KR20010062990A - Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control - Google Patents

Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control Download PDF

Info

Publication number
KR20010062990A
KR20010062990A KR1019990059781A KR19990059781A KR20010062990A KR 20010062990 A KR20010062990 A KR 20010062990A KR 1019990059781 A KR1019990059781 A KR 1019990059781A KR 19990059781 A KR19990059781 A KR 19990059781A KR 20010062990 A KR20010062990 A KR 20010062990A
Authority
KR
South Korea
Prior art keywords
sinter
small
furnace
fine
amount
Prior art date
Application number
KR1019990059781A
Other languages
Korean (ko)
Other versions
KR100628691B1 (en
Inventor
김윤구
여경탁
김신
박종현
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990059781A priority Critical patent/KR100628691B1/en
Publication of KR20010062990A publication Critical patent/KR20010062990A/en
Application granted granted Critical
Publication of KR100628691B1 publication Critical patent/KR100628691B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE: An apparatus and a method for charging fine sinter by automatically controlling the fraction generation amount are provided which control the small sinter charged into a blast furnace and the generation amount of the fine sinter, and charge the fine sinter generated from a small sinter particle size sorter into a certain specific section when gas channeling is generated in the furnace. CONSTITUTION: The apparatus comprises a process computer; an electric signal communication controller; a raw material PLC; and a furnace top PLC. The method comprises the steps of adjusting each large sinter bin gates according to the generation ratio of small sinter (41) by calculating a generation ratio of small sinter and a generation ratio of fine sinter, and adjusting each small sinter bin gates according to the generation ratio fine sinter; closing the bin gate when the generation amount of small sinter and the generation amount of fine sinter (55) are less than the consumption ratio of small sinter, idling the particle size sorter for an arbitrary time which an operator sets, and opening the bin gate after completing the idling; temporarily storing the fine sinter generated in the small sinter particle size sorter in a fine sinter storage vessel, and transferring the fine sinter to the sintering process in case of more than the already set management value; determining a value in which a blast furnace charging amount of fine sinter is subtracted from the total sinter amount according to the fraction generation ratio of large sinter, storing the fine sinter into a small sinter bin, and storing the small sinter on the fine sinter so that the fine sinter is charged into a blast furnace (10); and confirming the gas channeling points per the circumferential direction in the blast furnace, beginning charging of the small sinter with the rotation starting degree of angle of a rotational chute (13) adjusted to the gas channeling point inside the furnace, and additionally opening a sinter flow rate control valve depending on the charging amount of the fine sinter.

Description

분율발생량 자동제어에 의한 분소결광 장입장치 및 그 장입방법{POWDER SINTERED ORE CHARGING APPARATUS AND THE METHOD BY USING DIVISION RATE OCCURRENCE QUANTITY AUTOMATIC CONTROL}Particle smelting charging device by automatic control of fractional generation and its charging method {POWDER SINTERED ORE CHARGING APPARATUS AND THE METHOD BY USING DIVISION RATE OCCURRENCE QUANTITY AUTOMATIC CONTROL}

본 발명은 분율발생량 자동제어에 의한 분소결광 장입장치 및 그 장입방법에 관한 것으로, 보다 상세하게는 고로의 노내 상부온도와 노체하부온도 제어에 필요한 소립광을 광석 사용비에 따라 자동으로 발생되도록 하기 위하여 각 대립광 입도선별기의 소립광 발생비율로 대립광 빈 게이트(Bin Gate)를 제어하고, 소립광 빈내의 저장량을 일정하게 유지하기 위해 분율발생량을 제어하며, 노내가스류 편류발생시 소립광 입도선별기에서 발생하는 분소결광을 일부 특정한 구간에 장입할 수 있도록 한 분율발생량 자동제어에 의한 분소결광 장입장치 및 그 장입방법에 관한 것이다.The present invention relates to a powder sintered light charging device and a charging method by the automatic control of the fraction generation amount, and more particularly to automatically generate the small particles required for the control of the furnace top temperature and furnace bottom temperature of the blast furnace in accordance with the ore usage ratio. In order to control the small light bin gate with the small particle generation rate of each alliance particle size selector, and to control the fraction generation amount to keep the storage volume in the small particle bin constant, The present invention relates to an apparatus for charging segmented coales by means of automatic control of the fraction generation amount so as to charge the fractional coalescing generated in a specific section.

도 1은 종래 고로 연,원료 장입방법을 설명하기 위한 공정도로서, 일반적으로 벨-리스(Bell-less)고로(10)에 있어서의 연,원료 장입방법은 저장조(20)로부터 불출된 코크스(20-5)를 입도선별기(20-1)를 통하여 입도 : 35∼55mm까지 선별하여하부의 이송 컨베이어 벨트(20-2)를 통해 일정한 량을 코크스 웨잉호퍼(20-3,20-4) 2개조에 분산 저장하고, 대립소결광(대립광,30-5)은 입도 : 12∼30mm까지 입도선별기(30-1)를 통해 선별하여 대립광 웨잉호퍼 8개조에 일정량을 평량하여 분산저장한 후, 대립광 서지호퍼(30-3,30-4)2개조에 분산저장한다.1 is a process diagram for explaining a conventional blast furnace blast, raw material charging method, in general, the fuel, raw material charging method in a bell-less (10) blast furnace 10 is the coke (20) discharged from the storage tank (20) -5) through the particle size selector 20-1, particle size: up to 35-55mm and a fixed amount of coke webbing hoppers (20-3, 20-4) through the lower conveying conveyor belt (20-2) Distributed and stored in the sintered ore (allele, 30-5) through a particle size sorter (30-1) up to a particle size of 12 ~ 30mm, and weighed and stored in eight sets of allied light hoppers, It is distributed and stored in two sets of optical surge hoppers (30-3, 30-4).

한편, 소립소결광(소립광,41)은 소립광 빈(Small Sinter Bin)2개조에 분산 저장하고 입도 선별기를 통하여 선별되어진 입도 5∼12mm의 소립광은 소립광 웨잉호퍼(42)1개조에 일시 저장을 시킨다.On the other hand, small particle sintered light (small particle light, 41) is dispersed and stored in two sets of small sinter bins, and small particles having a particle size of 5 to 12 mm selected through a particle size sorter are temporarily stored in one set of small particle weighing hoppers 42. Save it.

