KR20010068584A - System Of Cooling Using Stored Ice Slurry - Google Patents

System Of Cooling Using Stored Ice Slurry Download PDF

Info

Publication number
KR20010068584A
KR20010068584A KR1020000000576A KR20000000576A KR20010068584A KR 20010068584 A KR20010068584 A KR 20010068584A KR 1020000000576 A KR1020000000576 A KR 1020000000576A KR 20000000576 A KR20000000576 A KR 20000000576A KR 20010068584 A KR20010068584 A KR 20010068584A
Authority
KR
South Korea
Prior art keywords
ice
refrigerant
whipper
gas
liquid
Prior art date
Application number
KR1020000000576A
Other languages
Korean (ko)
Other versions
KR100404066B1 (en
Inventor
이승기
Original Assignee
이승기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승기 filed Critical 이승기
Priority to KR10-2000-0000576A priority Critical patent/KR100404066B1/en
Publication of KR20010068584A publication Critical patent/KR20010068584A/en
Application granted granted Critical
Publication of KR100404066B1 publication Critical patent/KR100404066B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F5/0021Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using phase change material [PCM] for storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/08Auxiliary features or devices for producing, working or handling ice for different type of ice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE: A movable ice storage air conditioning system is provided to improve endurance by simplifying machine movable unit, to repair and maintain without an additional skill, and to increase efficiency of ice making. CONSTITUTION: High-pressure high-temperature compressed refrigerant gas of a compressor(1) is condensed to cooling water and stored in a high-pressure liquid receiver(4). The refrigerant liquid is overcooled by a suction gas superheater(5) through opening of an expansion valve(6). Then, the refrigerant liquid is evaporated in an ice maker(7), heat-exchanged with thermal storage water to be cooled or made to ice. Thereby, the refrigerant liquid is converted into high-temperature refrigerant gas and circulated to low-pressure liquid receiver(9). The refrigerant is divided into liquid and gas. The refrigerant liquid is recirculated while the refrigerant gas is evaporated in the suction gas superheater secondarily and sucked into the compressor. The refrigerant gas forms a refrigerating circle through recompression and condensation. The thermal storage water flows into an ice-making tube through a path in the center of a whipper even though the thermal storage water is supplied to the ice-maker by a pump.

Description

유동성빙 축냉시스템 {System Of Cooling Using Stored Ice Slurry}System of Cooling Using Stored Ice Slurry}

본 발명은 에너지분야의 전력이용의 절감, 발전설비의 부하평준화를 위하여 사용되고 있는 빙축열시스템에 관한 것으로 빙축열시스템은 제빙방식에 따라 정적제빙방식과 동적제빙방식으로 분류되며 본 발명에 속한 동적제빙방식중 종래 기술은 얼음을 미세화하여 물 또는 동결억제재가 첨가된 수용액에 혼합하여 저장하였다가 필요시 부하측 고온의 순환수와 열교환하여 열에너지를 사용하는 것으로서 상용화된 기술로는 빙결완화제를 첨가한 수용액을 수직 다관식 열교환기의 관 내벽을 따라 흘리면서 관 외측에 있는 액냉매의 증발열에 의하여 냉각, 제빙시켜서 관에 설치된 ROD를 700~800RPM으로 휘저어 미세한 얼음 조각으로 만들어 관 하부로 배출하여 하부에 설치된 축열조에 저장하였다가 필요시 부하측과 열교환하는 Orbital Rod Evaporator 방식이 있다.The present invention relates to an ice heat storage system that is used to reduce power use in the energy field and load balancing of power generation facilities. The ice heat storage system is classified into a static ice making method and a dynamic ice making method according to the ice making method. The conventional technique is to refine the ice and mix and store it in an aqueous solution to which water or a cryoprotectant is added, and to use heat energy by exchanging heat with high temperature circulating water if necessary. Cooled and iced by the evaporative heat of the liquid refrigerant on the outside of the tube while flowing along the inner wall of the tube heat exchanger, the ROD installed in the tube was stirred at 700 ~ 800RPM to form fine ice cubes and discharged to the bottom of the tube and stored in the heat storage tank installed at the bottom. Orbital rod evaporator that exchanges heat with the load .

이 방식은 기계회전부의 고속회전으로 인한 내구성, 진동의 문제점과 정상운전시에도 축열수의 농도변화 및 관내의 과냉각도가 클경우 구동부가 파괴되는 단점과 정밀한 기계구조로 인한 제작 및 보수시 고숙련도 요구로 인하여 고가격 및 고비용이 단점 이다.This method requires durability and vibration problems due to the high-speed rotation of the mechanical rotating part, and the driving part is destroyed when the concentration of the regenerative water changes and the supercooling degree in the pipe is large even during normal operation. Due to the high price and high cost is a disadvantage.

또한 액냉매 직팽 Jacket을 외부에 설치한 원통형의 열교환기 내측에 빙결 완화제를 첨가한 수용액을 고속으로 선회시키어 수용액이 원심력에 의해 열교환기 내측벽으로 밀려 고속 및 고압상태에서 얇은 온도경계층이 될때 이때의 열전달로 인해 과냉각되어 형성된 얼음을 Screper로 깍아서 축열조에 저장하였다가 필요시 부하측과 열교환하는 Dynamic Direct 방식이 있으나 이 방식은 전술한 단점 외에 기계 자체가 소요 전열면의 크기로 인하여 커지는 단점이 있다.In addition, when the aqueous solution containing the freezing agent is added to the inside of the cylindrical heat exchanger in which the liquid coolant jacket is installed on the outside at high speed, the aqueous solution is pushed to the inner wall of the heat exchanger by centrifugal force to form a thin temperature boundary layer at high speed and high pressure. There is a dynamic direct method in which the ice formed by supercooling due to heat transfer is scraped with a screper and stored in the heat storage tank, and then heat-exchanged with the load side if necessary, but this method has a disadvantage in that the machine itself becomes larger due to the required heat transfer surface size.

본 발명은 종래기술의 문제점을 해소하기 위해 기구학적으로 기계가동부를 단순화하여 안정적인 운전 및 내구성을 향상시키며, 유지보수 및 관리에 별도의 기술이 필요없고, 원천적으로 과결빙에 의한 장치의 고장없이 더 높은 제빙효율로 시스템 성적계수 향상을 통한 저가의 에너지 절감기기를 만드는데 있다.In order to solve the problems of the prior art, the mechanical moving part is mechanically simplified to improve stable operation and durability, and does not require a separate technology for maintenance and management, and is essentially free from malfunction of the device due to freezing. It is to make low-cost energy saving device by improving system performance coefficient with higher ice making efficiency.

도 1 은 본 발명의 유동성빙 축냉시스템이 도시된 회로도.1 is a circuit diagram showing a fluid ice storage system of the present invention.

도 2 는 본 발명의 유동성빙 제빙장치가 도시된 내부구성 단면도.Figure 2 is a cross-sectional view showing the internal configuration of the flow ice ice making device of the present invention.

도 3 은 본 발명의 유동성빙 제빙장치의 열교환기 Tube 배열도.Figure 3 is a heat exchanger tube arrangement of the flow ice ice maker of the present invention.

도 4 는 본 발명의 유동성빙 제빙기에 장치된 Whipper의 구조도.4 is a structural diagram of a whipper installed in the ice-ice maker of the present invention.

첨부 도면에 의해 본 발명의 구성 및 작용을 상세히 설명하면 다음과 같다.The configuration and operation of the present invention by the accompanying drawings in detail as follows.

도 1은 본 발명에 따른 유동성빙 축냉시스템의 계통도로서 (1)냉매 압축기에서 고온, 고압으로 압축된 냉매가스는 (2)의 냉각수펌프에 의해 (3)냉각탑과 냉동기를 순환하는 냉각수로 응축된후 (4)고압수액기에 저장된다.1 is a schematic diagram of a fluid ice storage and cooling system according to the present invention (1) the refrigerant gas compressed to high temperature and high pressure in the refrigerant compressor is condensed into the cooling water circulating the cooling tower and the freezer by the cooling water pump of (2) (4) is then stored in a high pressure receiver.

저장된 고온, 고압의 냉매액은 (6)팽창밸브의 개도에 의하여 (5)압축기 흡입가스 과열기에 의하여 과냉각되어 (6)팽창밸브에서 교축되면서 (7)제빙기로 들어가 증발하여 (8)축열수 순환펌프에 의해 (7)제빙기로 순환되는 축열수와 열교환하여 냉각 또는 제빙후 고온의 냉매가스가 되어 (9)저압수액기로 회수된다.Stored high-temperature and high-pressure refrigerant liquid (6) by the opening of the expansion valve (5) supercooled by the compressor inlet gas superheater (6) throttled in the expansion valve (7) entering the ice maker and evaporating (8) regenerated water circulation The pump (7) exchanges heat with the regenerated water circulated to the ice maker, and after cooling or ice-making, it becomes a high-temperature refrigerant gas and (9) is recovered to the low pressure receiver.

(9)의 저압수액기에 회수된 냉매는 기액이 층분리되어 냉매액은 재순환되며 냉매가스는 (5)압축기 흡입가스 과열기에서 2차 증발하여 완전한 가스로 (1)냉매 압축기로 흡입되어 재압축, 응축을 거쳐 냉동사이클을 형성한다.The refrigerant recovered in the low pressure fluid of (9) is gas-liquid separated into layers, and the refrigerant liquid is recycled. (5) The refrigerant gas is secondly evaporated from the compressor suction gas superheater to be a complete gas. Condensation forms a refrigeration cycle.

(9)축열조내의 축열수는 (8)축열수 순환펌프에 의하여 (7)제빙기로 압입되어도 2의 (1)수실에서 (2)Whipper에 구비된 중앙의 유로를 통하여 (3)제빙관으로 들어 간다.(9) The heat storage water in the heat storage tank is (8) pressurized by the heat storage water circulation pump (7) into the ice maker. (2) Through the central flow path provided in (2) Whipper (2) Goes.

도 2의 (3)제빙관으로 분배된 축열수는 자유낙하하지 못하고 (2)Whipper의 회전에 의하여 와류를 형성하면서 원심력에 의하여 (3)제빙관 내벽에 접촉하면서 과냉각되어 제빙되며 중력에 의하여 도 1의 (9)축열조에 낙하하여 유동성빙으로서 저장된다.(3) The heat storage water distributed to the ice making tube does not fall freely. (2) By forming the vortex by the rotation of the whipper, the centrifugal force (3) the supercooled and ice-making while contacting the inner wall of the ice making tube. It falls in 1 (9) heat storage tank and is stored as fluid ice.

도 1의 (9)축열조에 저장된 축열수는 방냉부하시 (10)축열수펌프로 (11)열교환기로 이송되어 (13)냉수펌프에 의해 순환되는 부하측 냉수와 열교환후 (12)3wayValve에서 부하측 온도조건에 의하여 유량이 조절되어 잉여량은 By-pass하여 (11) 열교환기로 재순환 하며, 고온이 된 축열수는 (9)축열조 상부에 설치된 (14)Spray Nozzle을 거쳐 (9)축열조내 상부의 얼음을 해빙하면서 열교환하여 저온이 되므로서 재사용 된다.(9) The heat storage water stored in the heat storage tank of FIG. 1 is transferred to the heat exchanger pump (11) to the heat exchanger pump (13) after the heat exchange with the cold water pump circulating by the cold water pump (12) after the heat exchange with the load side cold water (12) The flow rate is adjusted according to the conditions, and the surplus is recycled by (11) the heat exchanger, and the heat accumulating water (9) passes through the (14) Spray Nozzle installed at the top of the heat storage tank (9) the ice at the top of the heat storage tank. It is reused as it becomes low temperature by heat exchange while thawing.

도 2의 본 발명의 실시 예를 설명하면 다음과 같다.Referring to the embodiment of the present invention of Figure 2 as follows.

도 2는 도 1의 (7)제빙기의 상세도로서 도 2의 (4)수직다관형 열교환기는 (3)Tube에 (2)Whipper 및 (1)수실, (5)구동모터등을 장착하여 유동성빙을 생성할수있도록 설계되었다.FIG. 2 is a detailed view of the ice maker of FIG. 1, wherein the vertical multi-tube heat exchanger of FIG. 2 is equipped with (3) Tube (2) Whipper and (1) water chamber, (5) driving motor, etc. It is designed to generate bing.

도 2의 (2)Whipper는 재질 및 형상이 특별히 고안, 제작된 Geard Screpper로서 (3)의 Tube에 삽입되어 (5)구동모터에 장착된 Gear에 의해 적절한 속도로 회전하면서 (6)의 축열수 입구로 압입된 축열수가 (2)Whipper 중심부의 형성된 유로를 통하여 (3)제빙관으로 흘러내릴때 직각방향의 와류생성를 하여 (3)전열관에 접축율을 높이며 이때 생성된 유동성빙이 중력에 의해 자유낙하 하나 과 결빙시 부착된 얼음조각을 긁어 내는 기능도 갖도록 고안되었다.(2) Whipper of Figure 2 is a geared screpper specially designed and manufactured material and shape is inserted into the tube of (3) and (5) the heat storage water of (6) while rotating at an appropriate speed by the gear mounted to the drive motor The heat accumulating water injected into the inlet (2) creates a vortex in the direction perpendicular to the ice making pipe when it flows down through the formed channel in the center of the shipper. (3) Increases the contact ratio to the heat pipe. It is also designed to scrape off ice chips attached to one drop and freeze.

도 3은 도 1의 (7)제빙용 열교환기의 Tube 배열도로서 이는 일반적인 수직 다관형 열교환기의 Tube배열과 달리 도 2의 (3)Tube에 장착되는 도 2의 (2) Whipper의 정확하고 소음, 진동이없는 구동의 중요한 요소로서 이상적인 회전 마찰저항을 초소화하기 위하여 고안되었다.FIG. 3 is a tube arrangement diagram of (7) an ice making heat exchanger of FIG. 1, which is an accurate and accurate view of (2) Whipper of FIG. 2 mounted on (3) Tube of FIG. 2, unlike a tube arrangement of a general vertical shell and tube heat exchanger. It is designed to minimize ideal rotating frictional resistance as an important element of noise and vibration-free driving.

도 3의 발명의 내용을 설명하면 다음과 같다.The content of the invention of FIG. 3 is as follows.

도 3의 (1)은 구동측 Gear로 M3-40Z-P.C.D120의 평치차 이며 이에 외접부에중심에서 45'로 8등분되어 (2)종속치차가 연동되도록 설계되었다.(1) of FIG. 3 is a flat gear of M3-40Z-P.C.D120 as the gear on the driving side, and is divided into eight equal to 45 'at the center of the external part.

도 3의 (2)종속치차는 M3-18Z-P.C.D54의 평치차로 (1)구동치차에 연동되는 (3)종속치차의 군은 (4)중심선상 에서 4 P.C.D ×4 P.C.D ×4 P.C.D SQRT(2)를 이루는 이등변 직각삼각형을 이루며 각 1 P.C.D 의 교점마다 1개의 종속치차를 설치할 수 있는 연동치차군 구조로 고안되었다.(2) The slave gear is a flat gear of M3-18Z-PCD54. (1) The group of slave gears linked to the driving gear is (4) 4 PCD × 4 PCD × 4 PCD SQRT on the center line. 2) It consists of an isosceles right triangle, and it is designed as an interlocking gear group structure that can install one dependent gear at each intersection of 1 PCD.

이러한 종속구조는 각 종속치차 간 에도 P.C.D ×P.C.D ×P.C.D SQRT(2)의 공식이 존재하여 구동치차의 구동부하를 분할하여 주며 종속치차의 연동 전달을 8등분하여 다수 치차의 연동시 간섭에 의한 마찰손실 부하를 최소화 한 것 이다.This subordinate structure divides the driving load of the driving gear by the formula of PCD × PCD × PCD SQRT (2) even between each of the subordinate gears, and divides the interlocking transmission of the subordinate gears by eight. The loss load is minimized.

따라서 도 3의 유동성빙 제빙용 열교환기의 Tube 배열은 Wipper의 구동 구조도로서 Geard Moter의 구동을 다수의 Whipper가 정확하고 소음,진동이 없는 저부하의 구동력을 제빙관 내에서 갖도록 고안되었다.Accordingly, the tube arrangement of the heat exchanger for ice-making of the floating ice of FIG. 3 is a drive structure diagram of the wipper, which is designed to drive a geared moter to have a plurality of hippers accurately and to have a low load driving force in an ice making tube without noise and vibration.

도 4는 본 발명의 유동성빙 제빙기에 장치된 Whipper의 구조도 로서 도 4의 (1)은 Whipper의 구동기어부로서 M3-18Z-P.C.D54로 이루어져 있다.FIG. 4 is a structural diagram of a whipper installed in the floating ice maker of the present invention, and FIG. 4 (1) is composed of M3-18Z-P.C.D54 as a driving gear part of the whipper.

도 4의 (2)는 Whip & Screpper Part로서 5t ×38 W ×1264 L의 장방향 평판의 형상으로 (1)구동기어부에 (3)Spring Pin에 의하여 조립된다.Fig. 4 (2) is a Whip & Screpper Part which is assembled by (1) driving gear part (3) Spring Pin in the shape of a long plate of 5t x 38 W x 1264 L.

도 4의 Whipper의 재질은 도 2의 (3)제빙관과 절연부식을 발생시키지 않으며 Self Lubrication이 가능한 강한 내마모성의 합성수지를 사용한다.The material of the whipper of FIG. 4 uses strong wear-resistant synthetic resin that is capable of self lubrication without generating insulation corrosion and (3) the ice making tube of FIG. 2.

높은 전열효율과 에너지이용효율을 보유하고 있으며 구조적 안정성, 단순성으로 건물냉방 및 산업용 냉각장치로 응용범위가 넓어 국가 기간산업인 전기사업자 에게는 설비부하 평준화에 따른 신규 발전설비투자 부담완화 및 효율적인 발전설비의 운용을 주며, 전기사용자에게는 냉방,냉각설비 투자비 절감 및 심야전력을 이용한 전기료 부담완화로 에너지이용 합리화에 큰 효과가 기대 됨.It has high heat transfer efficiency and energy use efficiency, and its structural stability and simplicity make it widely applicable to building cooling and industrial cooling equipment. It is expected to have a great effect on rationalization of energy use by reducing the investment cost of cooling and cooling facilities for electric users and reducing the burden of electric bill by using midnight power.

Claims (3)

본 발명의 도 2 유동성빙 제빙기의 구조 및 구성으로 상부 일측에 수실을 갖는 수직다관형 열교환기에 수실 상부에는 구동모터가 구비되고 제빙관에 설치된 Whipper가 구동모터에 의해 연동되면서 축열수의 Whipping 및 생성된 Slurry Screpping 을 수행하는 유동성빙 제빙 장치.2 is a vertical tubular heat exchanger having a water chamber on one side of the upper side of the water chamber with a structure and a configuration of the fluid ice maker of the present invention. Floating ice making device for performing a slurry slicing. 본 발명의 도 3 제빙기의 열교환 Tube의 배열로서 중앙의 구동치차를 중심 으로 치차의 P.C.D를 45'로 8등분하여 각 치차가 중심에서 P ×P ×P SQRT(2)의 공식에 따라 배열되는 것을 특징으로 하는 유동성빙 제빙장치.In the arrangement of the heat exchanger tube of the ice maker of FIG. 3 of the present invention, the gears of the gears are divided into eighths at 45 'centered on the driving gears of the center, and each gear is arranged at the center according to the formula of P × P × P SQRT (2). Floating ice deicing device characterized in that. 본 발명의 도 4 Whipper의 구조 및 재질로서 상부 구동부는 Self Lubrication이 가능한 LLDPE의 합성수지로 제작된 Spur Gear로 중앙에는 축열수를 유동시킬 수 있는 구멍이 있으며, 하부에는 이에 연결되는 장방형 평판 Whipper가체결되는 Key Home을 구비한 구조와 Whipper는 구동기어에 연결되는 체결구를 일방에 가공한 구조로 된 유동성빙 제빙장치의 Geared Whipper.As the structure and material of Figure 4 Whipper of the present invention, the upper drive part is a spur gear made of synthetic resin of LLDPE capable of self lubrication, and has a hole for flowing heat storage water in the center, and a rectangular flat plate whipper connected to the lower part is fastened. Whipper is a geared whipper of a floating ice making machine, which has a structure in which a fastener connected to a drive gear is processed on one side.
KR10-2000-0000576A 2000-01-07 2000-01-07 System Of Cooling Using Stored Ice Slurry KR100404066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0000576A KR100404066B1 (en) 2000-01-07 2000-01-07 System Of Cooling Using Stored Ice Slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0000576A KR100404066B1 (en) 2000-01-07 2000-01-07 System Of Cooling Using Stored Ice Slurry

Publications (2)

Publication Number Publication Date
KR20010068584A true KR20010068584A (en) 2001-07-23
KR100404066B1 KR100404066B1 (en) 2003-11-03

Family

ID=19636882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0000576A KR100404066B1 (en) 2000-01-07 2000-01-07 System Of Cooling Using Stored Ice Slurry

Country Status (1)

Country Link
KR (1) KR100404066B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715839B1 (en) * 2005-09-08 2007-05-10 박지선 Forice-on-coil a device inclusion of thermal stroage package system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296653B1 (en) * 1999-06-21 2001-07-12 김용옥 Heat exchanger for ice making apparatus in cooling system

Also Published As

Publication number Publication date
KR100404066B1 (en) 2003-11-03

Similar Documents

Publication Publication Date Title
CA2044825C (en) Full-range, high efficiency liquid chiller
CN101922830B (en) Supercooled liquid ice slurry continuous preparation device
CN110360769B (en) Heat pump system with phase-change energy tower and heat exchange method thereof
CN101487613B (en) Ice-chilling air conditioning system
CN102052812A (en) Method and device for preparing fluidized ice by utilizing air condensation-evaporation composite mode
CN109028404A (en) A kind of mixture of ice and water chilling air conditioning system and its control method
WO2019218840A1 (en) Flow-state ice evaporator and air-conditioning system using same
KR100296653B1 (en) Heat exchanger for ice making apparatus in cooling system
CN107289655A (en) Cold chain and cold-storage coupled system
CN101629771B (en) Gas direct contact type ice slurry preparation system
CN110986656A (en) Flooded heat exchanger capable of online deicing and descaling
CN109237833A (en) Wet film formula low form total heat recovery multi-connected heat pump unit
CN210532739U (en) Heat pump system with phase change energy tower
CN102679652A (en) Method and device for preparing ice slurry
CN110360852B (en) Phase-change energy tower and heat exchange method thereof
CN102042728B (en) Method and device for preparing fluidized ice
KR20010068584A (en) System Of Cooling Using Stored Ice Slurry
CN104315635A (en) Medium- and small-sized high-temperature-difference double-working-condition dynamic ice-slurry cold storage air conditioner
CN201277771Y (en) System for vacuum producing binary ice by heat pump in energy saving manner
CN204176831U (en) The dynamic fluid state ice ice-storage air-conditioning of middle-size and small-size large temperature difference Double-working-condition
CN210570083U (en) Phase-change energy tower
CN211626235U (en) Flooded heat exchanger capable of online deicing and descaling
CN209310300U (en) Wet film formula low form total heat recovery multi-connected heat pump unit
CN201935496U (en) Air condensation compound evaporation type device for manufacturing flow pattern ice
CN208936373U (en) A kind of mixture of ice and water chilling air conditioning system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee