas partial pressure in the system.

본 발명의 방법은 화학기상증착 분야(CVD)에 잘 알려진 표준 장치 내에서 수행될 수 있다. CVD 장치는 반응물의 증기를 그 위에 물질이 증착될 가열된 기판과 접촉시킨다. CVD 공정은 특히 표준 대기압 뿐만 아니라 더 낮은 압력을 포함하여다양한 압력에서 작업될 수 있다. 상업적인 대기압 CVD 노(furnace)는 미국 내에서 Watkins-Johnson Company(Scotts Valley, California), BTU International(North Billerica, Massachusetts) 및 SierraTherm(Watsonville, California)에 의해 제조된다. 저압 CVD 장치는 Applied Materials(Santa Clara, California), Spire Corporation(Bedford, Massachusetts), Materials Research Corporation(Gilbert, Arizona), Novellus Systems, Inc.(San Jose, California), Emcore Corporation(Somerset, NJ) 및 NZ Applied Technologies(Woburn, Massachusetts)에 의해 제조된다.The method of the present invention can be carried out in standard apparatus well known in the chemical vapor deposition field (CVD). The CVD apparatus contacts the vapor of the reactant with the heated substrate on which the material will be deposited. The CVD process can be operated at various pressures, especially at lower pressures as well as standard atmospheric pressures. Commercial atmospheric CVD furnaces are manufactured in the United States by Watkins-Johnson Company (Scotts Valley, California), BTU International (North Billerica, Massachusetts) and SierraTherm (Watsonville, California). Low pressure CVD devices include Applied Materials (Santa Clara, California), Spire Corporation (Bedford, Massachusetts), Materials Research Corporation (Gilbert, Arizona), Novellus Systems, Inc. (San Jose, California), Emcore Corporation (Somerset, NJ) and NZ Applied Technologies (Woburn, Massachusetts).

전형적인 증착 온도는 약 200 내지 400℃ 범위이다. 증착반응은 또한 열에 의해서 뿐만 아니라, 빛 또는 플라스마 방전의 전기에너지에 의해 가속화될 수 있다. 전형적인 증착 압력은 표준 대기압에서 수 밀리 Torr에 까지 이른다.Typical deposition temperatures range from about 200 to 400 ° C. The deposition reaction can also be accelerated not only by heat, but also by the electrical energy of light or plasma discharge. Typical deposition pressures range from standard atmospheric pressure to several milli Torr.

실시예 1Example 1

질화티탄 필름을 Watkins-Johnson Model 965 벨트 노(belt furnace) 내에서 대기압 화학기상증착에 의해 제조하였다. Schumacher로부터의 테트라키스(디에틸아미도)티탄(순도 99.995%)을 Oxiclear 정화기(purifier)에 의해 수분 및 산소가 제거된 질소 캐리어 가스 내로 MKS Model LDS 100 액체 전달 및 기화 시스템(liquid delivery and vaporization system)을 사용하여 140℃에서 기화시켰다. Matheson Gas Company로부터 구입한 암모니아(NH3, 순도 99.995%) 및 트리메틸아민 기체(NME3, 순도 99.5%)는 그들을 암모니아 용으로 설계된 Nanochem 정화기를 통과시킨 후 160℃로 예열함으로써 수분 및 산소 오염으로부터 더 정제되었다. 테트라키스(디에틸아미도)티탄 증기는 암모니아 및 트리메틸아민 기체와 함께 증착대(deposition zone)에서 혼합되었다. 증착대에서의 기체상(gas-phase) 몰농도는 질소 캐리어 가스 대비 0.01% 테트라키스(디에틸아미도)티탄, 1.0% 암모니아 및 0.68% 트리메틸아민이었다.Titanium nitride films were prepared by atmospheric chemical vapor deposition in a Watkins-Johnson Model 965 belt furnace. Tetrakis (diethylamido) titanium (purity 99.995%) from Schumacher was transferred to an MKS Model LDS 100 liquid delivery and vaporization system into a nitrogen carrier gas from which water and oxygen were removed by an Oxiclear purifier. ) Was evaporated at 140 ° C. Ammonia (NH 3 , purity 99.995%) and trimethylamine gas (NME 3 , purity 99.5%) purchased from Matheson Gas Company were further removed from moisture and oxygen contamination by preheating them to 160 ° C. after passing them through a Nanochem purifier designed for ammonia. Purified. Tetrakis (diethylamido) titanium vapor was mixed in the deposition zone with ammonia and trimethylamine gas. The gas-phase molarity in the deposition zone was 0.01% tetrakis (diethylamido) titanium, 1.0% ammonia and 0.68% trimethylamine relative to the nitrogen carrier gas.

기판은 2.4 마이크론 두께의 이산화실리콘 층으로 미리 코팅된 실리콘 웨이퍼로, 직경이 0.7 마이크론이고 깊이가 2.4 마이크론인(종횡비율 약 3.5:1) 홀이 에칭되어 있었다. 상기 기판을 370℃로 예열한 다음, 2㎝/min의 벨트 속도로 증착대를 통과시켰다. 가느다란 열전대 와이어(thermocouple wire)가 표면에 접착된 웨이퍼를 사용한 대조 실험은, 기판이 증착대를 통과하는 동안에 기판 온도는 약 320℃로 강하되고 기판의 윗면은 약 160℃의 온도로 유지됨을 시현하였다.The substrate was a silicon wafer precoated with a 2.4 micron thick silicon dioxide layer, with holes etched with a diameter of 0.7 microns and a depth of 2.4 microns (approximately 3.5: 1 aspect ratio). The substrate was preheated to 370 ° C. and then passed through the deposition zone at a belt speed of 2 cm / min. Control experiments using a wafer with a thin thermocouple wire bonded to the surface showed that the substrate temperature dropped to about 320 ° C. and the top surface of the substrate was maintained at about 160 ° C. while the substrate passed through the deposition zone. It was.

증착이 완료된 다음, 웨이퍼를 절단하고 절단된 가장자리를 전자주사현미경(scanning electron microscope)으로 검사하였다. 스텝 커버리지는 도 1에 도시되어 있으며, 도 1a에 도시된 필름의 필름(100)의 표면 및 도 1b에 도시된 트렌치(102)의 저면에서의 필름 두께를 측정함으로써 결정된다. 두께 측정의 실험적인 정확도를 고려할 때, 스텝 커버리지는 95 내지 100%인 것으로 밝혀졌다.After the deposition was completed, the wafer was cut and the cut edges were examined with a scanning electron microscope. Step coverage is shown in FIG. 1, which is determined by measuring the film thickness at the surface of the film 100 of the film shown in FIG. 1A and the bottom of the trench 102 shown in FIG. 1B. Considering the experimental accuracy of the thickness measurement, the step coverage was found to be 95-100%.

필름의 조성은 헬륨 이온 산란 실험(helium ion scattering experiments)에의해 약간의 수소 및 산소로 오염된 질화티탄인 것으로 결정되었다. 필름에서 3원자 퍼센트의 검출 수준을 초과하는 탄소는 검출되지 않았다.The composition of the film was determined to be titanium nitride contaminated with some hydrogen and oxygen by helium ion scattering experiments. No carbon was detected above the 3 atomic percent detection level in the film.

비교실시예 2Comparative Example 2

트리메틸아민 흐름을 중단한 상태에서 실시예 1을 반복하였다. 스켑 커버리지는 도 2에 도시되어 있으며, 도 2a에 도시된 필름의 필름(200)의 표면 및 도 2b에 도시된 트렌치(202)의 저면에서의 필름 두께를 측정함으로써 결정된다. 스텝 커버리지는 실시예 1에서 얻어진 것보다 훨씬 더 낮은 70%인 것으로 확인되었다. 그러나, 필름의 화학적 조성, 저항율 및 밀도는 실시예 1의 필름과 동일하였다.Example 1 was repeated with the trimethylamine flow stopped. The swim coverage is shown in FIG. 2 and is determined by measuring the film thickness at the surface of the film 200 of the film shown in FIG. 2A and at the bottom of the trench 202 shown in FIG. 2B. Step coverage was found to be much lower 70% than that obtained in Example 1. However, the chemical composition, resistivity and density of the film were the same as the film of Example 1.

실시예 3Example 3

예열온도를 390℃로 하여 실시예 1을 반복하였다. 스텝 커버리지는 45%인 것으로 확인되었다.Example 1 was repeated with a preheating temperature of 390 ° C. Step coverage was found to be 45%.

비교실시예 4Comparative Example 4

트리메틸아민 흐름을 중단한 상태에서 실시예 3을 반복하였다. 스켑 커버리지는 실시예 3에서 얻어진 것보다 훨씬 더 낮은 35%인 것으로 확인되었다. 그러나, 필름의 화학적 조성, 저항율 및 밀도는 실시예 3의 필름과 동일하였다.Example 3 was repeated with the trimethylamine flow stopped. Swim coverage was found to be much lower, 35% than that obtained in Example 3. However, the chemical composition, resistivity and density of the film were the same as the film of Example 3.

실시예 5Example 5

테트라키스(디에틸아미도)티탄을 20배 부피의 액상 트리에틸아민과 혼합하고, 그 액상 용액을 MKS Model LDS 100 액체 전달 시스템(liquid delivery system)을 사용하여 140℃에서 정제된 질소 캐리어 가스 내로 기화시켰다. 이 증기 혼합물을 트리메틸아민을 사용하지 않은 것을 제외하고는 실시예 1에서와 유사한 방식으로 암모니아와 반응시켰다. 유사한 결과가 얻어졌다.Tetrakis (diethylamido) titanium is mixed with 20 times the volume of liquid triethylamine and the liquid solution is introduced into a nitrogen carrier gas purified at 140 ° C. using an MKS Model LDS 100 liquid delivery system. Vaporized. This vapor mixture was reacted with ammonia in a similar manner as in Example 1 except that trimethylamine was not used. Similar results were obtained.

실시예 6Example 6

테트라키스(디에틸아미도)티탄 대신에 테트라키스(디에틸아미도)니오브를 사용하여 실시예 1을 반복하였다. 뛰어난 스텝 커버리지를 갖는 질화니오브 필름이 수득되었다.Example 1 was repeated using tetrakis (diethylamido) niob instead of tetrakis (diethylamido) titanium. A niobium nitride film with excellent step coverage was obtained.

이들 실시예에 개시된 액체 및 용액은 모두 연방 교통부(United States Department of Transportation)에 의해 발행된 방법에 의해 비자연성(非自然性)인 것으로 나타났다. 한 시험에서는 약 5㎖의 액체 또는 용액을 불연성의 다공성 고체 상에 놓아두고, 자발적인 연소가 발생하지 않음을 관찰할 것을 요한다. 다른 시험은 0.5㎖의 액체 또는 용액을 와트만 No. 3 여과지 위에 적하하고, 불꽃 또는 여과지가 까맣게 타는 현상이 발생하지 않음을 관찰하는 단계를 포함한다.The liquids and solutions disclosed in these examples have all been shown to be unnatural by methods issued by the United States Department of Transportation. One test requires that about 5 ml of liquid or solution is placed on a non-flammable porous solid and that no spontaneous combustion occurs. Other tests used 0.5 ml liquid or solution in Whatman No. 3 dropping on the filter paper, and the step of observing that the flame or burning of the filter paper does not occur.

전구체들은 일반적으로 주위 공기 중의 수분 또는 산소와 서서히 반응하므로, 질소와 같은 건조 대기 하에 보관되어야 한다.Precursors generally react slowly with moisture or oxygen in the ambient air and therefore must be stored in a dry atmosphere such as nitrogen.

당업계의 숙련가는 단지 일상적인 실험법을 사용하여, 본원에 특별히 기술된본 발명의 특정 실시양태에 대한 다수의 등가물을 인지하거나 확인할 수 있을 것이다. 그러한 등가물은 하기의 청구범위의 범위 내에 포함되는 것으로 의도된다.Those skilled in the art will recognize, or be able to ascertain, many equivalents to certain embodiments of the invention specifically described herein using routine experimentation. Such equivalents are intended to be included within the scope of the following claims.

본 발명의 화학기상증착 방법에 따라 형성된 금속 질화물 필름은 우수한 스텝 커버리지를 가지므로, 컴퓨터 마이크로 회로 내의 금속 및 실리콘 사이의 확산 장벽층(diffusion barrier layer)으로 매우 유용하다.Metal nitride films formed according to the chemical vapor deposition method of the present invention have excellent step coverage and are therefore very useful as diffusion barrier layers between metals and silicon in computer microcircuits.

Claims (16)

하나 또는 그 이상의 금속 알킬아미드, 암모니아 및 3차 아민을 포함하는 증기를 제공하는 단계; 및,Providing a vapor comprising one or more metal alkylamides, ammonia and tertiary amines; And, 하나 또는 그 이상의 금속 질화물을 함유하는 물질을 증착하기 위하여 증착 공정에서 상기 증기 혼합물을 가열된 표면과 접촉시키는 단계를 포함하는 하나 또는 그 이상의 금속 질화물을 함유하는 물질을 형성하기 위한 방법.Contacting the vapor mixture with a heated surface in a deposition process to deposit a material containing one or more metal nitrides. 제 1항에 있어서, 상기 금속 또는 금속들은 티탄, 바나듐, 니오브 및 몰리브덴으로 구성된 군으로부터 선택되는 것을 특징으로 하는 방법.The method of claim 1 wherein the metal or metals are selected from the group consisting of titanium, vanadium, niobium and molybdenum. 제 2항에 있어서, 상기 금속은 티탄인 것을 특징으로 하는 방법.The method of claim 2, wherein the metal is titanium. 제 2항에 있어서, 상기 금속은 니오브인 것을 특징으로 하는 방법.3. The method of claim 2 wherein the metal is niobium. 제 1항에 있어서, 상기 3차 아민은 알킬아민인 것을 특징으로 하는 방법.The method of claim 1 wherein the tertiary amine is an alkylamine. 제 5항에 있어서, 상기 알킬기는 동일하거나 또는 상이한 것을 특징으로 하는 방법.6. The method of claim 5, wherein said alkyl group is the same or different. 제 6항에 있어서, 상기 알킬기는 6개 또는 그 이하의 탄소를 포함하는 것을 특징으로 하는 방법.7. The method of claim 6, wherein said alkyl group comprises six or fewer carbons. 제 6항에 있어서, 상기 알킬기는 3개 또는 그 이하의 탄소를 포함하는 것을 특징으로 하는 방법.7. The method of claim 6, wherein said alkyl group comprises three or fewer carbons. 제 1항에 있어서, 상기 3차 아민은 트리메틸아민인 것을 특징으로 하는 방법.The method of claim 1 wherein the tertiary amine is trimethylamine. 제 1항에 있어서, 상기 3차 아민은 트리에틸아민인 것을 특징으로 하는 방법.The method of claim 1 wherein the tertiary amine is triethylamine. 제 1항에 있어서, 상기 3차 아민은 피리딘인 것을 특징으로 하는 방법.The method of claim 1 wherein the tertiary amine is pyridine. 제 1항에 있어서, 상기 금속 알킬아미드는 6개 또는 그 이하의 탄소를 갖는 알킬기를 포함하는 것을 특징으로 하는 방법.The method of claim 1 wherein the metal alkylamide comprises an alkyl group having 6 or fewer carbons. 제 1항에 있어서, 상기 금속 알킬아미드는 3개 또는 그 이하의 탄소를 갖는 알킬기를 포함하는 것을 특징으로 하는 방법.The method of claim 1 wherein the metal alkylamide comprises an alkyl group having three or less carbons. 제 1항에 있어서, 상기 표면은 약 200-400℃ 범위의 온도로 가열되는 것을 특징으로 하는 방법.The method of claim 1, wherein the surface is heated to a temperature in the range of about 200-400 ° C. 3. 제 1항에 있어서, 상기 스텝 커버리지는 75% 이상인 것을 특징으로 하는 방법.The method of claim 1, wherein the step coverage is at least 75%. 제 1항에 있어서, 상기 스텝 커버리지는 약 95-100%인 것을 특징으로 하는 방법.The method of claim 1, wherein the step coverage is about 95-100%.
KR1020017005944A 1998-11-12 1999-11-08 Diffusion barrier materials with improved step coverage KR20010080412A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10805498P 1998-11-12 1998-11-12
US60/108,054 1998-11-12
PCT/US1999/026408 WO2000029637A1 (en) 1998-11-12 1999-11-08 Diffusion barrier materials with improved step coverage

Publications (1)

Publication Number Publication Date
KR20010080412A true KR20010080412A (en) 2001-08-22

Family

ID=22320024

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020017005944A KR20010080412A (en) 1998-11-12 1999-11-08 Diffusion barrier materials with improved step coverage

Country Status (3)

Country Link
JP (1) JP2003522827A (en)
KR (1) KR20010080412A (en)
WO (1) WO2000029637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017040A (en) * 2013-06-06 2016-02-15 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Vapor source using solutions of precursors in tertiary amines

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783561B2 (en) * 2004-09-27 2011-09-28 株式会社アルバック Method for forming copper wiring
JP4959122B2 (en) * 2004-09-27 2012-06-20 株式会社アルバック Method for forming vanadium-containing film
ITMI20070350A1 (en) * 2007-02-23 2008-08-24 Univ Milano Bicocca ATMOSPHERIC PLASMA WASHING METHOD FOR THE TREATMENT OF MATERIALS
TWI471449B (en) 2007-09-17 2015-02-01 Air Liquide Tellurium precursors for gst film deposition
US8802194B2 (en) 2008-05-29 2014-08-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Tellurium precursors for film deposition
US8101237B2 (en) 2008-05-29 2012-01-24 L'Air Liquide SociétéAnonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Tellurium precursors for film deposition
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
US8236381B2 (en) 2008-08-08 2012-08-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metal piperidinate and metal pyridinate precursors for thin film deposition
WO2011027321A1 (en) 2009-09-02 2011-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dihalide germanium(ii) precursors for germanium-containing film depositions
WO2011095849A1 (en) 2010-02-03 2011-08-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
US9206507B2 (en) 2011-09-27 2015-12-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing films depositions
US10354860B2 (en) * 2015-01-29 2019-07-16 Versum Materials Us, Llc Method and precursors for manufacturing 3D devices
EP3588085B1 (en) 2018-06-25 2024-05-15 IMEC vzw A device for analysis of cells and a method for manufacturing of a device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758539A (en) * 1987-02-25 1988-07-19 The United States Of America As Represented By The United States Department Of Energy Process for producing ceramic nitrides and carbonitrides and their precursors
US5231061A (en) * 1991-06-10 1993-07-27 The Dow Chemical Company Process for making coated ceramic reinforcement whiskers
US5364522A (en) * 1993-03-22 1994-11-15 Liang Wang Boride, carbide, nitride, oxynitride, and silicide infiltrated electrochemical ceramic films and coatings and the method of forming such

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160017040A (en) * 2013-06-06 2016-02-15 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Vapor source using solutions of precursors in tertiary amines

Also Published As

Publication number Publication date
WO2000029637A1 (en) 2000-05-25
WO2000029637A9 (en) 2000-09-28
JP2003522827A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
US5085731A (en) Volatile liquid precursors for the chemical vapor deposition of copper
KR20010080412A (en) Diffusion barrier materials with improved step coverage
KR100708496B1 (en) Methods for preparing ruthenium metal films
US5246881A (en) Low-pressure chemical vapor deposition process for depositing high-density, highly-conformal, titanium nitride films of low bulk resistivity
US5607722A (en) Process for titanium nitride deposition using five-and six-coordinate titanium complexes
JP2019510877A (en) Deposition of molybdenum thin films using molybdenum carbonyl precursors
US5273775A (en) Process for selectively depositing copper aluminum alloy onto a substrate
JP2002523907A (en) Preparation method of metal ruthenium film
US6531192B2 (en) Chemical vapor deposition process for depositing titanium nitride films from an organo-metallic compound
US4842891A (en) Method of forming a copper film by chemical vapor deposition
JP2002524654A (en) Preparation method of ruthenium oxide film
KR19980041848A (en) Cu (hfac) TMVS precursor with water added to increase the conductivity of Cu, its formation method and cohesive Cu conductor interface
KR20010040324A (en) Tantalum amide precursors for deposition of tantalum nitride on a substrate
US5656338A (en) Liquid solution of TiBr4 in Br2 used as a precursor for the chemical vapor deposition of titanium or titanium nitride
EP0174743A2 (en) Process for transition metal nitrides thin film deposition
US5659057A (en) Five- and six-coordinate precursors for titanium nitride deposition
KR100479519B1 (en) Method of depositing a high-adhesive copper thin film on a metal nitride substrate
US7182979B2 (en) High efficiency method for performing a chemical vapordeposition utilizing a nonvolatile precursor
US7723535B2 (en) Organometallic precursor compounds
WO2001066816A1 (en) Liquid sources for cvd of group 6 metals and metal compounds
US6071562A (en) Process for depositing titanium nitride films
JP2002289616A (en) Method and apparatus for forming film
KR100313935B1 (en) The method for deposition of Cu in semiconductor
Yoon et al. The properties of Cu thin films on Ru depending on the ALD temperature
TW202242173A (en) Deposition of vanadium-containing films

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination