KR20010037752A - Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene - Google Patents

Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene Download PDF

Info

Publication number
KR20010037752A
KR20010037752A KR1019990045424A KR19990045424A KR20010037752A KR 20010037752 A KR20010037752 A KR 20010037752A KR 1019990045424 A KR1019990045424 A KR 1019990045424A KR 19990045424 A KR19990045424 A KR 19990045424A KR 20010037752 A KR20010037752 A KR 20010037752A
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
dehydrogenation
zeolite
reactor
Prior art date
Application number
KR1019990045424A
Other languages
Korean (ko)
Other versions
KR100345344B1 (en
Inventor
고영찬
최일석
공병희
이재성
추대현
김재창
이현호
Original Assignee
김선동
에쓰대시오일 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김선동, 에쓰대시오일 주식회사 filed Critical 김선동
Priority to KR1019990045424A priority Critical patent/KR100345344B1/en
Publication of KR20010037752A publication Critical patent/KR20010037752A/en
Application granted granted Critical
Publication of KR100345344B1 publication Critical patent/KR100345344B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: Provided is a process for producing 2,6-dimethyl naphthalene from 5-ortho-tolyl-pent-2-ene by performing cyclization and isomerization simultaneously and then performing dehydrogenation. CONSTITUTION: The process for producing the 2,6-dimethyl naphthalene comprises the steps of: cyclizing and isomerizing the 5-ortho-tolyl-pent-2-ene simultaneously in the presence of a cyclization-isomerization catalyst to produce 2,6-dimethyltetralin; dehydrogenating the 2,6-dimethyltetralin in the presence of a dehydrogenation catalyst. The cyclization-isomerization catalyst is hydrogen ion type zeolite beta, zeolite Y, or mordenite. The dehydrogenation catalyst is VIII group metal supported zeolite beta, zeolite Y, or mordenite.

Description

5-오르토-톨릴펜텐으로부터 2,6-디메틸나프탈렌을 제조하는 방법{Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene}Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene

본 발명은 5-오르토-톨릴펜텐(5-ortho-Tolylpentene ; 이하 ortho-Tolylpen-5-ortho-tolylpentene (hereinafter referred to as ortho-Tolylpen-)

tene을 "OTP"라 함)을 출발물질로 하여 고리화-이성화반응 촉매를 사용하여 고리화 반응(Cyclization)과 이성화반응(Isomerization)을 동시에 시켜 2,6-디메틸테트랄린(2,6-Dimethyltetralin ; 이하 Dimethyltetralin을 "DMT"라 함)을 생성시키고 이어서 생성된 2,6-DMT를 탈수소반응 촉매를 사용하여 탈수소반응(Dehydrogenation)을 시켜 2,6-디메틸나프탈렌(2,6-Dimethylnaphthalene ; 이하 Dimethylnaphthalene을 "DMN" 이라 함)을 높은 수율로 제조하는 방법에 관한 것이다.Tene is referred to as "OTP") and 2,6-dimethyltetraline (2,6- isomerized by Cyclization and Isomerization using a cyclization-isomerization catalyst. Dimethyltetralin, hereinafter referred to as dimethyltetralin, is referred to as "DMT," followed by dehydrogenation of the resulting 2,6-DMT using a dehydrogenation catalyst to remove 2,6-dimethylnaphthalene (2,6-Dimethylnaphthalene; Dimethylnaphthalene is called "DMN") in a high yield.

보다 상세하게 설명하면 본 발명은 5-OTP, 특히 5-오르토-톨릴-1-펜텐 (5-ortho-Tolyl-pent-1-ene ; 이하 "5-OTP-1"이라 함)이나 5-오르토-톨릴-2-펜텐(5-ortho-Tolyl-pent-2-ene ; 이하 "5-OTP-2"이라 함), 또는 그 혼합물을 출발물질로 하고 고리화-이성화반응 촉매로 제올라이트 베타(Zeolite beta), 제올라이트 Y(Zeolite Y) 또는 모데나이트(Mordenite) 등을 사용하여 액상 또는 기상에서 고리화반응과 이성화반응을 동시에 시켜 2,6-DMT를 생성시키고 이어서 생성된 2,6-DMT를 탈수소반응 촉매로 Ⅷ족 금속을 담지한, 제올라이트 베타, 제올라이트 Y 또는 모데나이트를 사용하여 액상 또는 기상에서 탈수소반응을 시켜 2,6-DMN을 높은 수율로 제조하는 방법에 관한 것이다In more detail, the present invention relates to 5-OTP, in particular 5-ortho-tolyl-1-pentene (5-ortho-Tolyl-pent-1-ene; hereinafter referred to as "5-OTP-1") or 5-ortho. Zeolite beta (5-ortho-Tolyl-pent-2-ene; hereinafter referred to as "5-OTP-2"), or mixtures thereof, as a starting material and as a cyclization-isomerization catalyst beta), zeolite Y, or mordenite to form 2,6-DMT by cyclization and isomerization at the same time in the liquid or gas phase, followed by dehydrogenation of 2,6-DMT. The present invention relates to a method for producing 2,6-DMN in high yield by dehydrogenation in a liquid phase or a gas phase using zeolite beta, zeolite Y or mordenite supported on a Group VIII metal as a reaction catalyst.

이 2,6-DMN을 산화시키면 폴리에틸렌 나프탈레이트(Polyethylene Naph- thalate)의 원료인 2,6-나프탈렌디카르복실산(2,6-Naphthalene dicarboxylic acid)이 생성된다.Oxidation of 2,6-DMN yields 2,6-naphthalene dicarboxylic acid, a raw material of polyethylene naphthalate.

폴리에틸렌 나프탈레이트는 현재 상업적으로 널리 쓰이고 있는 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)보다 결정성이 크고 높은 연화점을 가지며 기계적 강도, 기체투과성, 내약품성, 내열성, 내후성 및 전기절연성 등 물성에서 보다 우수한 성질을 가진 수지이다.Polyethylene naphthalate is a resin that has a higher crystallinity and higher softening point than polyethylene terephthalate, which is currently widely used, and has superior properties in physical properties such as mechanical strength, gas permeability, chemical resistance, heat resistance, weather resistance, and electrical insulation. to be.

2,6-DMN을 제조함에 있어서, 출발물질을 달리한 종래 기술을 살펴보면 다음과 같다.In the preparation of 2,6-DMN, the prior art with different starting materials is as follows.

일본국 공개특허번호 소 60-94,929호 및 소 60-104,022 호에서는 나프탈렌 또는 메틸나프탈렌을 출발물질로 하여 알킬화반응 또는 아실화반응을 시켜 2,6-DMN을 제조하였고 일본국 미쓰비시 가스 화학회사 (Mitsubishi Gas Chemical Co.)는 메타자일렌을 출발물질로 하여 HF-BF3와 같은 초강산 촉매로 아실화반응을 시킨 후 수소화반응, 탈수반응 및 탈수소-고리화반응을 거쳐 2,6-DMN을 제조할 수 있다고 보고하였다.In Japanese Patent Laid-Open Nos. 60-94,929 and 60-104,022, 2,6-DMN was prepared by alkylation or acylation using naphthalene or methylnaphthalene as starting materials, and Japan Mitsubishi Gas Chemical Company (Mitsubishi Gas Chemical Co.) produces 2,6-DMN through acylation reaction with a super acid catalyst such as HF-BF 3 with metaxylene as starting material, followed by hydrogenation, dehydration and dehydrogenation. Reported.

그러나 이러한 제조방법들은 반응효율이나 촉매 수명 및 실제 반응환경에 대한 고려 등의 문제로 인하여 대량생산에의 적용에는 부적합하였다.However, these manufacturing methods are not suitable for mass production due to problems such as reaction efficiency, catalyst life and actual reaction environment.

미합중국 아모코(Amoco)사는 미합중국특허 제 5,030,781 호, 제 5,118,892 호 및 제 5,198,594 호에서 오르토-자일렌을 출발물질로 하여 1,3-부타디엔과의 알케닐화반응을 통하여 알케닐 벤젠류를 얻고 이를 고리화반응을 통하여 1,5-DMT를 얻은 후 이를 탈수소화반응을 통하여 1,5-DMN을 얻은 다음 이성화반응을 통하여 2,6-DMN을 제조하는 방법을 개시(開示)하였으며 실제 상업화에도 성공하였다.Amoco, United States, obtains alkenyl benzenes through alkenylation with 1,3-butadiene using ortho-xylene as starting materials in US Pat. Nos. 5,030,781, 5,118,892 and 5,198,594. After obtaining 1,5-DMT through dehydrogenation, 1,5-DMN was obtained through dehydrogenation, and then 2,6-DMN was prepared through isomerization. .

그러나 위의 제조방법은 제조공정의 단계가 복잡하고, 이성화반응 과정중 2,6-DMN의 이성체인 1,6-DMN 등이 다량 부산물로 생성되어 전체 공정수율이 저하되는 문제점이 있었다.However, the above manufacturing method has a problem in that the manufacturing process is complicated, and 1,6-DMN, which is an isomer of 2,6-DMN, is generated as a by-product during the isomerization process, resulting in a decrease in the overall process yield.

본 발명에서는 OTP를 출발물질로 하여 2,6-DMN을 제조함에 있어서 종래의 기술인 미합중국 아모코사의 고리화반응, 탈수소반응 및 이성화반응의 일련의 3개 반응을 고리화-이성화반응 촉매를 사용함으로써 고리화반응과 이성화반응을 동시에 시킨 후 탈수소반응을 시키는 2개 반응으로 줄이고, 이성체인 1,6-DMN 등의 생성을 억제함으로써 수율도 향상시키고자 하였다.In the present invention, in the preparation of 2,6-DMN using OTP as a starting material, a series of three reactions of cyclization, dehydrogenation, and isomerization of the US Amoco Co., Ltd., which are conventional techniques, are used by using a cyclization-isomerization catalyst. The cyclization reaction and the isomerization reaction were performed at the same time, and then reduced to two reactions of the dehydrogenation reaction, and the yield was also improved by inhibiting the production of isomers such as 1,6-DMN.

본 발명에서는 5-OTP를 출발물질로 사용하고 고리화-이성화 촉매로 제올라이트베타, 제올라이트 Y 또는 모데나이트를 사용하여 고리화-이성화반응을 동시에 시켜 2,6-DMT를 생성시킨 후 이어서 생성된 2,6-DMT를 탈수소반응 촉매로 Ⅷ족 금속을 담지한, 제올라이트 베타, 제올라이트 Y 또는 모데나이트를 사용하여 탈수소반응을 시켜 2,6-DMN을 제조한다.In the present invention, 5-OTP is used as a starting material, and cyclization-isomerization is simultaneously performed using zeolitebeta, zeolite Y, or mordenite as a cyclization-isomerization catalyst to generate 2,6-DMT, and then 2 2,6-DMN is prepared by dehydrogenation using zeolite beta, zeolite Y, or mordenite with, 6-DMT supported on the Group VIII metal as the dehydrogenation catalyst.

본 발명에서의 출발물질인 5-OTP는 5-OTP-1, 5-OTP-2 또는 그 혼합물이고 반응은 액상회분식 반응기(Liquid Phase Batch Type Reactor) 또는 기상고정층 반응기(Gas Phase Fixed Bed Type Reactor)에서 수행된다.5-OTP, which is a starting material in the present invention, is 5-OTP-1, 5-OTP-2, or a mixture thereof, and the reaction is a Liquid Phase Batch Type Reactor or a Gas Phase Fixed Bed Type Reactor. Is performed in

본 발명의 첫번째 공정인 고리화-이성화반응을 설명한다.The first ring-isomerization reaction of the present invention is described.

고리화-이성화 반응은 0.1∼20 기압, 바람직하게는 상압에서 수행한다.The cyclization-isomerization reaction is carried out at 0.1 to 20 atmospheres, preferably at atmospheric pressure.

고리화-이성화 반응을 액상으로 수행하는 경우에는 반응 전에 비활성 기체인 헬륨이나 질소주입을 통하여 액상회분식 고리화-이성화 반응기 내에 남아있는 공기를 충분히 제거한 후 5-OTP-1, 5-OTP-2 또는 그 혼합물을 반응기에 도입한 다음 고리화-이성화반응 촉매 존재 하에서 교반하여 2∼20 시간, 바람직하게는 4∼10 시간 반응을 시킨다.In the case where the cycloisomerization reaction is carried out in the liquid phase, the remaining air in the liquid phase batch cycloisomerization reactor is sufficiently removed by injecting helium or nitrogen as an inert gas before the reaction, and then 5-OTP-1, 5-OTP-2 or The mixture is introduced into a reactor and then stirred in the presence of a cyclization-isomerization catalyst to react for 2 to 20 hours, preferably 4 to 10 hours.

이 때 반응온도는 반응 전체 시간동안 170∼270℃ 범위에서 일정하게 유지하는 방법 또는 고리화반응이 주로 일어나는 반응초기 0.5∼2.0시간은 170∼200℃로 유지한 후, 이성화반응이 주로 일어나는 나머지 반응시간에서는 230∼270℃로 온도를 높여 유지하는 방법을 사용한다.At this time, the reaction temperature is kept constant in the range of 170 to 270 ° C. for the entire reaction time, or the initial reaction for which the cyclization reaction is mainly 0.5 to 2.0 hours is maintained at 170 to 200 ° C., and then the rest of the reaction for which isomerization occurs mainly In time, the method of raising and maintaining temperature to 230-270 degreeC is used.

반응압력은 반응온도에서 반응물이 액상을 유지할 수 있는 압력을 선택한다.The reaction pressure selects the pressure at which the reactants can maintain a liquid phase at the reaction temperature.

고리화-이성화 반응을 기상으로 수행하는 경우에는 반응 전에 비활성 기체인 헬륨이나 질소 주입을 통하여 기상고정층 고리화-이성화 반응기내에 남아 있는 공기를 충분히 제거한 후 고리화-이성화 반응 촉매를 넣고 반응물인 5-OTP-1, 5-OTP-2 또는 그 혼합물을 미리 기화시킨 후 반응기에 도입한 다음, 반응온도 180∼400℃, 바람직하게는 220∼400℃에서 반응시킨다. 반응압력은 반응온도에서 반응물이 기상을 유지할 수 있는 압력을 선택한다.In the case of carrying out the ring-isomerization reaction in the gas phase, the air remaining in the gas-fixed bed ring-isomerization reactor is sufficiently removed by injecting helium or nitrogen which is an inert gas prior to the reaction. OTP-1, 5-OTP-2 or a mixture thereof is vaporized in advance, introduced into the reactor, and then reacted at a reaction temperature of 180 to 400 ° C, preferably 220 to 400 ° C. The reaction pressure selects the pressure at which the reactants can maintain the gas phase at the reaction temperature.

고리화-이성화반응 촉매로는 제올라이트 베타, 제올라이트 Y 또는 모데나이트를 사용한다.As the ring-isomerization catalyst, zeolite beta, zeolite Y or mordenite is used.

제올라이트 베타는 SiO2/Al2O3의 몰 비가 25.0∼26.0, 바람직하게는 25.4∼ 25.9, 비표면적이 600∼900㎡/g, 바람직하게는 680∼780㎡/g이다.Zeolite beta has a molar ratio of SiO 2 / Al 2 O 3 of 25.0 to 26.0, preferably 25.4 to 25.9, specific surface area of 600 to 900 m 2 / g, preferably 680 to 780 m 2 / g.

제올라이트 Y는 SiO2/Al2O3의 몰 비가 5.0∼10.0, 바람직하게는 5.0∼6.5, 비표면적이 500∼900㎡/g, 바람직하게는 600∼750㎡/g이다.Zeolite Y has a molar ratio of SiO 2 / Al 2 O 3 of 5.0 to 10.0, preferably 5.0 to 6.5, specific surface area of 500 to 900 m 2 / g, preferably 600 to 750 m 2 / g.

모데나이트(Mordenite)는 SiO2/Al2O3의 몰 비가 10.0∼20.0, 바람직하게는 14.0∼17.0, 비표면적이 300∼500㎡/g, 바람직하게는 350∼450㎡/g이다.Mordenite has a molar ratio of SiO 2 / Al 2 O 3 of 10.0 to 20.0, preferably 14.0 to 17.0, specific surface area of 300 to 500 m 2 / g, preferably 350 to 450 m 2 / g.

위 3가지 촉매 중에서 제올라이트 베타가 가장 적절하다.Zeolite beta is the most suitable of the three catalysts.

위 촉매들은 수소이온(H+) 형태의 것 이외에도 다른 양이온 형태의 것도 사용할 수 있으나 다른 양이온 형태의 것인 경우에는 수소이온(H+) 형태로 전환하여 사용하며, 반응에 사용하기 전에 촉매는 공기 분위기 하에서 0.5∼5.0℃/min 의 승온속도로 400∼600℃까지 승온시킨 후 그 온도에서 1시간∼5시간 동안 소성하여 촉매의 불순물을 충분히 제거시켜 촉매 활성을 높힌 후에 사용한다.The above catalysts may be used in the form of other cations in addition to those in the form of hydrogen ions (H + ), but in the case of other cations, the catalysts are converted to the form of hydrogen ions (H + ). After raising the temperature to 400-600 ° C. at a temperature rising rate of 0.5-5.0 ° C./min under an atmosphere, the product is calcined at that temperature for 1 hour to 5 hours to sufficiently remove impurities from the catalyst, thereby increasing the catalytic activity.

시판되는 촉매로는 일본국 토소(Tosoh)사의 제품으로 제올라이트 베타는 HSZ-930NHA가, 제올라이트 Y는 HSZ-331HSA가, 모데나이트는 HSZ-620HOA가 적절하다.Commercially available catalysts are manufactured by Tosoh, Japan, zeolite beta is HSZ-930NHA, zeolite Y is HSZ-331HSA, mordenite is HSZ-620HOA.

액상으로 고리화-이성화 반응을 시키는 경우에 촉매의 사용량은 출발물질인 5-OTP-1, 5-OTP-2 또는 그 혼합물 기준으로 0.1∼10.0 중량%, 바람직하게는 2.0∼7.0 중량%이다.In the case of performing the ring-isomerization reaction in the liquid phase, the amount of the catalyst used is 0.1 to 10.0% by weight, preferably 2.0 to 7.0% by weight, based on the starting material 5-OTP-1, 5-OTP-2 or a mixture thereof.

기상으로 고리화-이성화 반응을 시키는 경우에 촉매의 사용량은 출발물질인 5-OTP-1, 5-OTP-2 또는 그 혼합물 기준으로 0.5∼5.0 WHSV(시간(hr)당 반응물의 중량(g) 속도/촉매 중량(g))이다.In the case of the cyclo-isomerization reaction in the gas phase, the amount of catalyst used is 0.5 to 5.0 WHSV (weight of the reactants per hour (hr)) based on the starting material 5-OTP-1, 5-OTP-2 or a mixture thereof. Rate / catalyst weight in grams).

본 발명의 두번째 공정인 탈수소반응을 설명한다.The dehydrogenation reaction of the second process of the present invention will be described.

탈수소반응은 0.1∼30 기압, 바람직하게는 상압에서 고리화-이성화 반응의 생성물을 반응원료로 사용하여, 액상반응 또는 기상반응으로 수행할 수 있다.The dehydrogenation reaction can be carried out in a liquid phase reaction or a gas phase reaction using the product of the cyclization-isomerization reaction as a reaction raw material at 0.1 to 30 atm, preferably at atmospheric pressure.

탈수소반응을 액상으로 수행하는 경우에는 반응전 비활성 기체인 헬륨이나 질소주입을 통하여 액상회분식 탈수소반응기에 남아 있는 공기를 충분히 제거한 후 첫번째 공정인 고리화-이성화반응 생성물인 2,6-DMT를 비롯한 1,5-DMT, 1,6-DMT 및 1,7-DMT 등을 그대로 반응기에 도입한 후 탈수소반응 촉매의 존재 하에서 교반하여 2∼20시간, 바람직하게는 10∼14 시간 반응을 시킨다.When the dehydrogenation reaction is carried out in the liquid phase, 1, including 2,6-DMT, which is the first step of the cyclocyclization-isomerization product, is sufficiently removed after the air remaining in the liquid batch dehydrogenation reactor is sufficiently removed by injecting inert gas, helium or nitrogen, before the reaction. , 5-DMT, 1,6-DMT, 1,7-DMT and the like are introduced into the reactor as it is, followed by stirring in the presence of a dehydrogenation catalyst for 2 to 20 hours, preferably 10 to 14 hours.

이 때 반응온도는 180∼350℃, 바람직하게는 220∼270℃의 온도를 유지한다. 반응압력은 반응온도에서 반응물이 액상을 유지할 수 있는 압력을 선택한다.At this time, the reaction temperature is maintained at 180 to 350 ° C, preferably 220 to 270 ° C. The reaction pressure selects the pressure at which the reactants can maintain a liquid phase at the reaction temperature.

반응도중 발생하는 수소는 반응기 밖으로 제거시키며 반응을 시킨다.Hydrogen generated during the reaction is removed from the reactor and allowed to react.

탈수소반응을 기상으로 수행하는 경우에는 반응 전에 비활성 기체인 헬륨이나 질소 주입을 통하여 기상고정층 탈수소 반응기에 남아 있는 공기를 충분히 제거한 후 탈수소반응 촉매를 넣고 첫번째 공정인 고리화-이성화반응 생성물인 2,6-DMT를 비롯한 1,5-DMT, 1,6-DMT 및 1,7-DMT 등을 반응물로 하여 미리 기화시킨 후 반응기에 도입한 다음, 반응온도 250∼550℃, 바람직하게는 260∼500℃에서 반응시킨다. 반응압력은 반응온도에서 반응물이 기상을 유지할 수 있는 압력을 선택한다.When the dehydrogenation reaction is carried out in the gas phase, the air remaining in the gas-fixed bed dehydrogenation reactor is sufficiently removed by injecting helium or nitrogen, which is an inert gas, before the reaction, and then a dehydrogenation catalyst is added. 1,5-DMT, 1,6-DMT, 1,7-DMT, etc., including -DMT, were vaporized in advance and introduced into the reactor, and then the reaction temperature was 250-550 ° C, preferably 260-500 ° C. React in The reaction pressure selects the pressure at which the reactants can maintain the gas phase at the reaction temperature.

탈수소반응 촉매로는 Ⅷ족 금속을 담지한 제올라이트 베타, 제올라이트 Y 또는 모데나이트를 사용한다.As the dehydrogenation catalyst, zeolite beta, zeolite Y or mordenite carrying a Group VIII metal is used.

제올라이트 베타는 SiO2/Al2O3의 몰 비가 23.0∼28.0, 바람직하게는 25.0∼ 25.7, 비표면적이 600∼900㎡/g, 바람직하게는 680∼780㎡/g이다.Zeolite beta has a molar ratio of SiO 2 / Al 2 O 3 of 23.0 to 28.0, preferably 25.0 to 25.7, specific surface area of 600 to 900 m 2 / g, and preferably 680 to 780 m 2 / g.

제올라이트 Y는 SiO2/Al2O3의 몰 비가 4.0∼10.0, 바람직하게는 4.5∼6.0, 비표면적이 500∼900㎡/g, 바람직하게는 550∼900㎡/g이다.Zeolite Y has a molar ratio of SiO 2 / Al 2 O 3 of 4.0 to 10.0, preferably 4.5 to 6.0, specific surface area of 500 to 900 m 2 / g, preferably 550 to 900 m 2 / g.

모데나이트는 SiO2/Al2O3의 몰 비가 10.0∼20.0, 바람직하게는 13.0∼19.0, 비표면적이 300∼500㎡/g, 바람직하게는 380∼450㎡/g이다.Mordenite has a molar ratio of SiO 2 / Al 2 O 3 of 10.0 to 20.0, preferably 13.0 to 19.0, specific surface area of 300 to 500 m 2 / g, preferably 380 to 450 m 2 / g.

Ⅷ족 금속을 담지할 제올라이트로는 수소이온(H+) 형태의 것뿐만 아니라 나트륨이온(Na+) 또는 암모늄이온(NH4 +) 형태의 것도 사용가능하며, 바람직하게는 수소이온(H+) 형태를 사용한다.As the zeolite to support the Group VIII metal, not only a hydrogen ion (H + ) type but also a sodium ion (Na + ) or ammonium ion (NH 4 + ) type may be used, and preferably a hydrogen ion (H + ) Use the form.

시판되는 제올라이트로는 제올라이트 베타는 미합중국 피큐(PQ)사의 CP814B-25가, 제올라이트 Y는 역시 미합중국 피큐사의 CBV100이, 모데나이트는 일본국 토소사의 HSZ-641 NAA가 적절하다.Commercially available zeolites include zeolite beta CP814B-25 from PQ Co., Ltd., zeolite Y CBV100 from PicQ Co., Ltd., and mordenite HSZ-641 NAA from Japan Tosoh.

탈수소반응을 액상으로 수행하는 경우에 촉매의 사용량은 2,6-DMT를 포함한 고리화-이성화 반응 생성물 기준으로 0.1∼20.0 중량%이다.When the dehydrogenation is carried out in the liquid phase, the amount of catalyst used is 0.1 to 20.0 wt% based on the cycloisomerization reaction product including 2,6-DMT.

탈수소반응을 기상으로 수행하는 경우에 촉매의 사용량은 2,6-DMT를 포함한 고리화-이성화 반응 생성물 기준으로 0.5∼20.0 WHSV(시간(hr)당 반응물 중량(g) 속도 / 촉매 중량(g))이다.When dehydrogenation is carried out in the gas phase, the amount of catalyst used is 0.5 to 20.0 WHSV (reactant weight per hour (hr) rate / catalyst weight (g) based on cyclization-isomerization reaction products including 2,6-DMT). )to be.

제올라이트에 담지되는 Ⅷ족 금속으로는 니켈(Ni), 백금(Pt), 팔라듐(Pd), 루테늄 (Ru) 또는 레늄(Re)을 사용하며 특히 팔라듐이 바람직하다.As the Group VIII metal supported on the zeolite, nickel (Ni), platinum (Pt), palladium (Pd), ruthenium (Ru) or rhenium (Re) is used, and palladium is particularly preferable.

Ⅷ족 금속의 제올라이트에의 담지는 금속의 테트라민질산염(Tetrammine Nitrate)이나 초산염(Acetate) 수용액에 촉매를 침지한 후 상온에서 12시간 동안 교반한 다음 110℃에서 12시간 건조시키고 50∼500㎖/min의 유량으로 공기를 흘리면서 0.5∼5.0℃/min의 승온속도로 250∼400℃까지 승온시킨 후 그 온도에서 5시간 동안 유지시켜 소성을 한 다음 20∼200㎖/min의 유량으로 수소를 흘리면서 0.5∼5℃/min의 승온속도로 450∼550℃까지 승온시킨 후 그 온도에서 2∼6시간 정도 유지시켜 금속을 환원시킨다.The zeolites of the Group VIII metals were immersed in an aqueous solution of Tetramine Nitrate or Acetate, and then stirred at room temperature for 12 hours, then dried at 110 ° C for 12 hours, and then 50 to 500 ml /. While flowing air at a flow rate of min, the temperature was raised to 250-400 ° C. at a heating rate of 0.5-5.0 ° C./min, maintained at that temperature for 5 hours, and calcined, followed by flowing hydrogen at a flow rate of 20-200 ml / min. After heating up to 450-550 degreeC by the temperature increase rate of -5 degreeC / min, it maintains at that temperature for about 2 to 6 hours, and reduces a metal.

금속의 제올라이트에의 담지량은 금속을 담지한 촉매 전체 중량의 0.1∼20.0 중량%이 되도록 한다.The amount of the metal supported on the zeolite is 0.1 to 20.0% by weight of the total weight of the catalyst on which the metal is supported.

위 3가지 촉매 중에서 Ⅷ족 금속을 담지한 제올라이트 베타가 가장 적절하다.Of the above three catalysts, zeolite beta carrying a Group VIII metal is most suitable.

본 발명에서의 고리화-이성화반응과 탈수소반응을 액상으로 수행하는 경우에는 용매를 사용하여 반응을 수행할 수도 있으며 이 경우 용매로는 DMT류나 DMN류보다 비등점이 높은 비등점 270℃ 이상의 테트라데칸과 같은 파라핀계 탄화수소나 안트라센과 같은 방향족 탄화수소 또는 그 혼합물을 사용할 수 있다.In the present invention, when the cyclization-isomerization reaction and the dehydrogenation reaction are carried out in a liquid phase, the reaction may be performed using a solvent, and in this case, as a solvent, such as tetradecane having a boiling point of 270 ° C. or higher higher than that of DMTs or DMNs. Paraffinic hydrocarbons, aromatic hydrocarbons such as anthracene, or mixtures thereof can be used.

본 발명에서의 고리화-이성화반응의 전환율은 다음식(1)로, 선택도는 다음식(2)로, 수율은 다음식(3)으로 표시되고 탈수소반응의 전환율은 다음식(1')로, 선택도는 다음식(2')로, 수율은 다음식(3')으로 표시된다.In the present invention, the conversion of the cycloisomerization reaction is represented by the following formula (1), the selectivity is represented by the following formula (2), the yield is represented by the following formula (3), and the conversion rate of the dehydrogenation reaction is represented by the following formula (1 '). The selectivity is represented by the following formula (2 '), and the yield is represented by the following formula (3').

고리화-이성화반응Cyclization-isomerization

탈수소반응Dehydrogenation

고리화-이성화반응을 통한 2,6-DMT의 제조Preparation of 2,6-DMT by Cyclization-isomerization

실시예 1Example 1

제올라이트 베타 촉매의 제조Preparation of Zeolite Beta Catalyst

암모늄이온(NH4 +) 형태인 제올라이트 베타 촉매(일본국 토소사의 HSZ-930 NHA)를 5℃/min의 승온속도로 500℃로 올린 후 이 온도에서 3시간 정도 공기분위기에서 소성하여 암모니아(NH3)를 제거하여 수소이온(H+) 형태의 제올라이트 베타를 제조하였다.The zeolite beta catalyst (HSZ-930 NHA, Tosoh, Japan) in the form of ammonium ion (NH 4 + ) was raised to 500 ° C. at a heating rate of 5 ° C./min, and calcined in an air atmosphere at this temperature for about 3 hours. NH 3 ) was removed to prepare zeolite beta in the form of hydrogen ions (H + ).

2,6-DMT의 제조Preparation of 2,6-DMT

순도 81.7%인 5-OTP(5-OTP-1과 5-OTP-2)(표 1 참조) 30g과 위에서 제조한 수소이온(H+) 형태의 제올라이트 베타 촉매 0.6g을 100㎖ 용량의 액상회분식 고리화-이성화 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 180℃로 올린 후 상압에서 교반하면서 30분간 반응을 시킨 다음, 다시 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 5.5시간 반응을 시켰다.30 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 81.7% (see Table 1) and 0.6 g of the zeolite beta catalyst in the form of hydrogen ions (H + ) prepared above were 100 ml in a liquid phase batch. Into the cyclization-isomerization reactor, nitrogen was sufficiently flowed at a flow rate of 100 cc / min for 5 minutes to remove the air in the reactor, and the reactor temperature was raised to 180 ° C., followed by 30 minutes of stirring at atmospheric pressure. After raising to ℃ ℃ the reaction was stirred for 5.5 hours at atmospheric pressure.

생성물을 가스크로마토그라피(Gas Chromatography)로 분석한 결과 표 1에서와 같이 전환율이 100.0%, 선택도가 44.3%, 수율이 44.3%이었다.As a result of analyzing the product by gas chromatography (Gas Chromatography), the conversion was 100.0%, selectivity 44.3%, yield 44.3% as shown in Table 1.

실시예 2Example 2

순도 81.7%인 5-OTP(5-OTP-1과 5-OTP-2)(표 1 참조) 30g과 실시예 1에서 제조한 수소이온(H+) 형태의 제올라이트 베타 촉매 1.5g을 100㎖ 용량의 액상회분식 고리화-이성화 반응기에 넣고 질소를 100cc/min의 속도로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 180℃로 올린 후 상압에서 교반하면서 1시간 반응을 시킨 다음, 다시 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 3시간 반응을 시켰다.100 ml of 30 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 81.7% (see Table 1) and 1.5 g of zeolite beta catalyst in the form of hydrogen ion (H + ) prepared in Example 1 Into the liquid-phase batch cycloisomerization reactor of to remove the air in the reactor by flowing enough nitrogen for 5 minutes at a rate of 100cc / min, raise the reactor temperature to 180 ℃, and reacted for 1 hour while stirring at atmospheric pressure, and then again the reactor The temperature was raised to 250 ° C. and the reaction was carried out for 3 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 1에서와 같이 전환율이 100.0%, 선택도가 46.0%, 수율이 46.0%이었다.As a result of analyzing the product by gas chromatography, the conversion was 100.0%, the selectivity was 46.0%, and the yield was 46.0% as shown in Table 1.

실시예 3Example 3

순도 81.7%인 5-OTP(5-OTP-1과 5-OTP-2)(표 1 참조) 30g과 실시예 1에서 제조한 수소이온(H+) 형태의 제올라이트 베타 촉매 2.4g을 100㎖ 용량의 액상회분식 고리화-이성화 반응기에 넣고 질소를 100cc/min의 속도로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 180℃로 올린 후 상압에서 교반하면서 3시간 반응을 시킨 다음, 다시 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 3시간 반응을 시켰다.100 ml of 30 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 81.7% (see Table 1) and 2.4 g of zeolite beta catalyst in the form of hydrogen ion (H + ) prepared in Example 1 Into the liquid-phase batch cyclization-isomerization reactor of to remove the air in the reactor by flowing enough nitrogen for 5 minutes at a rate of 100cc / min, raise the reactor temperature to 180 ℃ and then reacting for 3 hours while stirring at atmospheric pressure, and then again reactor The temperature was raised to 250 ° C. and the reaction was carried out for 3 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 1에서와 같이 전환율이 100.0%, 선택도가 43.3%, 수율이 43.3%이었다.As a result of analyzing the product by gas chromatography, the conversion was 100.0%, the selectivity was 43.3%, and the yield was 43.3% as shown in Table 1.

구 분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 반응물Reactant 생성물product 반응물Reactant 생성물product 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN경질성분중질성분5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN Hard Component Heavy Ingredient 81.70.00.06.80.00.00.00.00.08.23.381.70.00.06.80.00.00.00.00.08.23.3 0.036.216.710.69.42.92.00.40.719.12.00.036.216.710.69.42.92.00.40.719.12.0 81.70.00.06.80.00.00.00.00.08.23.381.70.00.06.80.00.00.00.00.08.23.3 0.037.612.86.811.93.42.20.00.922.22.20.037.612.86.811.93.42.20.00.922.22.2 81.70.00.06.80.00.00.00.00.08.23.381.70.00.06.80.00.00.00.00.08.23.3 0.035.412.96.96.73.82.50.50.927.82.60.035.412.96.96.73.82.50.50.927.82.6 촉 매 의 종 류반응물투입량(g)촉매 투입량(g)Type of catalyst Reactant input (g) Catalyst input (g) 제올라이트 베타30.00.6Zeolite Beta30.00.6 제올라이트 베타30.01.5Zeolite Beta30.01.5 제올라이트 베타30.02.4Zeolite Beta30.02.4 반 응 온 도(℃)Reaction temperature (℃) 180180 250250 180180 250250 180180 250250 반 응 시 간(hr)Response time (hr) 0.50.5 5.55.5 1One 33 33 33 전 환 율(%)선 택 도(%)수 율(%)Conversion Rate (%) Selectivity (%) Yield (%) 100.044.344.3100.044.344.3 100.046.046.0100.046.046.0 100.043.343.3100.043.343.3

실시예 4Example 4

순도 82.2%인 5-OTP(5-OTP-1과 5-OTP-2)(표 2 참조) 30g과 실시예 1에서 제조한 수소이온(H+) 형태의 제올라이트 베타 촉매 0.3g을 100㎖ 용량의 액상회분식 고리화-이성화 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 200℃로 올린 후 상압에서 교반하면서 8시간 반응을 시켰다.100 g of 30 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 82.2% (see Table 2) and 0.3 g of the zeolite beta catalyst in the form of hydrogen ion (H + ) prepared in Example 1 Into the liquid-phase batch-isomerization reactor of to remove the air in the reactor by flowing enough nitrogen for 5 minutes at a flow rate of 100cc / min, and then the reactor temperature was raised to 200 ℃ and allowed to react for 8 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 2에서와 같이 전환율이 98.8%, 선택도가 37.9%, 수율이 37.5% 이었다.As a result of analyzing the product by gas chromatography, the conversion was 98.8%, the selectivity was 37.9%, and the yield was 37.5% as shown in Table 2.

실시예 5Example 5

제올라이트 Y 촉매의 소성Firing of Zeolite Y Catalyst

수소이온(H+) 형태인 제올라이트 Y 촉매(일본국 토소사의 HSZ-331HSA)를 5℃/min의 승온속도로 500℃로 올린 후 그 온도에서 3시간 정도 공기분위기에서 소성시켜 활성화시켰다.The zeolite Y catalyst (HSZ-331HSA manufactured by Tosoh, Japan) in the form of hydrogen ions (H + ) was raised to 500 ° C. at a heating rate of 5 ° C./min, and then calcined in an air atmosphere at that temperature for about 3 hours to activate.

2,6-DMT의 제조Preparation of 2,6-DMT

순도 88.9%인 5-OTP(5-OTP-1과 5-OTP-2)(표 2 참조) 30g과 위에서 제조한 수소이온(H+) 형태의 제올라이트 Y 촉매 0.3g을 100㎖ 용량의 액상회분식 고리화-이성화 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 200℃로 올린 후 상압에서 교반하면서 8시간 반응을 시켰다.30 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 88.9% (see Table 2) and 0.3 g of the zeolite Y catalyst prepared in the form of hydrogen ions (H + ) prepared as described above were 100 ml in a liquid phase batch. Into the ring-isomerization reactor, nitrogen was sufficiently flowed at a flow rate of 100 cc / min for 5 minutes to remove the air in the reactor, and then the reactor temperature was raised to 200 ° C., followed by 8 hours of stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 2에서와 같이 전환율이 94.9%, 선택도가 20.3%, 수율이 19.2%이었다.As a result of analyzing the product by gas chromatography, the conversion was 94.9%, the selectivity was 20.3%, and the yield was 19.2% as shown in Table 2.

실시예 6Example 6

모데나이트 촉매의 소성Firing of Mordenite Catalyst

수소이온(H+) 형태의 모데나이트 촉매(일본국 토소사의 HSZ-620HOA)를 5℃/min의 승온속도로 500℃로 올린 후 그 온도에서 3시간 정도 공기분위기에서 소성시켜 활성화시켰다.The hydrogen ion (H + ) type mordenite catalyst (HSZ-620HOA, Tosoh, Japan) was raised to 500 ° C. at a temperature increase rate of 5 ° C./min, and then calcined in an air atmosphere at that temperature for about 3 hours to activate.

2,6-DMT의 제조Preparation of 2,6-DMT

순도 91.7%인 5-OTP(5-OTP-1과 5-OTP-2)(표 2 참조) 30g과 위에서 제조한 수소이온(H+) 형태의 모데나이트 촉매 0.3g을 100㎖ 용량의 액상회분식 고리화-이성화 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 200℃로 올린 후 상압에서 교반하면서 22시간 반응을 시켰다.30 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 91.7% (see Table 2) and 0.3 g of the mordenite catalyst in the form of hydrogen ions (H + ) prepared above were 100 ml liquid-liquid batch Into the ring-isomerization reactor, nitrogen was sufficiently flowed at a flow rate of 100 cc / min for 5 minutes to remove air from the reactor, and the reactor temperature was raised to 200 ° C., followed by 22 hours of stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 2에서와 같이 전환율이 100.0%, 선택도가 32.9%, 수율이 32.9%이었다.As a result of analyzing the product by gas chromatography, the conversion was 100.0%, the selectivity was 32.9%, and the yield was 32.9% as shown in Table 2.

구 분division 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 반응물Reactant 생성물product 반응물Reactant 생성물product 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT경질성분중질성분5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT Hard Component Heavy Ingredient 82.20.30.16.50.14.36.582.20.30.16.50.14.36.5 1.031.118.817.14.918.68.51.031.118.817.14.918.68.5 88.90.10.35.20.12.62.888.90.10.35.20.12.62.8 4.517.220.331.93.717.94.54.517.220.331.93.717.94.5 91.70.00.32.40.03.42.291.70.00.32.40.03.42.2 0.030.313.18.05.332.011.30.030.313.18.05.332.011.3 촉 매 의 종 류반응물투입량(g)촉매 투입량(g)반 응 온 도(℃)반 응 시 간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst Reactant input (g) Catalyst input (g) Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 제올라이트 베타30.00.3200898.837.937.5Zeolite Beta30.00.3200898.837.937.5 제올라이트 Y30.00.3200894.920.319.2Zeolite Y30.00.3200894.920.319.2 모데나이트30.00.320022100.032.932.9Mordenite30.00.320022100.032.932.9

실시예 7Example 7

실시예 1에서 제조한 수소이온(H+) 형태의 제올라이트 베타 촉매 0.2 g을 파이렉스 재질로 만든 내경 15mm, 길이 90mm인 U자형 기상고정층 고리화-이성화 반응기에 넣고, 헬륨을 100cc/min의 속도로 5분간 흘려서 반응기 내의 공기를 제거한 다음, 반응 도입부의 온도를 250℃로, 반응기의 온도를 300℃로 유지하면서 순도 92.2%인 5-OTP(5-OTP-1과 5-OTP-2)(표 3 참조)를 1 cc/hr(WHSV=4.3)의 속도로 100 cc/min의 헬륨과 함께 반응기에 넣어 상압에서 1.5시간 동안 반응시켰다.0.2 g of the hydrogen ion (H + ) -type zeolite beta catalyst prepared in Example 1 was placed in a U-shaped gas phase fixed bed cyclization-isomerization reactor having an inner diameter of 15 mm and a length of 90 mm made of Pyrex, and helium at a rate of 100 cc / min. After flowing for 5 minutes to remove the air in the reactor, the reaction inlet is maintained at 250 ° C. and the reactor temperature is maintained at 300 ° C., while 52.2 OTP (5-OTP-1 and 5-OTP-2) having a purity of 92.2% (Table 3) was added to the reactor with helium at 100 cc / min at a rate of 1 cc / hr (WHSV = 4.3) and reacted for 1.5 hours at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 3에서와 같이 전환율이 95.7%, 선택도가 30.2%, 수율이 28.9%이었다.As a result of analyzing the product by gas chromatography, the conversion was 95.7%, the selectivity was 30.2%, and the yield was 28.9%.

구 분division 실시예 7Example 7 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) o-Xylene5-OTP2,6-DMT1,5-DMT경질성분중질성분o-Xylene5-OTP2,6-DMT1,5-DMT Hard Ingredient Heavy Ingredient 5.792.20.00.00.02.15.792.20.00.00.02.1 5.14.026.611.338.614.45.14.026.611.338.614.4 촉매의 종류WHSV(hr-1)촉매투입량(g)반응온도(℃)반응시간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst WHSV (hr -1 ) Catalyst input (g) Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 제올라이트 베타4.30.23001.595.730.228.9Zeolite Beta4.30.23001.595.730.228.9

탈수소반응을 통한 2,6-DMN의 제조Preparation of 2,6-DMN through Dehydrogenation

실시예 8Example 8

팔라듐이 담지된 제올라이트 베타 촉매의 제조Preparation of Palladium-supported Zeolite Beta Catalyst

암모늄이온(NH4 +) 형태인 제올라이트 베타(미합중국 피큐사의 CP814B-25) 10g과 팔라듐 5중량%인 테트라민팔라듐(Ⅱ) 디니트레이트(Tetramminepalladium(Ⅱ) dinitrate ; Pd(NH3)4(NO3)2) 수용액 20g을 상온에서 12시간 교반시킨 후 110℃에서 12시간 건조시킨 다음 100cc/min의 유량으로 공기를 흘리면서, 1℃/min의 승온속도로 350℃까지 승온시켜 5시간 유지시키는 방법으로 소성(Calcination)시켜 팔라듐 금속이 담지된 제올라이트 베타를 얻었으며, 소성된 제올라이트 베타를 다시 100cc/min의 유량으로 수소를 흘리면서 5℃/min의 승온속도로 500℃까지 승온시켜 3시간 유지시키는 방법으로 환원된 팔라듐 금속이 담지된 제올라이트 베타 촉매를 제조하였다.10 g of zeolite beta (CP814B-25), in the form of ammonium ion (NH 4 + ) and tetraminpalladium (II) dinitrate (5 wt% of palladium); Pd (NH 3 ) 4 (NO 3 ) 2 ) After stirring 20 g of the aqueous solution at room temperature for 12 hours, drying at 110 ° C. for 12 hours, flowing air at a flow rate of 100 cc / min, and raising the temperature to 350 ° C. at a heating rate of 1 ° C./min for 5 hours. It was calcined (Calcination) to obtain a zeolite beta supported on the palladium metal, the calcined zeolite beta again by flowing the hydrogen at a flow rate of 100cc / min while heating up to 500 ℃ at a temperature increase rate of 5 ℃ / min to maintain for 3 hours To prepare a zeolite beta catalyst carrying a reduced palladium metal.

2,6-DMN의 제조Preparation of 2,6-DMN

순도 35.3%인 2.6-DMT(표 4 참조) 30g과 위에서 얻은 팔라듐이 담지된 제올라이트 베타 촉매 1.5g을 100㎖ 용량의 액상회분식 탈수소 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 12시간 반응을 시켰다.30 g of 2.6-DMT (see Table 4) with a purity of 35.3% and 1.5 g of the palladium loaded zeolite beta catalyst were added to a 100 ml liquid-phase batch dehydrogenation reactor, and nitrogen was sufficiently flowed for 5 minutes at a flow rate of 100 cc / min. After removing the air, the reactor temperature was raised to 250 ° C., and the reaction was carried out for 12 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 4에서와 같이 전환율이 76.8%, 선택도가 125.5%, 수율이 96.3%이었다.As a result of analyzing the product by gas chromatography, the conversion was 76.8%, the selectivity was 125.5%, and the yield was 96.3% as shown in Table 4.

실시예 9Example 9

순도 36.7%인 2.6-DMT(표 4 참조) 30g과 실시예 7에서 얻은 팔라듐이 담지된 제올라이트 베타 촉매 2.5g을 100㎖ 용량의 액상회분식 탈수소반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 14시간 반응을 시켰다.30 g of 2.6-DMT having a purity of 36.7% (see Table 4) and 2.5 g of the palladium loaded zeolite beta catalyst obtained in Example 7 were added to a 100 ml liquid-phase batch dehydrogenation reactor, and sufficient nitrogen was added at a flow rate of 100 cc / min for 5 minutes. After flowing out to remove the air in the reactor, the reactor temperature was raised to 250 ° C and reacted for 14 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 4에서와 같이 전환율이 74.4%, 선택도가 110.6%, 수율이 82.3%이었다.As a result of analyzing the product by gas chromatography, the conversion was 74.4%, the selectivity was 110.6%, and the yield was 82.3% as shown in Table 4.

구 분division 실시예 8Example 8 실시예 9Example 9 반응물Reactant 생성물product 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN경질성분중질성분5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN Hard Component Heavy Ingredient 0.035.316.610.09.42.82.00.40.720.52.30.035.316.610.09.42.82.00.40.720.52.3 0.08.21.31.01.936.818.13.713.710.64.70.08.21.31.01.936.818.13.713.710.64.7 7.436.79.04.27.03.82.20.51.126.02.17.436.79.04.27.03.82.20.51.126.02.1 2.89.41.50.92.034.015.12.712.711.27.72.89.41.50.92.034.015.12.712.711.27.7 촉 매 의 종 류반응물투입량(g)촉매 투입량(g)반 응 온 도(℃)반 응 시 간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst Reactant input (g) Catalyst input (g) Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 팔라듐이 담지된제올라이트 베타30.01.52501276.8125.596.3Zeolite Beta with Palladium 30.01.52501276.8125.596.3 팔라듐이 담지된제올라이트 베타30.02.52501474.4110.682.3Zeolite Beta with Palladium30.02.52501474.4110.682.3

실시예 10Example 10

팔라듐이 담지된 제올라이트 Y 촉매(I)의 제조Preparation of Palladium-supported Zeolite Y Catalyst (I)

나트륨이온(Na+) 형태인 제올라이트 Y(미합중국 피큐사의 CBV100) 10g과 팔라듐 5중량%인 테트라민팔라듐(Ⅱ) 디니트레이트 수용액 20g을 상온에서 12시간 교반시킨 후 110℃에서 12시간 수분을 건조시킨 다음 100cc/min의 유량으로 공기를 흘리면서 1℃/min의 승온속도로 350℃까지 승온시켜 5시간 유지시키는 방법으로 소성(Calcination)하여 팔라듐 금속이 담지된 제올라이트 Y를 얻었으며, 소성된 제올라이트 Y를 다시 100cc/min의 유량으로 수소를 흘리면서 5℃/min의 승온속도로 500℃까지 승온시켜 3시간 유지시키는 방법으로 환원된 팔라듐 금속이 담지된 제올라이트 Y 촉매(I)를 제조하였다.10 g of sodium ions (Na + ) zeolite Y (CBV100 of Picu, USA) and 20 g of tetraminpalladium (II) dinitrate aqueous solution of 5 wt% palladium were stirred at room temperature for 12 hours, and then dried at 110 ° C. for 12 hours. After heating the air at a flow rate of 100 cc / min, the temperature was raised to 350 ° C. at a heating rate of 1 ° C./min and maintained for 5 hours to obtain zeolite Y loaded with palladium metal. The zeolite Y catalyst (I) having the reduced palladium metal supported thereon was prepared by increasing the temperature to 500 ° C. at a temperature increase rate of 5 ° C./min while maintaining hydrogen at a flow rate of 100 cc / min.

2,6-DMN의 제조Preparation of 2,6-DMN

순도 36.7%인 2.6-DMT(표 5 참조) 30g과 위에서 제조한 팔라듐이 담지된 제올라이트 Y 촉매(I) 1.5g을 100㎖ 용량의 액상회분식 탈수소반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 12시간 반응을 시켰다.30 g of 2.6-DMT (see Table 5) with a purity of 36.7% and 1.5 g of the palladium-supported zeolite Y catalyst (I) were added to a 100 ml liquid-phase batch dehydrogenation reactor for 5 minutes at a flow rate of 100 cc / min. After flowing sufficiently, the air in the reactor was removed, and then the reactor temperature was raised to 250 ° C., followed by stirring for 12 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 5에서와 같이 전환율이 71.4%, 선택도가 90.5%, 수율이 64.6%이었다.As a result of analyzing the product by gas chromatography, the conversion was 71.4%, the selectivity was 90.5%, and the yield was 64.6% as shown in Table 5.

실시예 11Example 11

팔라듐이 담지된 제올라이트 Y 촉매(Ⅱ)의 제조Preparation of Palladium-supported Zeolite Y Catalyst (II)

실시예 9의 테트라민팔라듐(Ⅱ) 디니트레이트 용액 20g을 10g으로 바꾼 것을 제외하고는 실시예 9와 동일한 방법으로 환원된 팔라듐 금속이 담지된 제올라이트 Y 촉매(Ⅱ)를 제조하였다.A zeolite Y catalyst (II) carrying a reduced palladium metal was prepared in the same manner as in Example 9, except that 20 g of the tetraminpalladium (II) dinitrate solution of Example 9 was changed to 10 g.

2,6-DMN의 제조Preparation of 2,6-DMN

순도 33.4%인 2.6-DMT(표 5 참조) 30g과 위에서 얻은 팔라듐이 담지된 제올라이트 Y 촉매(Ⅱ) 2.6g을 100㎖ 용량의 액상회분식 탈수소 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 12시간 반응을 시켰다.30 g of 2.6-DMT (see Table 5) with a purity of 33.4% and 2.6 g of zeolite Y catalyst (II) loaded with palladium obtained above were added to a 100 ml liquid-phase batch dehydrogenation reactor, and nitrogen was sufficiently charged for 5 minutes at a flow rate of 100 cc / min. After flowing out to remove the air in the reactor, the reactor temperature was raised to 250 ℃ and the reaction was stirred for 12 hours at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 5에서와 같이 전환율이 40.1%, 선택도가 76.1%, 수율이 30.5%이었다.As a result of analyzing the product by gas chromatography, the conversion was 40.1%, the selectivity was 76.1%, and the yield was 30.5% as shown in Table 5.

실시예 12Example 12

팔라듐이 담지된 제올라이트 Y 촉매(Ⅲ)의 제조Preparation of Palladium-supported Zeolite Y Catalyst (III)

나트륨이온(Na+) 형태인 제올라이트 Y(미합중국 피큐사의 CBV100) 10g을, 팔라듐(Ⅱ) 아세테이트(Palladium acetate ; Pd(CH3COO)2) 2.1g을 증류수 18.8g에 넣어 만든 수용액에 넣고 상온에서 12시간 교반시킨 후 110℃에서 12시간 건조시킨 다음 100cc/min의 유량으로 공기를 흘리면서 1℃/min의 승온속도로 350℃까지 승온시킨 후 그 온도에서 5시간 유지시키는 방법으로 소성하여 팔라듐 금속이 담지된 제올라이트 Y를 얻었으며, 소성된 제올라이트 Y를 다시 100cc/min의 유량으로 수소를 흘리면서 5℃/min의 승온속도로 500℃까지 승온시켜 3시간 유지시키는 방법으로 환원된 팔라듐 금속이 담지된 제올라이트 Y 촉매(Ⅲ)를 제조하였다.10 g of zeolite Y (CBV100 of Pikusa, USA) in the form of sodium ions (Na + ), 2.1 g of palladium (II) acetate (Pd (CH 3 COO) 2 ) was added to 18.8 g of distilled water, and placed at room temperature. After stirring for 12 hours and drying for 12 hours at 110 ℃ and then flowing air at a flow rate of 100 cc / min and heated up to 350 ℃ at a temperature increase rate of 1 ℃ / min and calcined by holding at that temperature for 5 hours Supported zeolite Y was obtained, and the reduced palladium metal supported zeolite was heated and heated to 500 ° C. at a heating rate of 5 ° C./min for 3 hours while flowing hydrogen at a flow rate of 100 cc / min. Y catalyst (III) was prepared.

2,6-DMN의 제조Preparation of 2,6-DMN

순도 36.3%인 2.6-DMT(표 5 참조) 30g과 위에서 얻은 팔라듐이 담지된 제올라이트 Y 촉매(Ⅲ) 1.5g을 100㎖ 용량의 액상회분식 탈수소반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 10시간 반응을 시켰다.30 g of 2.6-DMT (see Table 5) with a purity of 36.3% and 1.5 g of the zeolite Y catalyst (III) loaded with palladium obtained above were put into a 100 ml liquid-phase batch dehydrogenation reactor, and nitrogen was sufficiently charged for 5 minutes at a flow rate of 100 cc / min. After removing the air in the reactor by flowing, the reactor temperature was raised to 250 ° C and the reaction was carried out for 10 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 5에서와 같이 전환율이 58.4%, 선택도가 95.3%, 수율이 55.6%이었다.As a result of analyzing the product by gas chromatography, the conversion was 58.4%, the selectivity was 95.3%, and the yield was 55.6% as shown in Table 5.

구 분division 실시예 10Example 10 실시예 11Example 11 실시예 12Example 12 반응물Reactant 생성물product 반응물Reactant 생성물product 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN경질성분중질성분5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN Hard Component Heavy Ingredient 7.436.79.04.27.03.82.20.51.126.02.17.436.79.04.27.03.82.20.51.126.02.1 5.410.51.60.93.627.516.64.314.214.11.35.410.51.60.93.627.516.64.314.214.11.3 7.233.412.16.16.15.03.00.61.624.30.67.233.412.16.16.15.03.00.61.624.30.6 6.620.05.43.27.115.212.24.29.014.72.46.620.05.43.27.115.212.24.29.014.72.4 0.036.38.14.07.14.22.50.41.232.83.40.036.38.14.07.14.22.50.41.232.83.4 0.015.12.71.86.524.413.13.110.918.93.50.015.12.71.86.524.413.13.110.918.93.5 촉 매 의 종 류사용 팔라듐용액반응물투입량(g)촉매 투입량(g)반 응 온 도(℃)반 응 시 간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst Palladium solution reactant input (g) Catalyst input (g) Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 팔라듐이 담지된제올라이트 Y(Ⅰ)Pd(NH3)4(NO3)220g30.01.52501271.490.564.6Palladium loaded zeolite Y (Ⅰ) Pd (NH 3 ) 4 (NO 3 ) 2 20g 30.01.52501271.490.564.6 팔라듐이 담지된제올라이트 Y(Ⅱ)Pd(NH3)4(NO3)210g30.02.62501240.176.130.5Palladium-supported zeolite Y (II) Pd (NH 3 ) 4 (NO 3 ) 2 10 g 30.02.62501 240.176.130.5 팔라듐이 담지된제올라이트 Y(Ⅲ)Pd(CH3COO)220.9g30.01.52501058.495.355.6Zeolite Y (III) Pd (CH 3 COO) 2 20.9g30.01.52501058.495.355.6

실시예 13Example 13

팔라듐이 담지된 모데나이트 촉매의 제조Preparation of palladium-supported mordenite catalyst

나트륨이온(Na+) 형태인 모데나이트(일본국 토소사의 HSZ-641NAA) 10g과 팔라듐 5중량%인 테트라민팔라듐(Ⅱ) 디니트레이트 용액 20g을 상온에서 12시간 교반시킨 후 110℃에서 12시간 건조시킨 다음 100cc/min의 유량으로 공기를 흘리면서 1℃/min의 승온속도로 350℃까지 승온시킨 후 그 온도에서 5시간 유지시키는 방법으로 소성하여 팔라듐 금속이 담지된 모데나이트를 얻었으며, 소성된 모데나이트를 다시 100cc/min의 유량으로 수소를 흘리면서 5℃/min의 승온속도로 500℃까지 승온시켜 3시간 유지시키는 방법으로 환원된 팔라듐 금속을 담지한 모데나이트 촉매를 제조하였다.Sodium ion (Na +) form of the mordenite (Japanese Toso of HSZ-641NAA) 10g and palladium of 5% by weight tetramine palladium (Ⅱ) di-nitrate solution in 110 ℃ after the 20g stirred at room temperature for 12 hours 12 After drying for a time, the air was flowed at a flow rate of 100 cc / min, and the temperature was raised to 350 ° C. at a heating rate of 1 ° C./min. The mordenite catalyst carrying the reduced palladium metal was prepared by heating the mordenite at a flow rate of 100 cc / min and raising the temperature to 500 ° C. at a heating rate of 5 ° C./min for 3 hours.

2,6-DMN의 제조Preparation of 2,6-DMN

순도 33.0%인 2.6-DMT(표 6 참조) 30g과 위에서 얻은 팔라듐이 담지된 모데나이트 촉매 1.5g을 100ml 용량의 액상회분식 탈수소 반응기에 넣고 질소를 100cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 교반하면서 12시간 반응을 시켰다.30 g of 2.6-DMT (see Table 6) with a purity of 33.0% and 1.5 g of the mordenite catalyst loaded with palladium obtained above were put into a 100 ml liquid-phase batch dehydrogenation reactor, and nitrogen was sufficiently flowed at a flow rate of 100 cc / min for 5 minutes. After the removal, the reactor temperature was raised to 250 ° C. and the reaction was carried out for 12 hours while stirring at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 6에서와 같이 전환율이 62.1%, 선택도가 96.1%, 수율이 59.7%이었다.As a result of analyzing the product by gas chromatography, the conversion was 62.1%, the selectivity was 96.1%, and the yield was 59.7% as shown in Table 6.

구 분division 실시예 13Example 13 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN경질성분중질성분5-OTP2,6-DMT1,6-DMT1,5-DMT1,7-DMT2,6-DMN1,6-DMN1,5-DMN1,7-DMN Hard Component Heavy Ingredient 0.033.07.04.07.15.63.30.61.730.86.90.033.07.04.07.15.63.30.61.730.86.9 0.012.51.91.56.425.313.93.610.416.18.40.012.51.91.56.425.313.93.610.416.18.4 촉 매 의 종 류반응물투입량(g)촉매 투입량(g)반 응 온 도(℃)반 응 시 간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst Reactant input (g) Catalyst input (g) Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 팔라듐이 담지된모데나이트30.01.52501262.196.159.7Mordenite with palladium 30.01.52501262.196.159.7

실시예 14Example 14

암모늄이온(NH4 +) 형태인 제올라이트 베타(미합중국 피큐사의 CP814B-25) 5g과 팔라듐 5중량%인 테트라민팔라듐(Ⅱ) 디니트레이트(Tetramminepalladium(Ⅱ) dinitrate ; Pd(NH3)4(NO3)2) 수용액 5g을 상온에서 12시간 교반시킨 후 110℃에서 12시간 건조시켜 팔라듐 금속이 담지된 제올라이트 베타를 얻었다.5 g of zeolite beta (CP814B-25), in the form of ammonium ion (NH 4 + ) and 5% by weight of palladium, tetrarampalladium (II) dinitrate; Pd (NH 3 ) 4 (NO 3 ) 2 ) 5 g of the aqueous solution was stirred at room temperature for 12 hours and then dried at 110 ° C. for 12 hours to obtain zeolite beta loaded with palladium metal.

위에서 얻은 제올라이트 베타 0.45g을 파이렉스 재질로 만든 내경 15mm, 길이 90mm인 U자형 기상고정층 탈수소 반응기에 넣고, 100cc/min의 유량으로 공기를 흘리면서, 1℃/min의 승온속도로 350℃까지 승온시켜 5시간 유지시키는 방법으로 소성시킨 후, 공기 대신 수소를 100cc/min의 유량으로 흘리면서 5℃/min의 승온속도로 500℃까지 승온시켜 3시간 유지시키는 방법으로 팔라듐 금속이 담지된 제올라이트 베타를 환원시켰다.0.45 g of the zeolite beta obtained above was placed in a U-shaped gas-phase fixed bed dehydrogenation reactor having an inner diameter of 15 mm and a length of 90 mm made of Pyrex, and heated to 350 ° C. at a temperature increase rate of 1 ° C./min while flowing air at a flow rate of 100 cc / min. After firing by the method of maintaining time, zeolite beta on which palladium metal was supported was reduced by heating to hydrogen at a flow rate of 100 cc / min instead of air and raising the temperature to 500 ° C. for 3 hours.

촉매의 처리가 끝난 후, 반응기에 헬륨을 100cc/min의 속도로 5분간 흘려서 반응기내의 공기를 제거한 다음, 반응 도입부와 반응기의 온도를 270℃로 유지한 상태에서 헬륨을 50cc/min으로 흘리면서 순도 53.2%의 2,6-DMT를 1 cc/hr (WHSV=2.2)의 속도로 반응기에 넣고 상압에서 0.5시간 동안 반응시켰다.After the treatment of the catalyst, helium was flowed into the reactor at 100cc / min for 5 minutes to remove the air in the reactor, and then helium was flowed at 50cc / min while maintaining the temperature of the reaction inlet and the reactor at 270 ° C. % Of 2,6-DMT was added to the reactor at a rate of 1 cc / hr (WHSV = 2.2) and reacted at atmospheric pressure for 0.5 hours.

생성물을 가스크로마토그라피로 분석한 결과 표 7에서와 같이 전환율이 54.9%, 선택도가 23.3%, 수율이 12.8%이었다.As a result of analyzing the product by gas chromatography, the conversion was 54.9%, the selectivity was 23.3%, and the yield was 12.8% as shown in Table 7.

구 분division 실시예 14Example 14 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 2,6-DMT1,6-DMT1,5-DMT2,6-DMN1,6-DMN경질성분기타물질2,6-DMT1,6-DMT1,5-DMT2,6-DMN1,6-DMN Hard Ingredient Other 53.213.45.74.24.419.10.053.213.45.74.24.419.10.0 24.08.00.011.05.045.26.824.08.00.011.05.045.26.8 촉매의종류WHSV(hr-1)촉매투입량(g)반응온도(℃)반응시간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst WHSV (hr -1 ) Catalyst input (g) Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 팔라듐을 담지한제올라이트 베타2.20.452700.554.923.312.8Zeolite beta with palladium 2.20.452700.554.923.312.8

비교예 :Comparative example:

고리화반응(5-OTP로부터 1,5-DMT의 제조 : 미합중국특허 제 5,030,781호의 방법)Cyclization Reaction (Preparation of 1,5-DMT from 5-OTP: Method of US Pat. No. 5,030,781)

나트륨 이온(Na+) 형태인 울트라 스테이블 제올라이트 Y(Ultra Stable Zeolite Y)(미합중국 유시시(UCC)사의 LZY-74) 촉매 10g을 2.0N 염화암모늄 수용액 500㎖에 침지하여 상온에서 약 24시간 교반한 후 여과하여 암모늄기로 치환된 울트라 스테이블 제올라이트 Y를 분리하고 이를 3000㎖의 증류수로 세척한 다음 1℃/min의 승온속도로 하여 100℃에서 12시간 건조시킨 후 다시 1℃/min의 승온속도로 하여 500℃에서 4시간 공기분위기로 소성시켜 수소이온(H+)으로 치환된 울트라 스테이블 제올라이트 Y 촉매를 제조하였다.10 g of a catalyst of Ultra Stable Zeolite Y (LZY-74, UCC, USA) in a sodium ion (Na + ) form was immersed in 500 ml of 2.0N ammonium chloride solution and stirred at room temperature for about 24 hours. After filtration, the ultra-stable zeolite Y substituted with ammonium group was separated, washed with 3000 ml of distilled water, dried at 100 ° C. for 12 hours at a temperature increase rate of 1 ° C./min, and then again at a temperature increase rate of 1 ° C./min. It was calcined in an air atmosphere at 500 ℃ for 4 hours to prepare an ultra stable zeolite Y catalyst substituted with hydrogen ions (H + ).

다음, 순도 100.0%인 5-OTP(5-OTP-1과 5-OTP-2) 15g과 위에서 얻은 수소이온(H+)으로 치환된 울트라 스테이블 제올라이트 Y 촉매 0.3g을 100㎖ 용량의 액상회분식 고리화 반응기에 넣고 질소를 80cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 140℃로 올린 후 상압에서 4시간 교반하면서 고리화반응을 시켰다.Next, 15 g of 5-OTP (5-OTP-1 and 5-OTP-2) having a purity of 100.0% and 0.3 g of Ultra Stable Zeolite Y catalyst substituted with hydrogen ions (H + ) obtained above were subjected to 100 ml of liquid phase batch. The mixture was placed in a cyclization reactor to remove nitrogen in the reactor by flowing enough nitrogen at a flow rate of 80 cc / min for 5 minutes, and then the reactor temperature was raised to 140 ° C., followed by stirring for 4 hours at atmospheric pressure.

생성물을 가스크로마토그라피로 분석한 결과 표 8에서와 같이 전환율이 92.2%, 선택도가 92.1%, 수율이 84.9%이었다.As a result of analyzing the product by gas chromatography, the conversion was 92.2%, the selectivity was 92.1%, and the yield was 84.9% as shown in Table 8.

전환율, 선택도 및 수율은 다음과 같이 정의된다.Conversion rate, selectivity and yield are defined as follows.

탈수소반응(1,5-DMT로부터 1,5-DMN의 제조 : 미합중국특허 제 5,118,892호의 방법Dehydrogenation (Preparation of 1,5-DMN from 1,5-DMT: Method of US Pat. No. 5,118,892

순도 89.8%인 1,5-DMT 30g과 팔라듐 5중량%를 담지한 활성탄 촉매(미합중국 존슨 앤드 매티(Johnson & Mattey)사의 Item No.113013) 0.6g을 100㎖ 용량의 액상회분식 탈수소반응기에 넣고 질소를 80cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 245℃로 올린 후 상압에서 5시간 교반하면서 탈수소반응을 시켰다.0.6 g of activated carbon catalyst (Item No. 113013, Johnson & Mattey, USA) carrying 30 g of 1,5-DMT with 89.8% purity and 5% by weight of palladium was placed in a 100 ml liquid batch dehydrogenation reactor. After removing the air in the reactor by flowing enough for 5 minutes at a flow rate of 80cc / min, the reactor temperature was raised to 245 ℃ and then dehydrogenated while stirring at atmospheric pressure for 5 hours.

반응중 발생한 수소는 반응기 밖으로 제거시켰다.Hydrogen generated during the reaction was removed from the reactor.

생성물을 가스크로마토그라피로 분석한 결과 표 8에서와 같이 전환율이 99.3%, 선택도가 93.6%, 수율이 93.0%이었다.As a result of analyzing the product by gas chromatography, the conversion was 99.3%, the selectivity was 93.6%, and the yield was 93.0% as shown in Table 8.

전환율, 선택도 및 수율은 다음과 같이 정의된다.Conversion rate, selectivity and yield are defined as follows.

이성화반응(1,5-DMN으로부터 2,6-DMN의 제조 : 미합중국특허 제 5,118,892호의 방법)Isomerization (Production of 2,6-DMN from 1,5-DMN: Method of US Pat. No. 5,118,892)

순도 84.4%인 1,5-DMN 10g과 제올라이트 베타 촉매(일본국 토소사의 HSZ-930NHA) 0.2g을 100㎖ 용량의 액상회분식 이성화 반응기에 넣고 질소를 80cc/min의 유량으로 5분간 충분히 흘려서 반응기 내의 공기를 제거한 다음, 반응기 온도를 250℃로 올린 후 상압에서 5시간 교반하면서 이성화반응을 시켰다.10 g of 1,5-DMN with a purity of 84.4% and 0.2 g of zeolite beta catalyst (HSZ-930NHA from Tosoh, Japan) were placed in a 100 ml liquid-phase batch isomerization reactor and sufficiently flowed with nitrogen at a flow rate of 80 cc / min for 5 minutes. After removing the air in the reactor, the reactor temperature was raised to 250 ° C., and an isomerization reaction was performed at atmospheric pressure for 5 hours with stirring.

생성물을 가스크로마토그라피로 분석한 결과 표 8에서와 같이 전환율이 82.6%, 선택도가 45.1%, 수율이 37.2%이었다.As a result of analyzing the product by gas chromatography, the conversion was 82.6%, the selectivity was 45.1%, and the yield was 37.2% as shown in Table 8.

전환율, 선택도 및 수율은 다음과 같이 정의된다.Conversion rate, selectivity and yield are defined as follows.

구 분division 고리화반응Cyclization 탈수소반응Dehydrogenation 이성화반응Isomerization reaction 반응물Reactant 생성물product 반응물Reactant 생성물product 반응물Reactant 생성물product 성 분조 성(중량%)Sex division (wt%) 5-OTP1,5-DMT2,6-DMN1,6-DMN1,5-DMN기 타5-OTP1,5-DMT2,6-DMN1,6-DMN1,5-DMN Others 100.00.00.00.00.00.0100.00.00.00.00.00.0 7.884.92.14.00.01.27.884.92.14.00.01.2 0.089.80.20.00.99.10.089.80.20.00.99.1 0.00.61.14.184.49.80.00.61.14.184.49.8 0.00.61.14.184.49.80.00.61.14.184.49.8 0.00.032.539.614.713.20.00.032.539.614.713.2 촉 매 의 종 류반 응 온 도(℃)반 응 시 간(hr)전 환 율(%)선 택 도(%)수 율(%)Type of catalyst Reaction temperature (℃) Reaction time (hr) Conversion rate (%) Selectivity (%) Yield (%) 울트라스테이블제올라이트 Y140492.292.184.9Ultrastable Zeolite Y140492.292.184.9 팔라듐이담지된활성탄245599.393.693.0Activated Carbon Supported with Palladium245599.393.693.0 제올라이트 베타250582.645.137.2Zeolite Beta250582.645.137.2

본 발명의 결과 분석Analyzing the results of the present invention

동일 촉매량에서 고리화-이성화반응 촉매를 달리하여 고리화-이성화반응을 수행한 결과 촉매가 제올라이트 베타인 경우(실시예 4)가 제올라이트 Y인 경우(실시예 5)나 모데나이트인 경우(실시예 6)에 비하여 수율이 44.3%로 가장 높았다.(표 2 참조)If the catalyst is zeolite beta (Example 4) is zeolite Y (Example 5) or mordenite (Example 5) as a result of carrying out the ring-isomerization reaction with different cyclization-isomerization catalysts at the same catalyst amount. Compared to 6), the yield was the highest with 44.3% (see Table 2).

제올라이트 베타를 고리화-이성화반응 촉매로 사용하고 촉매 투입량을 달리하여 고리화-이성화반응을 수행한 결과 촉매의 투입량이 반응물 투입량에 대하여 5중량%인 경우(실시예 2)가 2중량%인 경우(실시예 1)나 8중량%인 경우(실시예 3)에 비하여 수율이 46.0%로 가장 높았다.(표 1 참조)When zeolite beta was used as the cyclization-isomerization catalyst and the cyclization-isomerization reaction was performed at different catalyst loadings, the catalyst loading was 5% by weight relative to the loading of the reactant (Example 2). The yield was the highest at 46.0% compared to (Example 1) or 8% by weight (Example 3).

탈수소반응 촉매를 달리하여 탈수소반응을 수행한 결과 팔라듐이 담지된 제올라이트 베타인 경우(실시예 8)가 팔라듐이 담지된 제올라이트 Y인 경우(실시예 10)나 팔라듐이 담지된 모데나이트인 경우(실시예 13)에 비하여 수율이 96.3%로 가장 높았다.(표 4, 표 5 및 표 6 참조)When the dehydrogenation reaction was carried out using different dehydrogenation catalysts, palladium loaded zeolite beta (Example 8) was palladium loaded zeolite Y (Example 10) or palladium loaded mordenite (executed) Compared to Example 13, the yield was the highest with 96.3% (see Table 4, Table 5 and Table 6).

팔라듐이 담지된 제올라이트 베타를 탈수소반응 촉매로 사용하고 촉매 투입량을 달리하여 탈수소반응을 수행한 결과 촉매의 투입량이 반응물 투입량에 대하여 5중량%인 경우(실시예 8)가 8.3중량%인 경우(실시예 9)에 비하여 수율이 96.3%로 가장 높았다.(표 4 참조)When palladium-supported zeolite beta was used as a dehydrogenation catalyst and the dehydrogenation reaction was carried out with different catalyst loading, the catalyst loading was 8.3% by weight (Example 8) when the loading amount of the catalyst was 5% by weight relative to the reactant loading (Example 8). Compared to Example 9, the yield was the highest with 96.3% (see Table 4).

또 실시예 8 및 실시예 9에서는 선택도가 각각 125.5% 및 110.6%로 100%를 넘는 현상이 나타났는데 이는 탈수소반응 촉매의 구성물질인 팔라듐으로 인하여 2,6-DMT가 탈수소되어 2,6-DMN으로 전환됨과 동시에 탈수소반응 촉매의 구성물질인 제올라이트 베타로 인하여 반응물 중의 1,5-DMN, 1,6-DMN 및 1,7-DMN이나 생성물 중의 1,5-DMN, 1,6-DMN 및 1,7-DMN이 이성화되어 2,6-DMN으로 전환되었기 때문임을 알 수 있었다.In Example 8 and Example 9, selectivity of 125.5% and 110.6%, respectively, was found to be over 100%, which was caused by dehydrogenation of 2,6-DMT due to palladium, which is a component of the dehydrogenation catalyst. Zeolite beta, which is converted to DMN and at the same time, causes 1,5-DMN, 1,6-DMN and 1,7-DMN in the reactants or 1,5-DMN, 1,6-DMN and It was found that 1,7-DMN wasomerized and converted to 2,6-DMN.

본 발명의 고리화-이성화 반응과 탈수소반응이 기상에서도 반응성을 보임을 실시예 7과 실시예 14에서 알 수 있었다.It can be seen from Examples 7 and 14 that the cyclization-isomerization reaction and the dehydrogenation reaction of the present invention are also reactive in the gas phase.

본 발명의 결과와 종래 기술의 결과를 표 9로 정리하였다.Table 9 summarizes the results of the present invention and the results of the prior art.

본 발명은 종래 기술에 비하여 약 50%의 전체 공정수율 향상을 보였다.The present invention has shown an overall process yield improvement of about 50% over the prior art.

종래 기술 대비 본 발명의 향상도는 다음의 식으로 계산하였다.The degree of improvement of the present invention compared to the prior art was calculated by the following equation.

수율 비교표Yield comparison table 본 발명의 수율(%)Yield (%) of the present invention 종래 기술의 수율(%)% Of prior art 고리화-이성화반응 공정(실시예2)Cyclization-isomerization process (Example 2) 46.046.0 고리화반응공정Cyclization reaction process 84.984.9 탈수소반응공정(실시예8)Dehydrogenation Process (Example 8) 96.396.3 탈수소반응공정Dehydrogenation Process 93.093.0 이성화반응공정Isomerization Process 37.237.2 전체공정Overall process 44.344.3 전체공정Overall process 29.429.4

종래의 기술에서는 5-OTP를 고리화반응, 탈수소반응 및 이성화반응을 시켜 2,6-DMN을 제조하는 3단계 반응이었으나, 본 발명에서는 5-OTP를 고리화-이성화반응 촉매를 사용하여 고리화-이성화반응을 동시에 시킨 후 탈수소반응을 시켜 2,6-DMN을 제조하는 2단계 반응으로 종래기술에 비하여 반응단계를 한단계 줄였다.In the prior art, 5-OTP was cyclized, dehydrogenated and isomerized to produce 2,6-DMN. However, in the present invention, 5-OTP is cyclized using a cyclization-isomerization catalyst. -The reaction step was reduced by one step compared to the prior art as a two-step reaction to produce 2,6-DMN by dehydrogenation after simultaneous isomerization reaction.

또한 이성화반응성이 있는 제올라이트 베타 탈수소반응 촉매를 사용함으로써 불순물로 존재하는 1,5-DMN, 1,6-DMN 및 1,7-DMN을 이성화시켜 2,6-DMN으로 전환시킬 수 있어 2,6-DMN의 선택도를 향상시킬 수 있었다.In addition, by using isomerizable zeolite beta dehydrogenation catalyst, 1,5-DMN, 1,6-DMN and 1,7-DMN present as impurities can be converted to 2,6-DMN by isomerization. The selectivity of -DMN could be improved.

2단계인 본 발명의 전체 공정수율은 3단계인 종래 기술의 전체 공정수율에 비하여 약 50% 향상을 보였다.The overall process yield of the present invention, which is in two stages, is about 50% higher than the overall process yield of the prior art, which is three stages.

Claims (9)

5-오르토-톨릴펜텐을 고리화-이성화반응 촉매의 존재 하에서 고리화반응과 이성화반응을 동시에 시켜 2,6-디메틸테트랄린을 생성시키고, 이어서 생성된 2,6-디메틸테트랄린을 탈수소반응 촉매의 존재 하에서 탈수소반응을 시켜 2,6-디메틸나프탈렌을 제조하는 방법.5-ortho-tolylpentene is subjected to cyclization and isomerization at the same time in the presence of a cyclization-isomerization catalyst to produce 2,6-dimethyltetraline, followed by dehydrogenation of 2,6-dimethyltetraline. A method for producing 2,6-dimethylnaphthalene by dehydrogenation in the presence of a reaction catalyst. 제 1항에 있어서, 5-오르토-톨릴펜텐이 5-오르토-톨릴-1-펜텐, 5-오르토-톨릴-2-펜텐 또는 이들의 혼합물인 2,6-디메틸나프탈렌을 제조하는 방법.The process for producing 2,6-dimethylnaphthalene according to claim 1, wherein 5-ortho-tolylpentene is 5-ortho-tolyl-1-pentene, 5-ortho-tolyl-2-pentene or a mixture thereof. 제 2항에 있어서, 고리화-이성화반응 촉매가 수소이온(H+) 형태의, 제올라이트 베타, 제올라이트 Y 또는 모데나이트이고, 탈수소반응 촉매가 Ⅷ족 금속이 담지된, 제올라이트 베타, 제올라이트 Y 또는 모데나이트인 2,6-디메틸나프탈렌을 제조하는 방법.3. The zeolite beta, zeolite Y or morde of claim 2, wherein the cycloisomerization catalyst is zeolite beta, zeolite Y or mordenite, in the form of hydrogen ions (H + ), and the dehydrogenation catalyst is supported on a Group VIII metal. A process for preparing 2,6-dimethylnaphthalene which is nitrate. 제 3항에 있어서, Ⅷ족 금속이 팔라듐, 백금, 니켈인 2,6-디메틸나프탈렌을 제조하는 방법.The method for producing 2,6-dimethylnaphthalene according to claim 3, wherein the Group VIII metal is palladium, platinum, or nickel. 제 4항에 있어서, 고리화-이성화반응 촉매가 수소이온(H+) 형태의 제올라이트 베타이고 탈수소반응 촉매가 팔라듐이 담지된 제올라이트 베타인 2,6-디메틸나프탈렌을 제조하는 방법.5. The process according to claim 4, wherein the cycloisomerization catalyst is zeolite beta in the form of hydrogen ions (H + ) and the dehydrogenation catalyst is zeolite beta bearing palladium. 제 1항, 제 2항, 제 3항, 제 4항 또는 제 5항에 있어서, 고리화-이성화 반응을 액상으로 수행하고 탈수소 반응을 액상으로 수행하는 2,6-디메틸나프탈렌을 제조하는 방법.The process for producing 2,6-dimethylnaphthalene according to claim 1, 2, 3, 4 or 5, wherein the cycloisomerization reaction is carried out in the liquid phase and the dehydrogenation reaction is carried out in the liquid phase. 제 1항, 제 2항, 제 3항, 제 4항 또는 제 5항에 있어서, 고리화-이성화 반응을 액상으로 수행하고 탈수소반응을 기상으로 수행하는 2,6-디메틸나프탈렌을 제조하는 방법.The process for producing 2,6-dimethylnaphthalene according to claim 1, 2, 3, 4 or 5, wherein the cycloisomerization is carried out in the liquid phase and the dehydrogenation is carried out in the gas phase. 제 1항, 제 2항, 제 3항, 제 4항 또는 제 5항에 있어서, 고리화-이성화 반응을 기상으로 수행하고 탈수소반응을 액상으로 수행하는 2,6-디메틸나프탈렌을 제조하는 방법.The process for producing 2,6-dimethylnaphthalene according to claim 1, 2, 3, 4 or 5, wherein the cycloisomerization reaction is carried out in the gas phase and the dehydrogenation is carried out in the liquid phase. 제 1항, 제 2항, 제 3항, 제 4항 또는 제 5항에 있어서, 고리화-이성화 반응을 기상으로 수행하고 탈수소반응을 기상으로 수행하는 2,6-디메틸나프탈렌을 제조하는 방법.The process for producing 2,6-dimethylnaphthalene according to claim 1, 2, 3, 4 or 5, wherein the cycloisomerization reaction is carried out in the gas phase and the dehydrogenation is carried out in the gas phase.
KR1019990045424A 1999-10-19 1999-10-19 Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene KR100345344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990045424A KR100345344B1 (en) 1999-10-19 1999-10-19 Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990045424A KR100345344B1 (en) 1999-10-19 1999-10-19 Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene

Publications (2)

Publication Number Publication Date
KR20010037752A true KR20010037752A (en) 2001-05-15
KR100345344B1 KR100345344B1 (en) 2002-07-26

Family

ID=19616020

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990045424A KR100345344B1 (en) 1999-10-19 1999-10-19 Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene

Country Status (1)

Country Link
KR (1) KR100345344B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621823B1 (en) * 2004-07-21 2006-09-14 재단법인서울대학교산학협력재단 New method for preparation of 2,6-dialkyltetralin
KR100789143B1 (en) * 2006-12-01 2007-12-28 주식회사 효성 Method of producing 1,5-dimethylenaphtalene with recycle reaction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761512B1 (en) 2006-08-22 2007-10-04 주식회사 효성 Dehydrogenation process of dimethylnaphthalene by metal catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073670A (en) * 1988-06-24 1991-12-17 Amoco Corporation Preparation of a dimethyltetralin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621823B1 (en) * 2004-07-21 2006-09-14 재단법인서울대학교산학협력재단 New method for preparation of 2,6-dialkyltetralin
KR100789143B1 (en) * 2006-12-01 2007-12-28 주식회사 효성 Method of producing 1,5-dimethylenaphtalene with recycle reaction

Also Published As

Publication number Publication date
KR100345344B1 (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR0145694B1 (en) Preparation of a dimethyltetralin
US6518472B1 (en) Stabilized dual bed xylene isomerization catalyst system
US3836603A (en) Process for preparing para-xylene
EP0068542B1 (en) A process for alkylating benzene or c1 to c5-alkyl-substituted benzenes
US6147270A (en) Process for the preparation of 2,6-dimethylnaphthalene using a MTW zeolitic catalyst
KR100345344B1 (en) Process for the Preparation of 2,6-Dimethylnaphthalene from 5-ortho-Tolylpentene
US7935856B2 (en) Preparation method of 1,5-dimethyltetralin using dealuminated zeolite beta catalyst
KR20010021765A (en) Method of making 2,6-dimethylnaphthalene from other dimethylnaphthalene isomers and from dimethyltetralins/dimethyldecalins with a methyl group on each ring
JP2891272B2 (en) Method for producing dimethyltetralin
JP3175744B2 (en) Method for producing dimethylnaphthalene
US4783569A (en) Selective gas-phase isomerization of dimethylnaphthalene: 2,6-DMN triad
JPH10167997A (en) Production of 2-methylnaphthalene
EP0538229B1 (en) A start-up process for improved selectivity in toluene disproportionation
EP0594856B1 (en) Process for producing dialkylnaphthalene
JP2900970B2 (en) Method for dehydrogenation of dimethyltetralin
KR100789143B1 (en) Method of producing 1,5-dimethylenaphtalene with recycle reaction
JP2578540B2 (en) Method for producing 2-methylnaphthalene
KR101057636B1 (en) Isomerization catalyst of dimethylnaphthalene and using the same
KR20100077501A (en) Method for producing 1,5-dimethylnaphthalene of high yield
Adkins et al. Catalytic Dehydrogenation of Hydroaromatic Compounds in Benzene. IV. Aromatization of Compounds Containing an Angular Alkyl Group
KR20230017855A (en) Method for producing 1,4-dimethylnaphthalene
JPS63145241A (en) Isomerization and dehydrogenation catalyst for dimethyltetralin and use thereof
KR20080062295A (en) Method of producing 1,5-dimethyltetralin using dealuminated zeolite beta
NO173856B (en) PROCEDURE FOR THE PREPARATION OF A CATALYST CONTAINER CONTAINING A METAL FROM THE PT GROUP AND USE THEREOF
MXPA00000333A (en) Method of making 2,6-dimethylnaphthalene from other dimethylnaphthalene isomers and from dimethyltetralins/dimethyldecalins with a methyl group on each ring

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130709

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140708

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180703

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190704

Year of fee payment: 18