참고적으로 고로 장입물의 개념을 설명하면, 2개의 코크스 웨잉호퍼(20-3,20-4)에 저장된 연료를 각각 1배치(Batch)라고 하고, 1배치+1배치를 고로(10)에 투입할 연료의 1차지(Charge)라고 한다.For reference, the concept of the blast furnace charge, the fuel stored in the two coke weighing hoppers (20-3, 20-4) are each called a batch (Batch), 1 batch + 1 batch is put into the blast furnace 10 It is called the first charge of the fuel to be charged.

대립광 서지호퍼(30-3,30-4)2개조에 저장된 원료인 대립광(30-5)도 상기 연료의 배치와 차지 개념은 동일하고, 입도별 장입을 위한 소립광 웨잉호퍼(42) 1개에 저장된 광석을 1차지라고 하며 상기 3가지 종류를 장입물의 1 Charge 라고 한다.The allele ore 30-5, which is a raw material stored in two sets of allergic light surge hoppers 30-3 and 30-4, has the same concept of disposition and charge of fuel, and the small ore wading hopper 42 for charging by particle size The ore stored in one is called primary and the three kinds are called 1 charge of charge.

상기한 과정을 고로(10)에서 요구하는 연료 및 철광석 설정값의 평량 과정이라고 하며, 이렇게 하여 평량된 연,원료는 대형 장입 컨베이어 벨트(17)를 통하여 노정 장입 호퍼(11,11-1)로 수입되어 대기한 후, 노내부의 장입물이 철광석의 환원 반응을 통해 장입물이 강하되어 장입 기준선(10-4)에 도달하게 되면 장입 개시 신호를 발생함으로서 코크스(20-5) 1차지, 대립광(30-5) 1Charge, 소립광(41) 1차지를 순서대로 연속적으로 장입을 하게 된다.The above process is referred to as the basis weight process of the fuel and iron ore set value required by the blast furnace 10, and the lead and raw material weighted in this way through the large charging conveyor belt 17 to the top charging hopper (11, 11-1) After importing and waiting, when the contents of the furnace fall through the reduction reaction of iron ore and the contents fall to the charging baseline (10-4), the charging start signal is generated by generating the coke (20-5) primary charge and confrontation. One charge of light 30-5 and one charge of small particles 41 are successively charged.

상기한 장입물은 노상부의 중심에 위치한 선회 슈트(13)를 통하여 노벽부를 기준점으로 해서 로 중심까지를 반경방향으로 1∼11 노치(Notch)까지 일정하게 분할하여 장입물을 뿌리고 있으며, 노내부에서의 노황여건상 노 내부 반경방향 및 원주방향별로 통기성 및 가스이용율이 우수한 연화융착대(10-1)를 만들고, 노벽측에는 환원성 및 통기성이 우수한 소립광(41)을 안착시켜 노벽부 불활성대 생성을 방지하고, 노벽보호를 유도하는 방법으로 고로(10) 상부에서 교대로 장입하여 층을 이루도록 하여 장입 선회 슈트(13)는 매 차지마다 60°씩 진보하고 6 차지마다 정회전(Forward), 역회전(Reverse) 되면서 장입한다.The above-mentioned contents are sprinkled with the contents of the furnace wall through the swing chute 13 located at the center of the hearth part, and the contents of the furnace wall are regularly divided from the center of the furnace to 1 to 11 notches in the radial direction. Under the condition of the yellowing of the furnace, the softening fusion zone 10-1 having excellent air permeability and gas utilization rate is made for each radial and circumferential direction of the furnace, and the small wall 41 having excellent reducing and air permeability is seated on the furnace wall side to generate the inert zone of the furnace wall part. The charging turning chute 13 advances by 60 ° every charge and forwards and reverses every six charges by charging and alternating in the upper part of the blast furnace 10 in a manner that prevents and induces protection of the furnace wall. (Reverse) to charge.

상기 고로(10) 하부에는 열풍로 설비에서 보내온 고온의 열풍을 풍구(10-2)를 통해 고로(10)내부에 송풍하여 노내 상부로부터 예열, 환원, 용융, 적하의 단계를 거치면서 용융물인 용선(10-3)이 생성되어 노저에 모이고 출선구를 통해 배출된다.The hot blast of hot air sent from the hot blast furnace facility is blown into the blast furnace 10 through the tuyere 10-2 in the lower part of the blast furnace 10 through the preheating, reduction, melting and dripping phase from the upper part of the furnace. (10-3) is generated, collected in the furnace and discharged through the exit.

이러한 고로조업은 고로(10)내부의 연,원료 분포상태(이하 "프로필(Profile)"이라 함)가 안정되어야 가스의 흐름(이하 "통기성"이라 함)이 전체적으로 양호한 조건하에서 철광석이 환원 및 용융되어 경제적 조업수행이 가능함과 동시에 생산성향상과 고로(10)의 수명 연장을 꾀할 수 있게 된다.In this blast furnace operation, the iron ore is reduced and melted under the condition that the flow of gas (hereinafter referred to as “breathability”) is generally good when the soft and raw material distribution state (hereinafter referred to as “profile”) within the blast furnace 10 is stabilized. As a result, it is possible to perform economic operation and at the same time improve productivity and extend the life of the blast furnace 10.

그러나 최근 고로(10)의 경제적 조업을 위해 값비싼 연료인 코크스(20-5) 대신 상대적으로 저렴한 일반탄을 분쇄하여 만든 미분탄의 사용비율을 점차적으로 늘려가면서 고로(10) 조업을 수행하고 있으며 세계의 고로에서는 경쟁적으로 취입량 증대를 위해 노력을 하지만 미분탄 취입량 증대에 따른 노내 광석비의 증가로 연화융착대(10-1)에서 최소한의 코크스(20-5) 부족과 미분탄 연소성 불량으로 인한 풍구(10-2) 앞에서의 난투과층 형성으로 통기장애를 받고 있다.Recently, however, the blast furnace (10) operation has been carried out by gradually increasing the use ratio of pulverized coal produced by crushing relatively inexpensive coal instead of the coke (20-5), which is an expensive fuel for the economic operation of the blast furnace (10). In the blast furnace, it is competing to increase the blown amount, but due to the increase in the ore ratio in the furnace due to the increase of the pulverized coal blown, the lack of minimal coke (20-5) in the soft fusion zone (10-1) (10-2) I am suffering from a breathing disorder due to the formation of a piercing layer.

또한 장입물 괴상대(10-5)에서 소립광(41) 사용비 변동에 의한 스킨플로우(Skin Flow) 온도 변동으로 노벽 내화물 수명에 지대한 영향을 초래하는 노체하부 변동에 의해 미환원된 광석이 용융물로 적하하여 용융물 온도를 떨어뜨리는 것은 물론이고, 미환원된 광석중에 있는 산화철(FeO) 노저연와중의 카본(Carbon)이 반응하여 노저연와를 손상시키기 때문에 소립광(41) 사용비율을 일정하게 유지하는 것이 무엇보다 중요하다.Also, unreduced ore unmelted by fluctuations in the underbody which causes a significant effect on the furnace wall refractory life due to skin flow temperature fluctuations caused by fluctuations in the use of small particles 41 in the charge mass 10-5. In addition to lowering the melt temperature by dropping, the carbon dioxide in the iron oxide (FeO) furnace lead in the unreduced ore reacts and damages the furnace lead so that the use rate of the small particle 41 remains constant. It is most important to do.

한편, 노벽내화물의 마모와 장입레벨의 저하등으로 노내 가스류가 편류발생시 연화융착대(10-1) 정층이 장입물레벨이 낮은 쪽으로 이동하기 때문에 노내 가스류는 계속 불균일하게 흐르고, 한번 이동된 연화융착대(10-1) 정층은 쉽게 회복이 어렵기 때문에 노내가스류 편류를 억제하는 것이 중요하다.On the other hand, when the gas flow in the furnace flows due to abrasion of the furnace wall refractory and the lowering of the charging level, the gas flow in the furnace continuously flows unevenly because the fixed bed of the soft fusion zone 10-1 moves to the lower charge level. It is important to suppress the fluctuation of the gas flow in the furnace because it is difficult to easily recover the bed of softening fusion zone 10-1.

이와 같이 고로(10) 상부 및 하부온도 변동으로 인해 고로(10) 노내상황의 불안정이 야기되고, 결국 생산량 저하 및 각종 조업 불안정이 일어나며 경우에 따라서는 대형 사고를 초래할 수도 있으므로 소립광(41) 사용비를 일정하게 유지하기 위한 분율발생량 제어를 위해 노력하고 있으며 노내가스 편류발생 해소를 위해 많은 노력을 하고 있다.As such, fluctuations in the upper and lower temperatures of the blast furnace 10 result in instability in the blast furnace 10, resulting in a decrease in production and various instability in the operation, and in some cases a large accident. Efforts have been made to control the fraction generation to keep the rain constant, and many efforts have been made to resolve the fluctuations in the furnace gas.

이를 개선하기 위한 종래의 기술로는 고로(10)에 장입되는 소립광(41) 비율을 일정하게 유지하기 위해 소립광(41) 발생량에 따라 고로(10)에 장입되는 총 광석량을 조정하여 장입하였으며, 총광석량 조정이 불가능할때는 소립광(41) 발생량이 적을 경우 대립광(30-5)을 소립광(41)에 혼합해서 장입하고, 반대로 소립광(41) 발생량이 많을 경우 소립광(41)을 대립광(30-5)에 대체해서 장입하는 방법으로 조업을 행하고 있고, 노내가스 편류발생시는 소립광(41)을 추가로 평량하여 편류가 발생하는 부위에 장입하는 형식으로 조업을 병행하고 있다.Conventional technology for improving this is to adjust the total amount of ore charged in the blast furnace 10 according to the amount of small particles 41 generated in order to maintain a constant ratio of the small particles of light 41 charged to the blast furnace 10 charged. When the total amount of ore is not adjustable, when the amount of small particles 41 is small, the mixed light 30-5 is mixed with the small particles 41, and on the contrary, when the amount of small particles 41 is large, 41) is replaced by the opposing light 30-5, and the operation is carried out.In the case of in-house gas drift, the operation is carried out in the form of additionally weighing the small particle 41 into the site where the drift occurs. Doing.

그러나 상기의 조업방법은 소립광(41) 장입비율에 따라 총광석량을 변동시키므로 잦은 노내가스기류 변동을 초래하고, 소립광(41)과 대립광(30-5)의 입도차이에 의한 노정 장입 호퍼(11,11-1)에서의 편적, 장입 선회 슈트(13)에서의 배출속도의 차이, 고로(10) 상부에서의 경사각, 인식각의 차이, 소립광(41)의 환원성 및 통기성 양호로 노내 가스 편류가 발생하고, 이의 해소가 어려워 노내 프로필이 불안정하게 되고, 통기성 악화 등 조업 불안정 요인이 되어 생산량 저하 및 고로 수명 저하를 초래하는 문제점이 있었다.However, the above operation method changes the total amount of ore in accordance with the loading ratio of the small particles 41, causing frequent fluctuations in the gas flow in the furnace, and the charging of the road due to the particle size difference between the small particles 41 and the opposing particles 30-5. Knitting in the hoppers 11 and 11-1, difference in discharge speed in the charging swing chute 13, inclination angle in the blast furnace 10, difference in recognition angle, and reducing and ventilation of the small particles 41 Gas fluctuations in the furnace occur, which makes it difficult to resolve the furnace profile, which leads to unstable operation such as deterioration of breathability, resulting in a decrease in production and blast furnace life.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 고로에 장입되는 소립광과 분소결광의 발생량을 제어하고, 소립광 입도선별기에서 발생하는 분소결광을 노내가스류 편류 발생시 일부 특정한 구간에 장입할 수 있도록 한 분율발생량 자동제어에 의한 분소결광 장입장치 및 그 방법을 제공함에 있다.The present invention has been made to solve the problems of the prior art as described above, the object of the present invention is to control the amount of small and small particles and charged light charged in the blast furnace, and to control the amount of small particles generated in the small particle size sorter furnace furnace gas It is an object of the present invention to provide an apparatus and method for charging a fractionated coal mine by automatic control of a fraction generation amount so as to be charged in a specific section when a flow drift occurs.

도 1은 종래 고로 연,원료 장입방법을 설명하기 위한 공정도1 is a process chart for explaining a conventional blast furnace fuel raw material charging method

도 2는 본 발명에 따른 분율발생량 자동제어에 의한 분소결광 장입장치 및 그 장입방법을 설명하기 위한 공정도Figure 2 is a process diagram for explaining the fractional fluorescence charging device and the charging method by the fraction generation automatic control according to the present invention

도 3은 본 발명에 따라 벨트 컨베이어상에 배출된 소립소결광과 분소결광의 적상을 나타낸 모식도Figure 3 is a schematic diagram showing the dropping of the small sintered and divided sintered light discharged on the belt conveyor according to the present invention

도 4는 본 발명에 따라 소립소결광 벨트 컨베이어 하부와 분소결광 벨트 컨베이어 하부에 설치된 웨잉을 나타낸 정면도Figure 4 is a front view showing the weing installed in the small sintered belt conveyor lower and the branched sintered belt conveyor according to the present invention.

도 5는 본 발명에 따라 분소결광이 장입된 후의 노내 장입물 분포도5 is a distribution chart of the furnace contents after the powdery deposit is charged according to the present invention

도 6은 본 발명에 따른 분율발생량 및 분소결광 장입의 블록도Figure 6 is a block diagram of the fraction generation amount and fractional fluorescence loading according to the present invention

도 7은 본 발명에 따른 분율발생량 자동제어에 의한 분소결광 장입방법의 흐름도7 is a flow chart of the method of charging the fractional fluorescence by the fraction generation amount automatic control according to the present invention

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

10 : 고로 10-2 : 풍구10: blast furnace 10-2: windball

10-3 : 용선 20 : 코크스저장조10-3: molten iron 20: coke storage tank

20-3,20-4 : 코크스 웨잉 호퍼20-3,20-4: Coke Wading Hopper

20-5 : 코크스 30 : 대립광 웨잉호퍼20-5: Coke 30: Opposition light weighing hopper

30-5 : 대립광 42 : 소립 소결광 웨잉호퍼30-5: opposed light 42: small sintered ore weighing hopper

55 : 분소결광 70 : 노정 PLC55: fractional fluorescence 70: path PLC

70-1 : 원료 PLC 70-2 : 전기신호 통신제어기70-1: Raw material PLC 70-2: Electric signal communication controller

76 : 평량제어수단 80 : 프로세스 컴퓨터76: basis weight control means 80: process computer

상기와 같은 본 발명의 목적을 달성하기 위하여 본 발명에 따르면 소립광 사용비 입력에 따라 현 총광석량 대비 소립광 사용량을 계산하고, 이 계산값을 원료평량기에 전송하여 평량하는 프로세스 컴퓨터와; 상기 프로세스 컴퓨터로의 전기신호의 제어를 위해 연결된 전기신호 통신제어기와; 상기 소립광의 노내 장입을 제어하는 평량제어수단과 연결되고, 원료조의 전기신호의 통신 프로그램을 제어하는 원료 PLC와; 상기 원료 PLC와 연결되어 노정부(頂部)의 장입 제어를 하는 노정 PLC를 포함하여 구성된 것을 특징으로 분율발생량 자동제어에 의한 분소결광 장입장치가 제공된다.According to the present invention to achieve the object of the present invention as described above, a process computer for calculating the amount of small ore particles compared to the current total ore amount in accordance with the input of small particle use ratio, and transfers the calculated value to the raw material basis weight; An electrical signal communication controller coupled for control of the electrical signal to the process computer; A raw material PLC connected with a basis weight control means for controlling the charging of the small particles in the furnace, and controlling a communication program of an electric signal of a raw material tank; It is connected to the raw material PLC is configured to include a paddle PLC for the charging control of the furnace part is provided, the divided fluorescence charging device by the automatic control of the fraction generation amount is provided.

또한, 본 발명에 따르면 대립광 입도선별기에서 발생한 소립광 발생비율과, 소립광 입도선별기에서 발생한 분소결광 발생비율을 계산하여 소립광 빈의 관리치가 일정하게 유지되도록 각 대립광 빈 게이트를 소립광 발생비율에 따라 조정하고, 각 소립광 빈 게이트를 분소결광 발생비율에 따라 조정하는 단계와; 상기 단계 후, 각 대립광 및 소립광 빈 게이트 하한치에 소립광 발생량과, 분소결광 발생량이 소립광 사용비 미만 일때 빈 게이트를 닫고, 입도선별기를 조업자가 설정한 임의의 시간만큼 공회전시키며, 공회전 완료 후, 빈 게이트를 여는 단계와; 상기 단계 후, 소립광 입도선별기에서 발생한 분소결광을 분소결광 저장조에 일시 저장하고, 기설정된 관리치 이상시 소결공정으로 이송하는 단계와; 상기 단계 후, 분소결광의 고로장입량 결정에 따라 총광석량에서 분소결광 고로장입량을 제외한 값을 대립광 분율발생 비율에 따라 결정하고, 중계조 소립광 입조 벨트 컨베이어 상에 분소결광이 적재되어 중계조 소립광 빈에 저장되며, 그 상부에 소립광이 저장되어 고로내 장입시 분소결광이 먼저 장입되는 단계와; 상기 단계 후, 상기 고로의 노정온도와 장입물 상부온도를 이용하여 원주방향별 노내가스 편류지점을 확인하고, 소립광 장입시선회슈트 회전 시작 각도를 노내가스 편류지점에 맞추어 장입을 시작하며, 분소결광 장입량에 따라 광석유량조절변을 추가로 열어주는 단계로 이루어지는 것을 특징으로 하는 분율발생량 자동제어에 의한 분소결광 장입방법이 제공된다.In addition, according to the present invention by calculating the small particle generation rate generated in the allergic particle size sorter and the small particle size generation rate generated in the small particle size sorter, small light generation is generated in each of the allergic light bin gates so that the management value of the small particle bin is kept constant. Adjusting the ratio according to the ratio, and adjusting each small-light empty gate according to the fractional sintered light generation rate; After the above step, when the amount of small particles generated and the amount of divided sintered light are lower than the use ratio of the small particles at the lower limit of each allele and small particle empty gate, the empty gate is closed, and the idler is idled for an arbitrary time set by the operator, and the idle is completed. Then, opening the empty gate; After the step, temporarily storing the atomized light generated in the small particle size sorter in the atomized light storage tank, and transferring it to the sintering process when a predetermined management value is exceeded; After the above step, according to the determination of the blast furnace loading of the divided coal mine, the value of subtracting the blast furnace loading from the total ore amount is determined according to the ratio of the occurrence of alleles, and the granulated coal is loaded on the granulated small particle granulation belt conveyor. A small particle is stored in the small particle bin, and the small particle is stored at an upper part thereof, so that when the charged particle is charged into the blast furnace, the charged particle is first charged; After the step, using the blast furnace top temperature and the charging top temperature, to determine the furnace gas drift point in each circumferential direction, and to start the charging by turning the turning chute rotation angle of the small particle loading to the furnace gas drift point, minutes According to the amount of sintered ore charged, there is provided a method for loading sintered ore by the fractional generation automatic control, which comprises the step of additionally opening the ore flow control valve.

이하, 본 고안을 첨부된 도면에 의거하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 6에 도시된 바와 같이, 조업자가 고로의 조업 특성과 노내상황을 고려하여 소립광 사용비를 입력하면 현 총광석량 대비 소립광 사용량을 계산하고, 이 계산값을 원료평량기에 전송하여 평량하는 프로세스 컴퓨터(80)가 설치되고, 설정값과 실적값의 편차를 용이하게 알 수 있도록 관리용 프린터(81)가 설치된다.As shown in Figure 6, when the operator inputs the use of small particles in consideration of the operation characteristics and furnace conditions of the blast furnace, calculates the amount of small particles used compared to the current total ore amount, and transfers the calculated value to the raw material basis weight The process computer 80 is installed, and the management printer 81 is installed so that the deviation between the set value and the performance value can be easily known.

또한, 상기 프로세스 컴퓨터(80)로의 전기신호의 제어를 위해서 전기신호 통신제어기(70-2)를 연결시켜서 소립광 관리치와 분소결광 관리치를 조업자가 임의로 입력할 수 있도록 하는 기능을 부여하였으며, 소립광 노내 장입을 제어하기 위한 평량제어수단(76)이 연결되어지고, 자동으로 원료조의 전기신호의 통신 프로그램을 제어하기 위한 원료 PLC(Programable Logic Controller)(70-1)와 노정부(頂部)의 장입 제어를 위한 노정 PLC(70)가 상호 통신 관계를 가질 수 있는 상태로서 제어된다.In addition, an electric signal communication controller 70-2 is connected to control the electric signal to the process computer 80, and a function of allowing an operator to input a small particle management value and a branched light management value is arbitrarily provided. A basis weight control means 76 for controlling the charging in the optical furnace is connected, and the charging of the raw material PLC (Programmable Logic Controller) 70-1 and the labor part for automatically controlling the communication program of the electric signal of the raw material tank is connected. It is controlled as the state which the trip PLC PLC 70 for control can have mutual communication relationship.

또한, 도 4에 도시된 바와 같이, 소립광(41)의 사용비율에 따른 소립광(41) 발생량을 자동 제어하기 위한 소립광 이송용 벨트 컨베이어의 각 대립광 게이트 하부와 분소결광(55) 이송용 벨트 컨베이어(60)의 하부에 웨잉시스템(Weighing System)(61)이 연결되어지고, 대립광 빈 게이트 8개소와 소립광 빈 게이트 2개소에 각각 게이트 조정용 전동모터(미도시)와 개도계(미도시)가 연결되어 상기 프로세서컴퓨터(80)에 링크(Link)되어진다.In addition, as shown in FIG. 4, the lower part of the opposing light gate and the divided sintered light 55 of the small particle transport belt conveyor for automatically controlling the amount of small particle light 41 generated according to the use ratio of the small particle light 41 are transferred. A weighing system 61 is connected to the lower part of the belt conveyor 60, and an electric motor (not shown) and an open meter for gate adjustment are respectively provided at eight opposing light gates and two small light empty gates. Not shown) is connected to the processor computer 80 is linked.

한편, 본 발명에 의한 분소결광 장입방법은 상기한 바와 같이 구성되는 본 발명에 의한 장치에서 행해지며, 이를 설명하면 다음과 같다.On the other hand, the method of charging the branched light by the present invention is carried out in the apparatus according to the present invention configured as described above, which will be described as follows.

도 6 및 도 7에 도시된 바와 같이, 소립광 빈 #1,#2측에 저장된 소립광(41) 량의 관리치에 따라 각 대립광 입도선별기에서 발생한 소립광(41)의 발생비율과, 소립광 입도선별기에서 발생한 분소결광(55) 발생비율을 계산하여, 고로(10)에 장입하는 소립광(41) 량과 비교하여 소립광 빈 #1,#2의 관리치가 일정하게 유지되도록 각 대립광 빈 게이트를 소립광(41) 발생비율에 따라 조정하고, 설정값도 소립광(41) 발생비율에 따라 자동 변경되도록 하여 각 소립광 빈 게이트를 분소결광(55) 발생비율에 따라 조정한다.As shown in FIG. 6 and FIG. 7, the generation rate of the small particle light 41 generated in each of the allied particle size sorters according to the management value of the amount of small particle light 41 stored in the small particle bins # 1 and # 2, and Calculate the rate of occurrence of the atomized light 55 generated in the small particle size sorter, and compare the amount of small particles 41 loaded into the blast furnace 10 so that the management values of the small particle bins # 1 and # 2 are kept constant. The optical empty gates are adjusted in accordance with the ratio of generation of small particles of light 41, and the set values are automatically changed in accordance with the generation ratio of small particles of light 41, so that the respective small gates of light gates are adjusted in accordance with the generation ratio of fragmented light 55.

이후, 각 대립광 및 소립광 빈 게이트 하한치에도 소립광(41) 발생량과 분소결광(55) 발생량이 고로(10)에 장입되는 소립광(41) 사용비 미만일때는 해당 입도선별기 청소를 위해 평량완료후 빈 게이트를 닫고, 입도선별기를 조업자가 설정한 임의의 시간만큼 공회전시키며 공회전 완료 후, 빈 게이트가 이전값으로 열리도록 한다.Subsequently, when the amount of small particles 41 and the amount of fragmented light 55 are less than the use ratio of the small particles 41 that are charged into the blast furnace 10, the basis weight is completed for cleaning the corresponding particle size sorter even at the lower limit of each allele and small particles empty gate. After that, the empty gate is closed, the particle size separator is idled for a predetermined time set by the operator, and after the idle is completed, the empty gate is opened to the previous value.

이후, 소립광 입도선별기에서 발생한 분소결광(Fine Sinter)(55)을 분소결광 저장조에 일시 저장하고, 기설정된 관리치 이상시 소결공정으로 이송하도록 체인지오버 슈트(Change Over Chute)가 소결측 벨트컨베이어(52) 측으로 이동되며, 노내가스 편류발생으로 인한 분소결광(55)을 고로(10)에 장입시 선택기능이 부여된다.Afterwards, a change over chute is temporarily stored in the sintering side belt conveyor to temporarily store the fine sinter 55 generated in the small particle size sorter in a sintered storage tank, and transfer it to the sintering process when a predetermined control value is exceeded. Moving to the (52) side, the selection function is provided when charging the fluorescence deposit 55 into the blast furnace 10 due to the in-house gas drift occurs.

상기와 같이 하여 분소결광(55)의 고로장입량이 결정되면 총광석량에서 분소결광 고로장입량을 제외한 값을 대립광 분율발생 비율에 따라 각 설정값이 결정되어지고, 중계조 소립광(41) 빈 하부에 분소결광(55)이 저장되도록 분소결광 고로측 벨트 컨베이어가 기동되어 중계조 소립광 입조 벨트 컨베이어 상에 적재되어 중계조 소립광 빈에 저장되고, 그 상부에 소립광(41)이 저장되어 고로내 장입시 분소결광(55)이 먼저 장입된다.When the blast furnace loading of the divided fluorescence 55 is determined as described above, each set value is determined according to the ratio of the occurrence of the opposing light fraction to the value excluding the sintered deposit blast furnace loading from the total ore amount, and the intermediate tone sintered light 41 is empty. The branched-light blast furnace side belt conveyor is activated to store the divided-grained light 55 in the lower part, and is loaded on the intermediate-grain small particle light belt conveyor and stored in the intermediate-grained small particle bin, and the small particle 41 is stored thereon. At the time of charging in the blast furnace, the branched ore 55 is charged first.

또한, 고로(10)의 노정온도와 장입물 상부온도(Above Burden Probe)를 이용하여 원주방향별 노내가스 편류지점을 확인하고, 소립광(41) 장입시 선회슈트(13) 회전 시작 각도를 노내가스 편류지점에 맞추어 장입을 시작하며, 분소결광(55) 장입량에 따라 광석유량조절변을 추가로 열어준다.In addition, by using the blast furnace 10 and the top temperature (Above Burden Probe) of the blast furnace 10 to check the drift point in the furnace circumferential direction by the circumferential direction, the starting angle of turning chute (13) rotation when the small particle (41) is charged in the furnace Charging starts according to the gas drift point, and the ore flow control valve is additionally opened according to the amount of atomization ore (55).

상기와 같은 단계로 이루어진 본 발명은 소립광 발생량을 자동으로 제어하고 , 도 3에 도시된 바와 같이, 여러 여건상으로 발생할 수 있는 고로 노내가스 편류를 분소결광(55)과 소립광(41)을 같이 장입하여 해소함으로써 노내 통기성 개선은 물론 고로의 수명을 연장할 수 있게 된다.The present invention consisting of the above steps to automatically control the amount of small particles generated, and as shown in Figure 3, the blast furnace furnace gas drift may occur in various conditions, the fractional fluorescence 55 and small particles 41 By charging and eliminating together, it is possible to improve the air permeability of the furnace and to extend the life of the blast furnace.

일반적으로 소립광(41)은 스킨 플로우(Skin Flow)와 노체하부 온도 제어용으로 장입하여 사용하고 있으며, 사용량 변경시 노내가스 기류가 변동될 수 있고 도 5에 도시된 바와 같이, 소립광(41) 다음 차지에 장입되는 코크스 테라스(18)가 불균일 해지는 현상으로 인해 고로조업에서는 최대한 소립광(41) 사용비를 일정하게 조업하는 것이 가장 중요하다.In general, the small particle 41 is charged and used for skin flow and temperature control of the lower part of the furnace, and the gas flow in the furnace may be changed when the amount of use is changed, as shown in FIG. 5, after the small particle 41. Due to the phenomenon that the coke terrace 18 charged into the charge becomes uneven, it is most important to operate the small particle 41 as much as possible in the blast furnace operation.

상기와 같은 본 발명에서 분소결광(55)을 노내에 장입하는 이유는 노체상부 연와의 불균형 마모, 장입설비 이상으로 인한 장입물레벨 저하시 원주방향별 장입물 레벨이 상이하여 노내가스가 일부구간으로 통과하는 소위 편류가 발생하여 연화융착대(10-1) 정층이 변화되고, 용융물 온도가 주상별로 변동되며 심한 경우 노하부 용융물의 원활한 배출 불량으로 대형사고를 유발할 가능성이 있으므로 비교적 고로(10)에 장입되는 장입물중에서 통기성이 불량한 분소결광(55)을 노내가스 편류가 심한 구간에 선회슈트(10-1)를 이용하여 장입하므로써 가스 편류를 억제 하였다.In the present invention as described above, the reason for charging the powdery ore 55 in the furnace is that the load level in the circumferential direction is different when the charge level is lowered due to unbalanced wear of the upper part of the furnace, the charging equipment abnormality, the furnace gas in some sections The so-called drift that passes through the soft fusion zone (10-1) changes the bed, the melt temperature fluctuates by columnar, and in severe cases can cause a large accident due to the smooth discharge of the lower melt of the furnace, the relatively blast furnace (10) The gas fluctuations were suppressed by charging the branched briquettes 55 having poor air permeability among the charged charges by using the turning chute 10-1 in the section where the gas fluctuations in the furnace were severe.

한편, 분소결광(55)의 고로(10) 장입량에 따라 광량조절밸브를 자동조정하는 이유는 분소결광(55)과 소립광(41)의 입도차이로 인한 선회슈트(13)에서의 배출속도가 상이하고 분소결광(55)을 노내가스 편류지점에 장입하는 효과를 최대한 만족하기 위해서는 보다 많은 량을 한 구간(Point)에 장입되도록 하기 위해서이며, 소립광(41)이 대립광(30-5) 상부에서 지나치게 길어지면 다음 차지에 장입물 코크스 테라스(18)가 불안정해지는 요인이 되기 때문이다.On the other hand, the reason for automatically adjusting the light quantity control valve according to the amount of charge of the blast furnace 10 of the branched light 55 is that the discharge speed from the turning chute 13 due to the particle size difference between the branched light 55 and the small particle 41 is increased. In order to satisfy the effect of charging the different fractional ore 55 into the furnace gas drift point as much as possible, a larger amount is charged in one section, and the small particle 41 is the opposing light 30-5. It is because when it becomes too long in the upper part, the charge coke terrace 18 will become an instability in the next charge.

이상에서와 같이, 본 발명에 따르면 고로조업에서 현재의 고출선비와 고미분탄비를 일정하게 유지하면서 소립광 사용비를 일정하게 유지하기 위해 자동으로 제어하고, 발생된 분소결광을 소립광과 같은 호퍼에 수입하여 우선 장입될 수 있도록 함으로써, 노내가스 편류를 억제하여 괴상대와 연화융착대에서의 통기저항을 최소화하고 노황안정을 통한 생산성 향상과 함께 고로의 수명 연장을 도모할 수 있는 유용한 효과가 있다.As described above, according to the present invention in the blast furnace operation, while maintaining the current high extraction ratio and high fine coal ratio constant, the automatic control to maintain a constant use of small particle light, and the generated sintered light hopper such as small particle By importing it into the tank, it can be loaded first, thereby minimizing the fluctuations in the furnace gas, minimizing aeration resistance in the bulky and soft fusion zones, and improving the productivity through stabilization of the furnace and improving the life of the blast furnace. .

Claims (2)

소립광(41) 사용비 입력에 따라 현 총광석량 대비 소립광(41) 사용량을 계산하고, 이 계산값을 원료평량기에 전송하여 평량하는 프로세스 컴퓨터(80)와;A process computer 80 for calculating the amount of small particles 41 to the current total ore amount in accordance with the input of the small particles 41 and using the calculated values, and transferring the calculated values to a raw material basis weight basis for weighing; 상기 프로세스 컴퓨터(80)로의 전기신호의 제어를 위해 연결된 전기신호 통신제어기(70-2)와;An electrical signal communication controller (70-2) connected for controlling the electrical signal to the process computer (80); 상기 소립광(41)의 노내 장입을 제어하는 평량제어수단(76)과 연결되고, 원료조의 전기신호의 통신 프로그램을 제어하는 원료 PLC(70-1)와;A raw material PLC 70-1 connected to the basis weight control means 76 for controlling the charging of the small particles 41 in the furnace, and for controlling a communication program of the electric signal of the raw material tank; 상기 원료 PLC(70-1)와 연결되어 노정부(頂部)의 장입 제어를 하는 노정 PLC(70)를 포함하여 구성된 것을 특징으로 하는 분율발생량 자동제어에 의한 분소결광 장입장치.Particle sintered light charging device by the fractional generation automatic control, characterized in that it comprises a top PLC (70) connected to the raw material PLC (70-1) to control the charging of the furnace. 대립광 입도선별기에서 발생한 소립광(41) 발생비율과, 소립광 입도선별기에서 발생한 분소결광(55) 발생비율을 계산하여 소립광 빈의 관리치가 일정하게 유지되도록 각 대립광 빈 게이트를 소립광(41) 발생비율에 따라 조정하고, 각 소립광 빈 게이트를 분소결광(55) 발생비율에 따라 조정하는 단계와;Calculate the ratio of small particles 41 generated in the alliance particle size sorter and the fractional particles 55 generated in the small particle size sorter so that the control values of the small particle bins are kept constant. 41) adjusting the generation rate according to the generation rate and adjusting each small light empty gate according to the generation rate of the divided sintered light 55; 상기 단계 후, 각 대립광 및 소립광 빈 게이트 하한치에 소립광(41) 발생량과, 분소결광(55) 발생량이 소립광(41) 사용비 미만 일때 빈 게이트를 닫고, 입도선별기를 조업자가 설정한 임의의 시간만큼 공회전시키며, 공회전 완료 후, 빈 게이트를 여는 단계와;After the above step, the empty gate is closed when the amount of small particles 41 and the amount of divided light 55 is less than the ratio of the small particles 41 to the lower limit values of the alleles and small particles empty gate, and the particle size selector is set by the operator. Idling for an arbitrary time and, after completion of idling, opening the empty gate; 상기 단계 후, 소립광 입도선별기에서 발생한 분소결광(55)을 분소결광 저장조에 일시 저장하고, 기설정된 관리치 이상시 소결공정으로 이송하는 단계와;After the step, temporarily storing the branched light 55 generated in the small particle size sorter in a powdered light storage tank and transferring it to the sintering process when a predetermined management value is exceeded; 상기 단계 후, 분소결광(55)의 고로장입량 결정에 따라 총광석량에서 분소결광 고로장입량을 제외한 값을 대립광 분율발생 비율에 따라 결정하고, 중계조 소립광 입조 벨트 컨베이어 상에 분소결광(55)이 적재되어 중계조 소립광 빈에 저장되며, 그 상부에 소립광(41)이 저장되어 고로내 장입시 분소결광(55)이 먼저 장입되는 단계와;After the above step, according to the determination of the blast furnace loading of the divided fluorescing 55, the value except for the partial sintered blast furnace loading from the total ore amount is determined according to the ratio of allelic fraction fractions, and the divided fluorescence (55) on the intermediate tone granular granulation belt conveyor. ) Is loaded and stored in the intermediate tone small particle bin, the small particle 41 is stored at the upper portion thereof, and when the charged into the blast furnace, the branched light 55 is charged first; 상기 단계 후, 상기 고로(10)의 노정온도와 장입물 상부온도를 이용하여 원주방향별 노내가스 편류지점을 확인하고, 소립광(41) 장입시 선회슈트(13) 회전 시작 각도를 노내가스 편류지점에 맞추어 장입을 시작하며, 분소결광(55) 장입량에 따라 광석유량조절변을 추가로 열어주는 단계로 이루어지는 것을 특징으로 하는 분율발생량 자동제어에 의한 분소결광 장입방법.After the step, using the blast furnace temperature 10 and the top temperature of the charge of the blast furnace (10) to check the drift point in the circumferential direction by the circumferential direction, the starting angle of the turning chute (13) rotation when the small particle (41) is charged into the drift furnace gas Starting charging according to the point, and the step of loading the ore flow control according to the amount of atomization coalescing (55), characterized in that it comprises the step of automatically opening the fractional fluorescence charging by the fraction generation amount automatic control.
KR1019990059781A 1999-12-21 1999-12-21 Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control KR100628691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990059781A KR100628691B1 (en) 1999-12-21 1999-12-21 Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990059781A KR100628691B1 (en) 1999-12-21 1999-12-21 Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control

Publications (2)

Publication Number Publication Date
KR20010062990A true KR20010062990A (en) 2001-07-09
KR100628691B1 KR100628691B1 (en) 2006-09-28

Family

ID=19627609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990059781A KR100628691B1 (en) 1999-12-21 1999-12-21 Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control

Country Status (1)

Country Link
KR (1) KR100628691B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048150A (en) * 2000-12-16 2002-06-22 이구택 A method for auto-detecting damage of grain size sorter
CN101962695A (en) * 2010-10-29 2011-02-02 中冶南方工程技术有限公司 Control method of intelligent supplying system of crude fuel on blast furnace groove
CN104818382A (en) * 2015-06-01 2015-08-05 连云港宝翔铸造有限公司 Nickel ore sintering machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987711A (en) * 1995-09-26 1997-03-31 Kawasaki Steel Corp Method for adjusting charging quantity of small sized sintered ore
KR20010037725A (en) * 1999-10-19 2001-05-15 이구택 Automatic mixing apparatus and method of small ore for anti-pause insertion of furnace
KR100381507B1 (en) * 1999-12-22 2003-04-23 주식회사 포스코 Blast furnace bucket material real time batch call automatic control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048150A (en) * 2000-12-16 2002-06-22 이구택 A method for auto-detecting damage of grain size sorter
CN101962695A (en) * 2010-10-29 2011-02-02 中冶南方工程技术有限公司 Control method of intelligent supplying system of crude fuel on blast furnace groove
CN101962695B (en) * 2010-10-29 2013-04-03 中冶南方工程技术有限公司 Control method of intelligent supplying system of crude fuel on blast furnace groove
CN104818382A (en) * 2015-06-01 2015-08-05 连云港宝翔铸造有限公司 Nickel ore sintering machine

Also Published As

Publication number Publication date
KR100628691B1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
KR100704691B1 (en) Raw material charging method for bell-less blast furnace
KR100628691B1 (en) Powder sintered ore charging apparatus and the method by using division rate occurrence quantity automatic control
JP3573780B2 (en) Raw material charging method for bellless blast furnace
KR20080087667A (en) Apparatus for discharging and filling nut coke into furnace
JP2000178616A (en) Method for charging iron ore having high blending ratio pellet into blast furnace
KR20000009887A (en) Method for mixed charging fuel and material to improve permeability of intermediate part in blast furnace
CN111989411B (en) Method for charging raw material into blast furnace
KR20010037725A (en) Automatic mixing apparatus and method of small ore for anti-pause insertion of furnace
JP3588877B2 (en) Ore and coke charging method in bellless blast furnace
KR20020037545A (en) Method for charging the charging materials into the blast furnace
KR20010019721A (en) Permeability Enhancing Method in Iron Melting Work using Pellet
KR100376514B1 (en) Control method for discharging and filling nut coke into furnace
KR100376479B1 (en) A method and an apparatus for producing low silicon iron of blast furnace
KR100703556B1 (en) Controlling and transfering method for weight measuring of coke used in a blast furnace
KR100376518B1 (en) Charge control method having function for compensating level variation of charge in blast furnace
JP2000144266A (en) Method for charging raw material into sintering pallet
KR100418979B1 (en) Method for many section injection when returning stock level exchanging center coke
KR20030052726A (en) Method for charging of mixture of nut coke and ore
JPH04183809A (en) Method for changing raw material in ball-less blast furnace
JPH05156329A (en) Method for operating powder injection from tuyere in blast furnace
JPH0128090B2 (en)
KR20010011966A (en) Burden distribution control method in blast furnace by using coke
JPH05179320A (en) Raw material charging method for bell-less blast furnace
KR100419661B1 (en) Discharging method by alternation of burden distribution for shaft brick temperature control at blast furnace
KR100423513B1 (en) Charging ratio control method for radius direction ore and cokes in blast furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee