KR20010033904A - Surface-Coated Non-Oxidic Ceramics - Google Patents

Surface-Coated Non-Oxidic Ceramics Download PDF

Info

Publication number
KR20010033904A
KR20010033904A KR1020007007479A KR20007007479A KR20010033904A KR 20010033904 A KR20010033904 A KR 20010033904A KR 1020007007479 A KR1020007007479 A KR 1020007007479A KR 20007007479 A KR20007007479 A KR 20007007479A KR 20010033904 A KR20010033904 A KR 20010033904A
Authority
KR
South Korea
Prior art keywords
ceramic
oxide
ceramics
group
water
Prior art date
Application number
KR1020007007479A
Other languages
Korean (ko)
Inventor
얀 곤잘레쯔-블랑코
Original Assignee
칼 하인쯔 슐츠
하.체. 스타르크 게엠베하 운트 코. 카게
페터 캘레르트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 하인쯔 슐츠, 하.체. 스타르크 게엠베하 운트 코. 카게, 페터 캘레르트 filed Critical 칼 하인쯔 슐츠
Publication of KR20010033904A publication Critical patent/KR20010033904A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size

Abstract

1차 입자의 입도가 0.1 내지 50 nm이고 표면이 1 종 이상의 α-아미노산으로 코팅된, BN 또는, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹.BN or Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn elements with a particle size of 0.1 to 50 nm of primary particles and the surface coated with one or more α-amino acids Non-oxide ceramics composed of a group of carbides, nitrides, borides and silicides.

Description

표면-코팅된 비산화물계 세라믹{Surface-Coated Non-Oxidic Ceramics}Surface-Coated Non-Oxidic Ceramics

본 발명은 표면이 1 종 이상의 α-아미노산으로 코팅된 비산화물계 세라믹, 이의 제조방법 및 세라믹 소결재 및 소결층의 제조에서 이의 용도에 관한 것이다.The present invention relates to non-oxide based ceramics having a surface coated with at least one α-amino acid, a method for producing the same, and its use in the production of ceramic sintered materials and sintered layers.

세라믹 소결재 및 소결층 제조에 사용되는 세라믹 분말은 EP-A 650 954호에 이미 기재되어 있다. 그러나, 이들은 가공 특성(예, 재분산성) 및 이들로부터 제조된 생성물의 특성과 관련된 몇몇 불리한 점을 여전히 가지고 있다.Ceramic sinters and ceramic powders used for the production of sintered layers are already described in EP-A 650 954. However, they still have some disadvantages associated with processing properties (eg redispersibility) and the properties of the products made therefrom.

예를 들어 이들 세라믹 분말의 현탁액을 사용할 경우, 1차 입자가 고도로 응집되며, 이는 성형 제품을 충분히 압축시키는데 높은 소결 온도가 필요하다는 것을 의미한다.When using suspensions of these ceramic powders, for example, the primary particles are highly aggregated, which means that a high sintering temperature is required to sufficiently compact the molded article.

1차 입자의 평균 입도가 0.1 내지 50 nm이고 표면이 1 종 이상의 α-아미노산으로 코팅된, BN 및, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹이 본 발명에 이르러 발명되었다.BN and Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn, with an average particle size of primary particles of 0.1 to 50 nm and a surface coated with one or more α-amino acids Non-oxide-based ceramics composed of a group of carbides, nitrides, borides and silicides of elements have been invented in the present invention.

표면-코팅이란 α-아미노산을 세라믹 표면에 화학적으로 또는 물리적으로 결합시키는 것을 의미한다.Surface-coating means chemically or physically bonding the α-amino acid to the ceramic surface.

바람직한 비산화물계 세라믹은 TiN, ZrN, TiC 또는 SiC, 특히 TiN 또는 TiC이다.Preferred non-oxide based ceramics are TiN, ZrN, TiC or SiC, in particular TiN or TiC.

표면-코팅된 비산화물계 세라믹이 분말인 것이 바람직하다.It is preferred that the surface-coated non-oxide based ceramic is a powder.

본 출원의 명세서에서, α-아미노산은 동일한 탄소 원자에 결합된 아미노기 및 카르복실산기를 함유한 화합물, 즉 식의 구조 성분을 가진 화합물을 의미한다.In the context of the present application, α-amino acid is a compound containing an amino group and a carboxylic acid group bonded to the same carbon atom, that is, a formula It means a compound having a structural component of.

바람직한 실시태양에서는, 본 발명에 따른 세라믹을 지방족 α-아미노산으로 코팅한다. 아르기닌, 시스테인, 오르티닌, 시트룰린, 리신, 아스파라긴산 및 아스파라긴을 특히 바람직한 것으로 들 수 있다.In a preferred embodiment, the ceramic according to the invention is coated with aliphatic α-amino acids. Arginine, cysteine, ortinine, citrulline, lysine, aspartic acid and asparagine are particularly preferred.

그러나, 방향족 α-아미노산, 예컨대 티로신, 특히 L-티로신, 및 헤테로시클릭 α-아미노산도 유리하다.However, aromatic α-amino acids such as tyrosine, in particular L-tyrosine, and heterocyclic α-amino acids are also advantageous.

L 형태의 상기 아미노산이 일반적으로 사용된다.The amino acids of the L form are generally used.

바람직한 실시태양에서는, 본 발명에 따른 세라믹의 1차 입자의 입도가 0.5 내지 30 nm이다.In a preferred embodiment, the particle size of the primary particles of the ceramic according to the invention is from 0.5 to 30 nm.

또한, 본 발명은 1차 입자의 평균 입도가 0.1 내지 50 nm이고, BN 및, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹을 20 내지 150℃의 온도에서 물 및(또는) 유기용매 중에서 1 종 이상의 α-아미노산으로 처리한 다음, 임의로 여과시킨 후, 건조시키는 것을 특징으로 하는 본 발명에 따른 세라믹의 제조방법에 관한 것이다.In addition, the present invention has an average particle size of 0.1 to 50 nm of primary particles, carbides, nitrides of BN and Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn elements; A non-oxide ceramic composed of a group of borides and silicides is treated with at least one α-amino acid in water and / or an organic solvent at a temperature of 20 to 150 ° C., and then optionally filtered and then dried. It relates to a method for producing a ceramic according to the present invention.

<사용된 비산화물계 세라믹><Non-oxide ceramic used>

본 발명에 따른 방법에 사용된 비산화물계 세라믹 입자의 평균 입도를 전자 현미경 사진을 이용하여 측정할 수 있다. 입도는 바람직하게는 0.1 내지 50 nm, 특히 0.5 내지 30 nm이다. 비산화물계 세라믹의 1차 입자가 구형인 것이 바람직하다. 또한, 입자는 평균 입도가 500 nm 미만, 바람직하게는 150 nm 미만인 이들의 응집체 또는 집합체의 형태로 존재할 수도 있다.The average particle size of the non-oxide ceramic particles used in the method according to the invention can be measured using an electron micrograph. The particle size is preferably 0.1 to 50 nm, in particular 0.5 to 30 nm. It is preferable that the primary particle of a non-oxide type ceramic is spherical. The particles may also be present in the form of aggregates or aggregates thereof having an average particle size of less than 500 nm, preferably less than 150 nm.

사용될 비산화물계 세라믹은 결정질 또는 비정질일 수 있고, 바람직하게는 결정질이다. 예를 들어, US-A-5 472 477호(= DE-A 4 214 719호)에 기재된 방법을 통해 이들을 수득할 수 있다. 본 명세서에서는 CVR(화학 증기 반응) 방법이 바람직하게 이용되고, 이를 통해 과도한 입도의 입상체를 함유하지 않고 고도로 순수한, 매우 좁은 입도 분포를 가지는 입자가 제조될 수 있다.The non-oxide based ceramic to be used may be crystalline or amorphous, and is preferably crystalline. For example, they can be obtained via the method described in US-A-5 472 477 (= DE-A 4 214 719). The CVR (Chemical Vapor Reaction) method is preferably used here, through which particles containing highly pure, very narrow particle size distributions can be produced that do not contain excessively granular particles.

상기 방법을 통해 제조된, 바람직하게는 분말 형태인 비산화물계 세라믹의 특징은 개개 입자(1차 입자)의 입도가 평균 입도보다 실질적으로 큰 입자가 전혀 없다는 것이다. 따라서, 바람직하게는 분말이 평균 입도와 20% 이상 차이나는 개개의 입자를 1% 미만 함유하며, 50% 이상 차이나는 입자는 사실상 함유하지 않는다.A feature of the non-oxide based ceramics, preferably in powder form, produced through the method is that there are no particles whose particle size of the individual particles (primary particles) is substantially larger than the average particle size. Thus, preferably the powder contains less than 1% of individual particles that differ by at least 20% from the average particle size, and in fact contains no particles that differ by more than 50%.

본 발명에 따른 방법에 사용된 비산화물계 세라믹은 이들의 1차 입자, 1차 입자의 응집체 또는 집합체, 또는 이들 둘의 혼합물의 형태로 존재할 수 있다. 응집체 또는 집합체는 여러 1차 입자가 반 데르 발스력을 통해 서로 작용하거나 1차 입자가 제조 과정 동안 표면 반응 또는 "소결"로 인해 서로 결합된 것을 의미한다.The non-oxide based ceramics used in the process according to the invention may be present in the form of their primary particles, aggregates or aggregates of primary particles, or mixtures of both. Aggregates or aggregates mean that several primary particles interact with each other through van der Waals forces or the primary particles bind to each other due to surface reactions or “sintering” during the manufacturing process.

사용된 비산화물계 세라믹은 고형분에 대해 10% 미만, 바람직하게는 1% 미만, 특히 0.1% 미만인 극히 낮은 산소 함량을 가질 것이다.The non-oxide based ceramics used will have an extremely low oxygen content of less than 10%, preferably less than 1%, in particular less than 0.1%, based on solids.

또한, 이들은 고도의 순도 및 표면-순도를 가지는 것을 특징으로 한다. 제조방법에 따라, 사용된 비산화물계 세라믹이 공기에 매우 민감하거나, 심지어 자연 발화성일 수 있다. 이러한 성질을 없애기 위해, 본 발명에 따른 방법을 이용하기 전에 비산화물계 세라믹을 규정 방법으로 가스/증기 혼합물로 처리함으로써 표면-개질시키거나 산화 또는 부동태화시킬 수도 있다.In addition, they are characterized by having a high degree of purity and surface-purity. Depending on the method of preparation, the non-oxide based ceramics used may be very sensitive to air or even spontaneously flammable. To eliminate this property, the non-oxide based ceramics may be surface-modified, oxidized or passivated by treatment with a gas / vapor mixture in a prescribed manner before using the process according to the invention.

비산화물계 세라믹 1 g 당 50 내지 1000, 바람직하게는 50 내지 500, 특히 100 내지 500 μeq의 농도로 -O-NH4 +기를 가지는 비산화물계 세라믹이 본 발명에 따른 방법에 특히 바람직하게 사용된다.Non-oxide ceramics having -O - NH 4 + groups at a concentration of 50 to 1000, preferably 50 to 500, in particular 100 to 500 μeq, per g of non-oxide ceramic are particularly preferably used in the process according to the invention. .

따라서, 본 발명은 또한 1차 입자의 평균 입도가 0.1 내지 50 nm이고 비산화물계 세라믹 1 g 당 50 내지 1000 μeq의 농도로 -O-NH4 +기를 함유하며, BN 및, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹에 관한 것이다.Thus, the present invention also contains -O - NH 4 + groups at an average particle size of 0.1 to 50 nm of primary particles and at a concentration of 50 to 1000 μeq per gram of non-oxide-based ceramics, BN and Ti, Zr, Hf It relates to a non-oxide-based ceramic composed of a group of carbides, nitrides, borides and silicides of Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn elements.

NH4 +기가 세라믹의 표면 상에 위치하는 것이 바람직하다.It is preferred that the NH 4 + group is located on the surface of the ceramic.

또한, 본 발명에 따른 세라믹, 즉 -O-NH4 +기-함유 세라믹 및 α-아미노산-함유 세라믹 둘다 두께가 5 nm인 세라믹 입자 표면 층에 존재하는 모든 원자에 대해 1 원자% 미만의 Cl 함량을 가지는 것이 바람직하다.In addition, both the ceramics according to the invention, ie -O - NH 4 + group-containing ceramics and α-amino acid-containing ceramics, have a Cl content of less than 1 atomic% relative to all atoms present in the ceramic particle surface layer having a thickness of 5 nm. It is preferable to have.

예를 들어, ESCA(화학 분석용 전자 분광법), 특히 XPS 방법(X-선 광전자 분광법)을 이용하여 적절한 두께의 입자 외층을 검사할 수 있다.For example, ESCA (chemical analytical electron spectroscopy), in particular XPS method (X-ray photoelectron spectroscopy) can be used to examine the outer layer of particles of a suitable thickness.

-O-NH4 +기는 예를 들어, 세라믹 표면 상의 -OH 기와 수성 암모니아를 반응시켜 제조될 수 있다. 이 경우, -OH 기는 예를 들어, CVR 방법으로 제조된 세라믹 입자를 산소-함유 가스로 산화 또는 부동태화시킴으로써 수득될 수 있다. 이로써 세라믹 표면 상에 히드록실기 함유 단분자 산화층이 형성된다. -OH 기의 수는 예를 들어, 전도도 적정을 통해 측정될 수 있다. 예를 들어, CVR 방법을 통해 수득된 TiN 입자의 경우, OH 기의 수가 세라믹 1 g 당 약 300 μeq이면, 암모니아 처리 후 -O-NH4 +기의 양은 동일하다.—O NH 4 + groups can be prepared, for example, by reacting an aqueous ammonia with —OH groups on a ceramic surface. In this case, the -OH group can be obtained, for example, by oxidizing or passivating the ceramic particles produced by the CVR method with an oxygen-containing gas. As a result, a hydroxyl group-containing monomolecular oxide layer is formed on the ceramic surface. The number of —OH groups can be measured, for example, via conductivity titration. For example, for TiN particles obtained through the CVR method, if the number of OH groups is about 300 μeq per gram of ceramic, the amount of —O NH 4 + groups after ammonia treatment is the same.

따라서, 본 발명은 또한 1차 입자의 평균 입도가 0.1 내지 50 nm이고, BN 및, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 1 종 이상의 비산화물계 세라믹을 20 내지 150℃의 온도에서 임의로 압력하에 NH3수용액으로 처리하는 것을 특징으로 하는, -O-NH4 +기 함유 세라믹의 제조방법에 관한 것이다.Accordingly, the present invention also provides an average particle size of 0.1 to 50 nm of primary particles, carbides, nitrides of BN and Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn elements. ,, -O, comprising a step of processing the boride and optionally NH 3 aqueous solution in the pressure at the temperature of the first non-oxide-based ceramics or more species of the group consisting of silicide 20 to 150 ℃ - process for producing a ceramic-containing NH 4 + It is about.

상기 처리에 사용되는 세라믹은 CVR 방법, 예컨대 US-A 5 472 477호에 기재된 것과 동일한 방법을 통해 바람직하게 수득된다.The ceramic used for the treatment is preferably obtained through the CVR method, such as the same method as described in US Pat. No. 5,472,477.

CVR 방법에서, TiN 제조시 가스상 반응물, 예컨대 TiCl4및 NH3를 반응기 내에서 반응시킨다. 벽에서 이루어지는 것을 제외한 반응으로 제조된 생성물이 바람직하다. 반응물 및 생성물이 층류로 흐르는 관형 반응기에서 제조하는 것이 특히 바람직하다.In the CVR process, gaseous reactants such as TiCl 4 and NH 3 are reacted in the reactor during TiN preparation. Preference is given to products made by reactions except those which take place on the wall. Particular preference is given to producing in a tubular reactor in which the reactants and products flow in laminar flow.

일반적으로 반응물을 동축으로 배치하여 반응기 내로 도입한다. 이와 달리 정확한 층류의 경우에는 반응물을 골고루 혼합하기 위해 장애물을 도입하는 것이 바람직하다. 이로써 규정된 강도 및 분배능을 가진 카르만(Karman) 와류를 형성하여 완전한 혼합이 일어난다.Generally the reactants are coaxially introduced into the reactor. In contrast, in the case of accurate laminar flow, it is desirable to introduce obstacles to evenly mix the reactants. This results in the formation of a Karman vortex with the specified strength and distribution capacity, resulting in complete mixing.

아주 왕성하게 선호되는 반응 파트너의 반응기 벽 침착을 막기 위해 반응 매질을 비활성 가스 층으로 차폐시키는 것이 바람직하다.It is desirable to shield the reaction medium with an inert gas layer to prevent reactor wall deposition of the highly vigorously preferred reaction partner.

NH3처리는 5 내지 50 중량% 농도의 NH3수용액으로 수행하는 것이 바람직하다. 40 내지 120℃의 온도에서 수행하는 것이 특히 바람직하다.NH 3 treatment is preferably performed with an aqueous NH 3 solution at a concentration of 5 to 50% by weight. Particular preference is given to performing at a temperature of 40 to 120 ° C.

NH3처리에 관한 또다른 바람직한 실시태양에서는, 처리된 세라믹을 여과제거하고, 임의로 물로 세척한 다음, 건조시킨다.In another preferred embodiment of the NH 3 treatment, the treated ceramic is filtered off, optionally washed with water and then dried.

건조 방법으로는 기본적으로 수분을 제거할 수 있는 모든 방법이 적합하다. 유동층 건조기, 패들 건조기, 분무 건조기, 건조 캐비넷 및 감압 건조기와 같은 장치가 사용될 수 있다.As a drying method, basically any method capable of removing moisture is suitable. Devices such as fluid bed dryers, paddle dryers, spray dryers, drying cabinets and reduced pressure dryers can be used.

따라서, 본 발명은 또한 NH3처리방법을 통해 수득될 수 있는, 바람직하게는 분말 형태인 비산화물계 세라믹에 관한 것이다.The invention therefore also relates to non-oxide based ceramics, preferably in powder form, obtainable through NH 3 treatment.

α-아미노산-코팅된 세라믹 제조를 위한 본 발명에 따른 방법을 유기용매 또는 용매들의 혼합물 중에서 수행하는 경우에는, 메탄올, 에탄올, 이소프로판올, n-프로판올, n-부탄올, 이소부탄올 또는 tert-부탄올과 같은 지방족 C1-C4-알콜, 아세톤, 메틸 에틸 케톤, 메틸 이소부틸 케톤 또는 디아세톤 알콜과 같은 지방족 케톤, 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 트리메틸올프로판, 평균 분자량이 100 내지 4000, 바람직하게는 400 내지 1500 g/mol인 폴리에틸렌 글리콜, 또는 글리세롤과 같은 폴리올, 모노히드록시에테르, 바람직하게는 모노히드록시알킬 에테르, 특히 모노-C1-C4-알킬 글리콜 에테르, 예컨대 에틸렌 글리콜 모노알킬 에테르, 모노에틸 디에틸렌 글리콜 모노메틸 에테르 또는 디에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노부틸 에테르, 디프로필렌 글리콜 모노에틸 에테르, 티오디글리콜, 트리에틸렌 글리콜 모노메틸 에테르 또는 모노에틸 에테르 뿐만 아니라, 2-피롤리돈, N-메틸-2-피롤리돈, N-에틸-피롤리돈, N-비닐-피롤리돈, 1,3-디메틸-이미다졸리돈, 디메틸아세트아미드 및 디메틸포름아미드와 같은 유기용매가 적합하다. 언급한 용매들의 혼합물도 적합하다.When the process according to the invention for preparing α-amino acid-coated ceramics is carried out in an organic solvent or a mixture of solvents, such as methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol or tert-butanol Aliphatic ketones such as aliphatic C 1 -C 4 -alcohols, acetone, methyl ethyl ketone, methyl isobutyl ketone or diacetone alcohol, ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, Polyethylene glycols having an average molecular weight of 100 to 4000, preferably 400 to 1500 g / mol, or polyols such as glycerol, monohydroxyethers, preferably monohydroxyalkyl ethers, in particular mono-C 1 -C 4 -alkyl Glycol ethers such as ethylene glycol monoalkyl ether, monoethyl diethylene glycol monomethyl ether or diethylene glycol Noethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monoethyl ether, thiodiglycol, triethylene glycol monomethyl ether or monoethyl ether, as well as 2-pyrrolidone, N-methyl-2-pyrrolidone Organic solvents such as, N-ethyl-pyrrolidone, N-vinyl-pyrrolidone, 1,3-dimethyl-imidazolidone, dimethylacetamide and dimethylformamide are suitable. Mixtures of the solvents mentioned are also suitable.

본 발명에 따른 방법을 60℃ 내지 대기압하에 사용된 특정 용매계의 비점까지의 온도에서 수행하는 것이 바람직하다. 상기 방법을 환류하에 수행하는 것이 특히 바람직하다. 상승된 온도에서 외부 압력, 특히 2 내지 10 bar의 압력을 가하여 상기 반응을 수행할 수도 있다.It is preferable to carry out the process according to the invention at a temperature from 60 ° C. up to the boiling point of the particular solvent system used under atmospheric pressure. Particular preference is given to carrying out the process under reflux. The reaction may also be carried out at elevated temperatures by applying an external pressure, in particular 2-10 bar.

본 발명에 따른 방법을 물 중에서 또는 용매들과 물의 혼합물 중에서 수행하는 것이 특히 바람직하다.Particular preference is given to carrying out the process according to the invention in water or in a mixture of solvents and water.

본 발명에 따른 방법을 수행하기 전에 또는 수행하는 동안, 사용되는 세라믹을 적어도 약간의 α-아미노산과 함께 예를 들어, 2-롤러 분쇄 장치에서 습식 분쇄할 수도 있다. 일반적으로 분말 형태 또는 물에 젖은 압축 케이크 형태인 사용될 세라믹을 약간의 α-아미노산 및 물, 바람직하게는 탈이온수과 함께 휘저어서(즉, 도입하여 균질화함), 임의로 예비 조분쇄 과정 후에, 예를 들어 교반 탱크, 용해기 및 유사 장치를 이용하여 균질 분쇄된 현탁액을 수득한다.Before or during the process according to the invention, the ceramic used may be wet pulverized with at least some α-amino acid, for example in a two-roller grinding apparatus. The ceramic to be used, usually in powder form or in the form of a wet cake, is stirred (i.e., introduced and homogenized) with some α-amino acid and water, preferably deionized water, optionally after precoarse grinding, for example A stirred tank, dissolver and similar apparatus are used to obtain a homogeneously ground suspension.

분쇄된 현탁액에 저비점 용매(비점 <150℃)가 일부 함유될 수 있으며, 이는 임의적인 후속 미분쇄 과정 동안 증발을 통해 제거될 수 있다. 그러나, 상기 현탁액은 고비점 용매 또는 다른 첨가제, 예컨대 분쇄 보조제, 소포제 또는 습윤제도 일부 함유할 수 있다.The ground suspension may contain some low boiling solvent (boiling point <150 ° C.), which may be removed by evaporation during any subsequent milling process. However, the suspension may contain some high boiling solvents or other additives such as grinding aids, antifoams or wetting agents.

사용될 세라믹의 습식-조분쇄 과정은 예비 조분쇄 과정 및 미분쇄 과정을 모두 포함한다. 현탁액의 농도가 최종 제조 단계에서 필요로 되는 농도보다 높은 것이 바람직하다. 필요한 고형분의 최종 농도를 습식 조분쇄 과정 후에 조정하는 것이 바람직하다. 예비 조분쇄 과정 후에, 분쇄 과정을 수행하여 목적하는 미세 입자 분포를 수득한다. 배합기, 롤 분쇄기, 배합 스크루, 볼 분쇄기, 회전자-고정자 분쇄기, 용해기, 코런덤 원판 분쇄기, 진동 분쇄기, 특히 지름이 0.1 내지 2 mm인 분쇄 볼이 담긴 고속의, 연속 또는 배치 작동식 교반 볼 분쇄기와 같은 장치가 상기 분쇄 과정에 적합하다. 분쇄 볼은 유리, 세라믹 또는 금속(예, 스틸)으로 제조될 수 있다. 바람직한 분쇄 온도는 20 내지 150℃이지만, 일반적으로 실온에서 분쇄하고, 임의로 분산제(분쇄 보조제)로도 사용되는 임의적인 표면-활성 화합물의 혼탁 온도 이하에서 분쇄한다.The wet-crude process of the ceramic to be used includes both preliminary coarse and fine grinding processes. It is preferred that the concentration of the suspension is higher than the concentration required in the final preparation step. It is desirable to adjust the final concentration of the required solids after the wet coarse grinding process. After the preliminary coarse grinding process, the grinding process is carried out to obtain the desired fine particle distribution. High speed, continuous or batch operated stirring balls with compounding machines, roll mills, compounding screws, ball mills, rotor-stator mills, melters, corundum disc mills, vibratory mills, especially milling balls with a diameter of 0.1 to 2 mm Devices such as mills are suitable for the grinding process. Grinding balls may be made of glass, ceramic or metal (eg steel). Preferred grinding temperatures are from 20 to 150 ° C., but are generally ground at room temperature and optionally below the turbidity temperature of the optional surface-active compound which is also used as a dispersant (grinding aid).

사용된 세라믹의 양에 대해 0.1 내지 20 중량%의 α-아미노산을 사용하는 것이 바람직하다. 1 내지 10 중량%를 사용하는 것이 특히 바람직하다.Preference is given to using from 0.1 to 20% by weight of α-amino acids relative to the amount of ceramic used. Particular preference is given to using 1 to 10% by weight.

잉여 α-아미노산은, 임의로 예를 들어 표면-코팅된 세라믹을 여과시킴으로써 본 발명의 과정 이후에 제거될 수 있다.Excess α-amino acids can be removed after the process of the present invention, optionally by filtering, for example, surface-coated ceramics.

잉여 α-아미노산은, 예를 들어 현탁액을 원심분리한 다음 상등액을 경사 분리함으로써 제거될 수 있다. 막 여과법 또는 미소 여과법이 적합할 것이다.Excess α-amino acid can be removed, for example, by centrifuging the suspension and then decanting off the supernatant. Membrane filtration or microfiltration will be suitable.

다음, 본 발명에 따른 방법으로 수득된 여전히 젖어 있는, 즉 물에 젖은 또는 용매에 젖은 표면-코팅된 세라믹을 건조시킨다. 건조 온도로 20 내지 150℃, 특히 50 내지 120℃가 바람직하고, 감압시키는 것이 유리할 수 있다.The still wet, ie wet with water or solvent-coated ceramic obtained by the process according to the invention is then dried. The drying temperature is preferably 20 to 150 ° C, in particular 50 to 120 ° C, and it may be advantageous to reduce the pressure.

통상적인 건조 장치, 예컨대 패들 건조기, 건조 캐비넷, 분무 건조기, 유동층 건조기 등을 이용하여 건조시키는 것이 바람직하다. 건조 후 잔류수 함량이 세라믹에 대해 2 중량% 미만인 것이 바람직하다.It is preferable to dry using a conventional drying apparatus such as a paddle dryer, a drying cabinet, a spray dryer, a fluid bed dryer, or the like. It is preferred that the residual water content after drying is less than 2% by weight relative to the ceramic.

본 발명에 따라 수득된 표면-코팅된 세라믹을 분말 형태로 제조하는 것이 바람직하다.It is preferred to prepare the surface-coated ceramics obtained according to the invention in powder form.

본 발명에 따른 세라믹을, 예를 들어 비산화물 및(또는) 산화물 성분으로 구성된 세라믹 복합재로 제조하기 위해서는, 수현탁액 또는 용매-함유 현탁액의 형태로 사용하는 것이 바람직하다. 또한, 현탁액은 금속 복합재의 제조에 사용될 수도 있다.In order to produce the ceramics according to the invention, for example in ceramic composites consisting of non-oxide and / or oxide components, it is preferred to use them in the form of water suspensions or solvent-containing suspensions. Suspensions may also be used for the production of metal composites.

따라서, 본 발명은 또한 본 발명에 따른 표면-코팅된 세라믹 및 물 및(또는) 유기용매를 함유한 현탁액에 관한 것이다.The present invention therefore also relates to surface-coated ceramics and suspensions containing water and / or organic solvents according to the invention.

본 발명에 따른 현탁액은 현탁액에 대해 5 내지 50 중량%, 특히 10 내지 35 중량%의 본 발명에 따른 α-아미노산-코팅된 세라믹, 현탁액에 대해 50 내지 95 중량%, 특히 65 내지 90 중량%의 물 및(또는) 유기용매 및 임의로 다른 첨가제를 함유한다.The suspensions according to the invention comprise from 5 to 50% by weight, in particular from 10 to 35% by weight, of α-amino acid-coated ceramics according to the invention, from 50 to 95% by weight, especially from 65 to 90% by weight, based on the suspension. Water and / or organic solvents and optionally other additives.

적합한 다른 첨가제는 예를 들어, 양이온성, 음이온성, 양쪽성 및(또는) 비이온성 분산제, 공보["Surfactants Europa, A Directory of Surface Active Agents available in Europe"(고든 할리스(Gordon Hollis)에 의해 편집, Royal Society of Chemistry, Cambridge, 1995)]에 상술된 분산제 및 pH 조절제 예컨대, NaOH, 암모니아, 아미노메틸프로판올 및 N,N-디메틸아미노에탄올이다.Other suitable additives are, for example, cationic, anionic, amphoteric and / or nonionic dispersants, published by "Surfactants Europa, A Directory of Surface Active Agents available in Europe" (Gordon Hollis). , Royal Society of Chemistry, Cambridge, 1995), dispersants and pH regulators such as NaOH, ammonia, aminomethylpropanol and N, N-dimethylaminoethanol.

본 발명에 따른 세라믹의 특히 바람직한 수현탁액은 pH가 7 내지 10, 특히 8 내지 9인 것이다. 이들 수현탁액은 미소결재 및 미소결층을 바람직하게는 슬립 주조 방법을 통해 제조하는데 특히 적합하다. 다음, 이들 미소결재를 소결하여 개선된 기계적 특징을 가진 복합재를 수득할 수 있다.Particularly preferred water suspensions of the ceramics according to the invention are those having a pH of 7 to 10, in particular 8 to 9. These water suspensions are particularly suitable for producing the green binder and the green binder layer, preferably via a slip casting method. These green binders can then be sintered to yield composites with improved mechanical properties.

또한, 본 발명에 따른 수현탁액으로부터 액침 또는 스프레딩을 통해 층을 제조할 수 있다. 이러한 방법으로 제조된 층은, 예를 들어 금속 및 세라믹 또는 삭재, 드릴링재 및 분쇄재의 내마모성(anti-wear property)을 개선시킬 수 있다. 게다가, 이러한 방법을 통해 층의 내부식성을 개선시킬 수도 있다.It is also possible to prepare layers from immersion or spreading from the aqueous suspension according to the invention. Layers produced in this way can improve the anti-wear properties of metals and ceramics or abrasives, drilling and grinding materials, for example. In addition, this method can also improve the corrosion resistance of the layer.

바람직하게는 용매-함유 현탁액을 사용하여 플라스틱 재료를 착색한다.Preferably the solvent-containing suspension is used to color the plastic material.

따라서, 본 발명은 또한 본 발명에 따른 α-아미노산 표면-코팅된 세라믹을 바람직하게는 분말 형태로 물 및(또는) 1 종 이상의 유기용매 중에서 현탁시키는 것을 특징으로 하는, 본 발명에 따른 현탁액의 제조방법에 관한 것이다.The invention therefore also provides for the preparation of suspensions according to the invention, characterized in that the α-amino acid surface-coated ceramics according to the invention are suspended in water and / or at least one organic solvent, preferably in powder form. It is about a method.

상기 방법의 바람직한 실시태양에서는, 물 중에서, 바람직하게는 pH 7 내지 10에서, 특히 NH3의 존재하에 분산시킨다. 통상적인 장치, 예컨대 회전자-고정자 혼합기, 초음파 장치, 제트 분산기 또는 고압 균질기를 이용하여 분산시키는 것이 바람직하다.In a preferred embodiment of the process, it is dispersed in water, preferably at pH 7 to 10, in particular in the presence of NH 3 . Preference is given to dispersion using conventional devices such as rotor-stator mixers, ultrasonic devices, jet dispersers or high pressure homogenizers.

유기용매 함유 현탁액은 유기용매를 수현탁액에 첨가하고 적합한 방법, 예컨대 증류를 통해 물을 제거하는 방식으로 바람직하게 제조된다.The organic solvent containing suspension is preferably prepared by adding the organic solvent to the water suspension and removing the water by a suitable method such as distillation.

또한, 본 발명은 분산매, 즉 물 및(또는) 용매를 제거하기 전 또는 제거한 후에 본 발명에 따른 현탁액을 임의로 다른 세라믹 분말 또는 세라믹 현탁액과 함께 가공하여 미소결재 또는 미소결층을 제조한 다음, 소결하는 것을 특징으로 하는, 세라믹 소결재의 제조방법에 관한 것이다.In addition, the present invention also processes the suspension according to the present invention, optionally with other ceramic powders or ceramic suspensions, before or after the removal of the dispersion medium, i. It is related with the manufacturing method of the ceramic sintered material characterized by the above-mentioned.

이 경우, 적합한 추가의 세라믹은 예를 들어, 입도가 수 ㎛까지인 세라믹이다. Al2O3, TiC, SiC 및 Si3N4가 세라믹으로 특히 바람직하다. 이들 세라믹 블렌드는 세라믹 소결재 또는 소결층의 제조에 매우 적합하다.In this case, suitable further ceramics are, for example, ceramics having a particle size up to several μm. Al 2 O 3 , TiC, SiC and Si 3 N 4 are particularly preferred as ceramics. These ceramic blends are well suited for the manufacture of ceramic sinters or sintered layers.

본 발명에 따른 방법으로 수득된 세라믹 현탁액 및 표면-코팅된 건조 세라믹 분말은 미소결재 또는 소결재 또는 소결층 제조를 위한 다양한 방법을 통해 더 가공될 수 있다. 예를 들어, 최종 물질을 수득하기 위해 압출시킨 후 소결하여 압출 물질을 제조할 수 있다. 이 경우, 압출 물질 100 중량부 당 보통 20 내지 80, 바람직하게는 30 내지 70, 특히 40 내지 60 중량부의 본 발명에 따른 세라믹 분말(분말 형태 또는 상기 기재된 현탁액의 형태), 10 내지 70, 바람직하게는 20 내지 60, 특히 30 내지 50 중량부의 분산 매질 및 0.5 내지 20, 바람직하게는 2 내지 15, 특히 5 내지 10 중량부의 첨가제(결합제, 가소제 및 이들의 혼합물로부터 선택됨)가 사용된다.The ceramic suspensions and surface-coated dry ceramic powders obtained by the process according to the invention can be further processed via various methods for the production of fine or sintered or sintered layers. For example, the extruded material can be prepared by extrusion and then sintering to obtain the final material. In this case, usually 20 to 80, preferably 30 to 70, in particular 40 to 60 parts by weight of the ceramic powder according to the invention in powder form or in the form of the suspension described above, 10 to 70, preferably per 100 parts by weight of the extruded material. 20 to 60, in particular 30 to 50 parts by weight of dispersion medium and 0.5 to 20, preferably 2 to 15, in particular 5 to 10 parts by weight of additives (selected from binders, plasticizers and mixtures thereof) are used.

언급된 결합제 및 가소제는 개질된 셀룰로오즈(예, 메틸 셀룰로오즈, 에틸 셀룰로오즈, 프로필 셀룰로오즈 및 카르복시-개질된 셀룰로오즈), 폴리알킬렌 글리콜(바람직하게는 평균 분자량이 400 내지 50,000인 특히 폴리에틸렌 글리콜 및 폴리프로필렌 글리콜), 디알킬 프탈레이트(예, 디메틸 프탈레이트, 디에틸 프탈레이트, 디프로필 프탈레이트 및 디부틸 프탈레이트) 및 상기 물질들의 혼합물로부터 바람직하게 선택된다. 물론, 다른 결합제 및 가소제, 예컨대 폴리비닐 알콜 등도 사용될 수 있다.The binders and plasticizers mentioned are modified celluloses (e.g. methyl cellulose, ethyl cellulose, propyl cellulose and carboxy-modified celluloses), polyalkylene glycols (preferably polyethylene glycols and polypropylene glycols having an average molecular weight of 400 to 50,000) ), Dialkyl phthalates (eg dimethyl phthalate, diethyl phthalate, dipropyl phthalate and dibutyl phthalate) and mixtures of the above materials. Of course, other binders and plasticizers such as polyvinyl alcohol and the like can also be used.

상기 언급된 결합제 및 가소제는 압출가능한 물질의 제조와 조형 과정 후의 적절한 치수안정의 보장을 위해 필요하다.The binders and plasticizers mentioned above are necessary for the production of extrudable materials and for ensuring proper dimensional stability after the molding process.

상기 언급한 성분들을 매우 골고루 혼합한 후(예, 통상적인 혼합 장치 내에서), 압출 물질이 목적하는 고형분 함량을 가질 때까지 분산매의 일부를 더 제거할 수 있다(바람직하게는 감압하에). 압출 물질 중 바람직한 고형분 함량은 30 부피% 이상, 특히 40 부피% 이상이다.After mixing the components mentioned above very evenly (eg in a conventional mixing apparatus), some of the dispersion medium can be further removed (preferably under reduced pressure) until the extruding material has the desired solids content. The preferred solids content in the extruded material is at least 30% by volume, in particular at least 40% by volume.

다른 바람직한 조형 방법은 전기영동, 슬립 주조, 슬립 압축 주조 및 필터 프레싱뿐 아니라, 전기영동과 슬립 주조의 병행, 슬립 압축 주조와 필터 프레싱의 병행, 사출 성형, 섬유 방사(spinning), 겔 주조 및 원심분리이다. 고도의 기본 밀도를 가진 압축 성형 제품이 상기 조형 방법을 통해 수득된다. 마찬가지로, 코팅을 위해 현탁액을 사용하는 것도 가능하다. 적합한 코팅 방법으로는 예를 들어, 액침, 스핀 코팅, 닥터링(doctoring), 페인팅 및 전기영동이 있다. 적합한 재료로는 예를 들어, 금속, 세라믹, 경질 금속, 유리 및 서멧이 있다.Other preferred molding methods include electrophoresis, slip casting, slip compression casting and filter pressing, as well as electrophoresis and slip casting, parallel compression compression and filter pressing, injection molding, fiber spinning, gel casting and centrifugal. Separation. Compression molded articles having a high basis density are obtained through the molding process. It is likewise possible to use suspensions for coating. Suitable coating methods are, for example, immersion, spin coating, doctoring, painting and electrophoresis. Suitable materials are, for example, metals, ceramics, hard metals, glass and cermets.

다음, 제조된 미소결 재료 또는 층은 건조되고 소결 처리될 수 있다. 놀랍게도 필요한 압축 과정이 비교적 낮은 온도에서 수행된다는 것이 밝혀졌다. 또한, 놀랍게도 소결 첨가제가 필요하지 않다. 소결 온도는 일반적으로 융점 또는 분해 온도의 0.4 내지 0.6 범위이다. 이는 일반적인 온도가 융점 또는 분해 온도와 가깝고 소결 첨가제와 경우에 따라 압력도 필요한 선행기술에 개시된 것보다 훨씬 낮은 온도이다.The resulting green material or layer can then be dried and sintered. It has surprisingly been found that the required compression process is carried out at relatively low temperatures. In addition, surprisingly no sintering additive is required. Sintering temperatures generally range from 0.4 to 0.6 of the melting point or decomposition temperature. This is a temperature much lower than that disclosed in the prior art where the general temperature is close to the melting point or decomposition temperature and also requires sintering additives and in some cases pressure.

수득된 세라믹 소결재 또는 소결층은 입도가 100 nm 미만인 나노 규모이고 밀도가 이론치의 95%보다 크고 고도의 경도를 가지는 것을 특징으로 한다.The obtained ceramic sintered material or sintered layer is characterized by having a nanoscale having a particle size of less than 100 nm and a density of greater than 95% of theory and a high hardness.

본 발명에 따른 세라믹 소결된 성형 제품은 예를 들어,Ceramic sintered shaped articles according to the invention are for example

- 연마 분말과 같은 벌크 세라믹,-Bulk ceramics, such as abrasive powder,

- 장식용, 마모 방지용, 마찰용, 부식 방지용, 특히 절삭 공구 및 분쇄 보조제 또는 연마 분말용으로서 금속, 세라믹 및 유리 코팅 재료,-Metal, ceramic and glass coating materials for decoration, wear protection, friction, corrosion protection, in particular for cutting tools and grinding aids or abrasive powders,

- 세라믹/세라믹 복합재의 구성물(특히 Al2O3, TiC, SiC 및 Si3N4가 매트릭스 재료로 적합함),-Components of ceramic / ceramic composites (particularly Al 2 O 3 , TiC, SiC and Si 3 N 4 are suitable as matrix materials),

- 나노 복합재의 구성물,Composition of nanocomposites,

- 조대 세라믹용의 소결 보조제,-Sintering aids for coarse ceramics,

- 경질재 유형의 금속/세라믹 복합재,-Hard type metal / ceramic composites,

- 서멧,-Cermet,

- 마이크로/울트라/나노-여과 및 가역 삼투와 같은 여과용의 미공질 층Microporous layers for filtration, such as micro / ultra / nano-filtration and reversible osmosis

으로 사용된다.Used as

하기 실시예는 어떠한 방식으로든 본 발명을 제한하지 않으면서 본 발명을 추가로 설명하기 위한 것이다.The following examples are intended to further illustrate the invention without limiting it in any way.

<실시예><Example>

<실시예 1><Example 1>

L-아르기닌 2 g을 에탄올/물(1:1)로 구성된 용매 혼합물 250 ml에 용해시켰다. 고상 TiN(1차 입자 분포가 0.5 내지 30 nm이고 US-A-5 472 477호의 방법에 따라 CVR 방법으로 제조) 10 g을 강력하게 균질 혼합(자석 교반기)하면서 상기 용액에 일부씩 나누어서 첨가하였다. 현탁액을 약 90 내지 100℃에서 환류(가열 블록)하에 5시간 동안 가열하였다. 다음, 현탁액을 공극 크기가 0.45 ㎛이고 유리 프릿을 가진, 셀룰로오즈 아세테이트/셀룰로오즈 니트레이트로 구성된 원형 여과기를 통해 흡인-여과하고, 탈이온수로 세척하였다. 다음, 여과 케이크를 건조 캐비넷에서 70℃에서 10시간 동안 건조시켰다.2 g of L-arginine was dissolved in 250 ml of a solvent mixture consisting of ethanol / water (1: 1). Ten grams of solid TiN (primary particle distribution between 0.5 and 30 nm and prepared by the CVR method according to the method of US-A-5 472 477) were added in portions to the solution with vigorous homogeneous mixing (magnetic stirrer). The suspension was heated at reflux (heating block) at about 90-100 ° C. for 5 hours. The suspension was then suction-filtered through a circular filter consisting of cellulose acetate / cellulose nitrate, with pore size 0.45 μm and with glass frit, and washed with deionized water. The filter cake was then dried in a drying cabinet at 70 ° C. for 10 hours.

상기 방법으로 개질된 TiN 분말 5 g을 물 50 ml에 녹이고, 묽은 암모니아 용액을 이용하여 pH를 9로 조정하였다. 다음, 현탁액을 초음파 핑거(finger)로 5분간 처리하였다(전력: 200 와트).5 g of the TiN powder modified by the above method was dissolved in 50 ml of water, and the pH was adjusted to 9 using dilute ammonia solution. The suspension was then treated with ultrasonic finger for 5 minutes (power: 200 watts).

현탁액 중의 입자를 분석하기 위해, 일부를 상기 언급된 용액으로 희석시키고, 동적 광산란법(산란된 빛의 분산)을 이용하여 TiN의 평균 입자 지름을 측정하였다. 145 nm로 측정되었다. 초원심분리법을 이용하여 측정된 물질 분포가 하기와 같다(물질의 분포).In order to analyze the particles in the suspension, some were diluted with the above-mentioned solution and the average particle diameter of TiN was measured using dynamic light scattering (dispersion of scattered light). Measured at 145 nm. The distribution of substances measured using ultracentrifugation is as follows (distribution of substances).

d10 d 10 d50 d 50 d90 d 90 52 nm52 nm 86 nm86 nm 145 nm145 nm

(주의: 본 명세서에서 입자는 1차 입자 및 응집체(또는 집합체)를 의미함).(Note: particles herein refer to primary particles and aggregates (or aggregates)).

<실시예 2><Example 2>

고상 TiN(1차 입자 분포가 0.5 내지 30 nm임, CVR 방법으로 제조, 실시예 1 참조) 15 g을 강력하게 균질 혼합(자석 교반기)하면서 10% 암모니아 용액 150 ml에 일부씩 나누어서 첨가하고, 80℃에서 2시간 동안 가열하였다. 다음, 현탁액을 공극 크기가 1.2 ㎛이고 유리 프릿을 가진, 셀룰로오즈 아세테이트/셀룰로오즈 니트레이트로 구성된 원형 여과기를 통해 흡인-여과하였다. 다음, 여과 케이크를 건조 캐비넷에서 70℃에서 10시간 동안 건조시켰다.15 g of solid TiN (primary particle distribution of 0.5 to 30 nm, prepared by CVR method, see Example 1) were added in portions to 150 ml of a 10% ammonia solution with vigorous homogeneous mixing (magnetic stirrer), 80 Heat at C for 2 h. The suspension was then suction-filtered through a circular filter consisting of cellulose acetate / cellulose nitrate, with a pore size of 1.2 μm and a glass frit. The filter cake was then dried in a drying cabinet at 70 ° C. for 10 hours.

미리 처리된 TiN 입자 표면에서의 Cl 함량은 2.9 내지 0.8 원자%로 낮아질 수 있었다. ESCA(화학 분석용 전자 분광법), XPS 방법(X-선 광전자 분광법)을 이용하여 분석하였다.The Cl content at the surface of the pretreated TiN particles could be lowered from 2.9 to 0.8 atomic percent. It was analyzed using ESCA (chemical analytical electron spectroscopy) and XPS method (X-ray photoelectron spectroscopy).

L-아르기닌 2 g을 에탄올/물(1:1)로 구성된 용매 혼합물 250 ml에 용해시켰다. 상기 언급된 방법으로 미리 NH3처리된 고상 TiN 10 g을 강력하게 균질 혼합(자석 교반기)하면서 상기 용액에 일부씩 나누어서 첨가하였다. 현탁액을 약 90 내지 100℃에서 환류(가열 블록)하에 5시간 동안 가열하였다. 다음, 현탁액을 공극 크기가 0.45 ㎛이고 유리 프릿을 가진, 셀룰로오즈 아세테이트/셀룰로오즈 니트레이트로 구성된 원형 여과기를 통해 흡인-여과하고, 탈이온수로 세척하였다. 다음, 여과 케이크를 건조 캐비넷에서 70℃에서 10시간 동안 건조시켰다.2 g of L-arginine was dissolved in 250 ml of a solvent mixture consisting of ethanol / water (1: 1). 10 g of solid TiN previously treated with NH 3 by the above-mentioned method was added in portions to the solution with vigorous homogeneous mixing (magnetic stirrer). The suspension was heated at reflux (heating block) at about 90-100 ° C. for 5 hours. The suspension was then suction-filtered through a circular filter consisting of cellulose acetate / cellulose nitrate, with pore size 0.45 μm and with glass frit, and washed with deionized water. The filter cake was then dried in a drying cabinet at 70 ° C. for 10 hours.

상기 방법으로 개질된 TiN 분말 5 g을 물 50 ml에 녹이고, 묽은 암모니아 용액을 이용하여 pH를 9로 조정하였다. 다음, 현탁액을 초음파 핑거로 5분간 처리하였다(전력: 200 와트).5 g of the TiN powder modified by the above method was dissolved in 50 ml of water, and the pH was adjusted to 9 using dilute ammonia solution. The suspension was then treated with ultrasonic fingers for 5 minutes (power: 200 watts).

현탁액 중의 입자를 분석하기 위해, 일부를 상기 언급된 용액으로 희석시키고, 동적 광산란법(산란된 빛의 분산)을 이용하여 TiN의 평균 입자 지름을 측정하였다. 138 nm로 측정되었다. 초원심분리법을 이용하여 측정된 물질 분포가 하기와 같다(물질의 분포).In order to analyze the particles in the suspension, some were diluted with the above-mentioned solution and the average particle diameter of TiN was measured using dynamic light scattering (dispersion of scattered light). It was measured at 138 nm. The distribution of substances measured using ultracentrifugation is as follows (distribution of substances).

d10 d 10 d50 d 50 d90 d 90 41 nm41 nm 70 nm70 nm 111 nm111 nm

(주의: 본 명세서에서 입자는 1차 입자 및 응집체(또는 집합체)를 의미함).(Note: particles herein refer to primary particles and aggregates (or aggregates)).

Claims (11)

1차 입자의 평균 입도가 0.1 내지 50 nm이고 표면이 1 종 이상의 α-아미노산으로 코팅된, BN 또는, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹.BN or Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn, with an average particle size of the primary particles of 0.1 to 50 nm and the surface coated with one or more α-amino acids Non-oxide ceramics composed of a group of carbides, nitrides, borides and silicides of the element. 제1항에 있어서, TiN, ZrN, TiC 및 SiC 군으로부터 선택된 비산화물계 세라믹.The non-oxide based ceramic of claim 1, selected from the group of TiN, ZrN, TiC and SiC. 제1항에 있어서, TiN 및 TiC 군으로부터 선택된 비산화물계 세라믹.The non-oxide based ceramic of claim 1, selected from the group TiN and TiC. 제1항에 있어서, 표면이 아르기닌으로 코팅된 것을 특징으로 하는 비산화물계 세라믹.The non-oxide based ceramic according to claim 1, wherein the surface is coated with arginine. 1차 입자의 평균 입도가 0.1 내지 50 nm이고, BN 또는, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹을 20 내지 150℃의 온도에서 물 및(또는) 유기용매 중에서 1 종 이상의 α-아미노산으로 처리한 다음, 임의로 여과시킨 후, 건조시키는 것을 특징으로 하는, 제1항의 비산화물계 세라믹의 제조방법.The average particle size of the primary particles is 0.1 to 50 nm, of BN or carbides, nitrides, borides and silicides of Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn elements The non-acid ceramic according to claim 1, characterized in that the non-oxide ceramics composed of the group are treated with at least one α-amino acid in water and / or an organic solvent at a temperature of 20 to 150 ° C., and then optionally filtered and dried. Method for producing cargo type ceramics. 비산화물계 세라믹 1 g 당 50 내지 1000 μeq의 농도로 -O-NH4 +기를 가지고 1차 입자의 평균 입도가 0.1 내지 50 nm이고, BN 또는, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 비산화물계 세라믹.The average particle size of the primary particles is 0.1 to 50 nm with -O - NH 4 + groups at a concentration of 50 to 1000 μeq per gram of the non-oxide ceramic, BN or, Ti, Zr, Hf, Cr, Mo, W, Non-oxide based ceramics consisting of a group of carbides, nitrides, borides and silicides of the elements V, Nb, Ta, Si, Ge and Sn. 1차 입자의 평균 입도가 0.1 내지 50 nm이고, BN 또는, Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge 및 Sn 원소의 탄화물, 질화물, 붕화물 및 규화물의 군으로 구성된 1 종 이상의 비산화물계 세라믹을 20 내지 150℃의 온도에서 NH3수용액으로 처리하는 것을 특징으로 하는, 제6항의 비산화물계 세라믹의 제조방법.The average particle size of the primary particles is 0.1 to 50 nm, of BN or carbides, nitrides, borides and silicides of Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn elements The method for producing a non-oxide ceramic according to claim 6, wherein the at least one non-oxide ceramic composed of a group is treated with an aqueous NH 3 solution at a temperature of 20 to 150 캜. 제1항의 비산화물계 세라믹 1종 이상과 물 및(또는) 유기용매를 함유하는 현탁액.A suspension containing at least one non-oxide ceramic of claim 1 and water and / or an organic solvent. 제1항의 비산화물계 세라믹을 물 및(또는) 유기용매에 현탁시키는 것을 특징으로 하는, 제8항의 현탁액의 제조방법.A method for producing the suspension of claim 8, wherein the non-oxide ceramic of claim 1 is suspended in water and / or an organic solvent. 분산매(물 및(또는) 용매)를 제거하기 전 또는 제거한 후에 제8항의 현탁액을 임의로 다른 세라믹 분말 또는 현탁액과 함께 가공하여 미소결재 또는 미소결층을 수득한 다음 소결시키는 것을 특징으로 하는, 세라믹 소결재 및 소결층의 제조방법.Ceramic sintering material, characterized in that before or after the removal of the dispersion medium (water and / or solvent), the suspension of claim 8 is optionally processed together with other ceramic powders or suspensions to obtain a microcrystalline or microcrystalline layer and then sintered. And a method for producing the sintered layer. 제10항의 방법에 따라 수득가능한 세라믹 소결재 또는 소결층.Ceramic sintered material or sintered layer obtainable according to the method of claim 10.
KR1020007007479A 1998-01-07 1998-12-24 Surface-Coated Non-Oxidic Ceramics KR20010033904A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19800310A DE19800310A1 (en) 1998-01-07 1998-01-07 Surface-coated, non-oxide ceramics
DE19800310.2 1998-01-07
PCT/EP1998/008442 WO1999035105A1 (en) 1998-01-07 1998-12-24 Surface coated non-oxidic ceramics

Publications (1)

Publication Number Publication Date
KR20010033904A true KR20010033904A (en) 2001-04-25

Family

ID=7854095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007007479A KR20010033904A (en) 1998-01-07 1998-12-24 Surface-Coated Non-Oxidic Ceramics

Country Status (6)

Country Link
EP (1) EP1044178A1 (en)
JP (1) JP2002500157A (en)
KR (1) KR20010033904A (en)
DE (1) DE19800310A1 (en)
TW (1) TW562787B (en)
WO (1) WO1999035105A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034116B1 (en) * 2008-11-24 2011-05-13 최완수 Tape Feeder for Chip Mounter
KR101250105B1 (en) * 2005-03-30 2013-04-03 바스프 에스이 Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone, artificial stone and ceramics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939686A1 (en) * 1999-08-20 2001-02-22 Dechema Production of corrosion resistant coatings for metals comprises applying metallic or non-metallic inorganic nano-particulate powder in an organic matrix onto the metal surface, removing the organic matrix, and sintering
GB0112000D0 (en) * 2001-05-16 2001-07-11 Oxonica Ltd Comminution of coated metal oxides and hydroxides
GB2383534A (en) * 2001-12-28 2003-07-02 Psimei Pharmaceuticals Plc Delivery of neutron capture elements for neutron capture therapy
WO2005071141A1 (en) * 2004-01-22 2005-08-04 The University Of Manchester Ceramic coating
DE102004020559A1 (en) 2004-04-27 2005-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for dispersing and passivating finely divided powders in water and aqueous media
US10322975B2 (en) 2013-03-01 2019-06-18 Kyoto University Method for producing liquid dispersion of ceramic microparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4336694A1 (en) * 1993-10-27 1995-05-04 Inst Neue Mat Gemein Gmbh Process for the production of metal and ceramic sintered bodies and layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250105B1 (en) * 2005-03-30 2013-04-03 바스프 에스이 Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone, artificial stone and ceramics
KR101034116B1 (en) * 2008-11-24 2011-05-13 최완수 Tape Feeder for Chip Mounter

Also Published As

Publication number Publication date
TW562787B (en) 2003-11-21
JP2002500157A (en) 2002-01-08
EP1044178A1 (en) 2000-10-18
DE19800310A1 (en) 1999-07-08
WO1999035105A1 (en) 1999-07-15

Similar Documents

Publication Publication Date Title
RU2139839C1 (en) Method of preparing sintered products from surface- modified powder and sintered metallic and/or ceramic product prepared from said powder
JP3569785B2 (en) Method for producing surface-modified ceramic powder as nanometer-sized particles
AU2007350976B2 (en) Improved titanium dioxide pigment composite and method of making same
EP0194191B1 (en) Stabilized zirconia, process for its preparation and its use in ceramic compositions
EP1204597B1 (en) Method of producing aluminum oxides and products obtained on the basis thereof
JP3571277B2 (en) Surface-modified and pyrolytically produced titanium dioxide, method for its production and its use
JP2008513227A (en) Polycrystalline abrasive and manufacturing method thereof
US5750193A (en) Process for producing tin sintered bodies and coatings
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
KR20010033904A (en) Surface-Coated Non-Oxidic Ceramics
JPH0625267A (en) Surface-modified micaceous particle having improved dispersibility in aqueous medium
EP2004761B1 (en) Amino phosphoryl treated titanium dioxide
JPH09511481A (en) Process for producing uniform multicomponent dispersions and products derived from such dispersions
JP2529676B2 (en) Powders with improved rheological properties-azo pigments and their preparation
GB2477876A (en) Improved titanium dioxide composite particle and its method of manufacture
KR100881072B1 (en) Method for dispersing and passivating particulate powders in water and aqueous media
EP1163291A1 (en) Plastic composites containing metal oxides
DE10004461A1 (en) Plastic composite, e.g. UV-absorbent film for packaging food, contains finely dispersed metal oxide with an average particle size of less than 100 nm, e.g. titanium dioxide
DE10314520A1 (en) Granular filler preparation, used in paper, paper coating, paint, lacquer, printing ink, building material, film, fibers, textile, dental material, plastics or polymer composite, contains crosslinked polymer or block copolymer as binder

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid