KR20010001705A - Method of surface treatment of sinter ore for improvement of RDI - Google Patents

Method of surface treatment of sinter ore for improvement of RDI Download PDF

Info

Publication number
KR20010001705A
KR20010001705A KR1019990021117A KR19990021117A KR20010001705A KR 20010001705 A KR20010001705 A KR 20010001705A KR 1019990021117 A KR1019990021117 A KR 1019990021117A KR 19990021117 A KR19990021117 A KR 19990021117A KR 20010001705 A KR20010001705 A KR 20010001705A
Authority
KR
South Korea
Prior art keywords
sintered ore
aqueous solution
compound
caco
blast furnace
Prior art date
Application number
KR1019990021117A
Other languages
Korean (ko)
Other versions
KR100421736B1 (en
Inventor
주진남
윤성섭
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR10-1999-0021117A priority Critical patent/KR100421736B1/en
Publication of KR20010001705A publication Critical patent/KR20010001705A/en
Application granted granted Critical
Publication of KR100421736B1 publication Critical patent/KR100421736B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores

Abstract

PURPOSE: A method for water treating agglomerate is provided, for increasing the low temperature reduction differentiation strength of agglomerate in a furnace. CONSTITUTION: The method comprises the steps of controlling the acidity of aqueous solution to be above 7 and the concentration of Ca2+ to be above 4.4 ppm to prepare an aqueous solution; dipping agglomerate into the aqueous solution; drying the agglomerate; and charging the dried agglomerate into a furnace.

Description

저온환원분화강도를 증가시키기 위한 소결광의 수처리방법{Method of surface treatment of sinter ore for improvement of RDI}Method of surface treatment of sinter ore for improvement of RDI to increase low temperature reduction differentiation strength

본 발명은 소결공정을 통하여 제조된 소결광의 강도를 증가시키기 위한 방법에 관한 것이며, 특히, 소결광의 내부에 존재하는 공극의 폐쇄 및 표면석출상의 코팅을 유도하여 고로 내에서의 강도를 증가시킬 수 있는 소결광의 수처리방법에 관한 것이다.The present invention relates to a method for increasing the strength of the sintered ore produced through the sintering process, and in particular, it is possible to increase the strength in the blast furnace by inducing the coating of the closed and surface precipitation of the pores present in the sintered ore. It relates to a water treatment method of sintered ore.

일반적으로, 소결공정에서 생산된 소결광은 고로에서 5~50mm의 입도로 정립하여 사용하고 있는데, 고로에 장입된 소결광은 고로 상부의 약 550℃부근인 저온환원영역에서 헤마타이트가 마그네타이트로 환원되면서 체적팽창이 일어나 소결광의 분화가 일어난다.In general, the sintered ore produced in the sintering process is used as a grain size of 5 ~ 50mm in the blast furnace, the sintered ore charged in the blast furnace is reduced in volume by reducing the hematite to magnetite in the low temperature reduction region near about 550 ℃ in the upper part of the blast furnace Expansion occurs to cause differentiation of the sintered ore.

이러한 분화로 인해, 미분의 소결광이 발생하며 미분의 소결광은 고로의 내부에 적층구조의 공극을 막기 때문에 고로 내의 통기성을 악화시켜 환원가스의 흐름을 방해하고 노정의 상태를 불안정하게 하여 출선비를 저하시키는 문제점이 있다.Due to this differentiation, finely sintered ore is generated and finely sintered ore blocks the pores of the laminated structure inside the blast furnace, which deteriorates the air permeability in the blast furnace, obstructs the flow of reducing gas, and unstable the state of the top, thereby reducing the running cost. There is a problem.

이러한 문제점을 해결하기 위한 종래의 방법으로는 각종 염화물(CaCl2, MgCl2, NH4Cl ,NaCl 등)을 소결배합원료에 첨가하여 소결과정에서 배합원료인 맥석성분의 슬래그(Slag)화를 촉진시킴으로써, 소결광 내부의 공극을 폐쇄하여 환원가스의 침투를 억제시켜 저온환원분화성을 개선하는 "성품소결광의 CaCl2수용액중의 침지처리(일본학술진흥회1987.11)"이 공지되었으며, 그리고 "염화칼슘을 첨가한 소결광의 저온환원분화(철과 강1980 S676)"에서와 같이 해수 등의 할로겐화합물(NaCl, CaCl2, KCl, KBr 등)의 수용액을 소결광에 살수하여 소결광의 표면에 염화물의 코팅을 형성하고 코팅효과에 의해 저온환원분화성을 개선하는 방법이 발표되었다.Conventional methods for solving this problem include the addition of various chlorides (CaCl 2 , MgCl 2 , NH 4 Cl, NaCl, etc.) to the sintered blending material to promote slag of gangue component as a blending material during the sintering process. By immersing the inside of the sintered ore and suppressing the ingress of reducing gas to improve low temperature reduction differentiation, the immersion treatment in a CaCl 2 aqueous solution of a sintered ore (Japanese Society for Research Promotion, Nov. 1987) is known. An aqueous solution of halogenated compounds such as seawater (NaCl, CaCl 2 , KCl, KBr, etc.) is sprayed on the sintered ore to form a coating of chloride on the surface of the sintered ore, as in the low temperature reduction differentiation of an sintered ore (iron and steel 1980 S676). A method for improving low temperature reduction differentiation by coating effect has been published.

그러나, 성품소결광의 CaCl2수용액중의 침지처리의 경우에는 소결과정과 폐가스 중에 Cl의 농도가 증가되어 "Cl + H2O →HCl ↑"의 반응식과 같이 염산이 발생하여 소결설비의 부식과 집진효율을 저하시키며, 염화칼슘을 첨가한 소결광의 저온환원분화의 경우에는 염화물에 의해 비스초오프 스크러버(Bischoff scrubber) 및 노정압 발전기를 부식시켜 설비의 수명을 단축시키는 문제점이 발생한다.However, in the sintering treatment of CaCl 2 solution of the sintered ore, the concentration of Cl in the sintering process and the waste gas is increased and hydrochloric acid is generated as shown in the reaction formula of “Cl + H 2 O → HCl ↑” to corrode and collect dust. In the case of low-temperature reduction differentiation of sintered ore with calcium chloride added, the efficiency of corrosion decreases the service life of the facility by corroding the bischooff scrubber and the stationary generator.

본 발명은 앞서 설명한 바와 같은 종래 기술의 문제점을 해결하기 위하여 제공된 것으로서, 제조된 소결광에 수처리를 하여 소결광 내에 존재하는 공극의 폐쇄 및 표면석출상의 코팅을 유도하여 고로 내에서의 저온환원분화강도를 향상시킬 수 있는 저온환원분화강도를 증가시키기 위한 소결광의 수처리방법을 제공하는 데 그 목적이 있다.The present invention has been provided to solve the problems of the prior art as described above, by treating the produced sintered ore to improve the low-temperature reduction differentiation strength in the blast furnace by inducing the coating of the pore closing and surface precipitation in the sintered ore. An object of the present invention is to provide a water treatment method of sintered ore to increase the low temperature reduction differentiation strength that can be achieved.

도 1a은 수용액과 수용액에 침지된 소결광과의 반응관계를 나타낸 개략도이고,Figure 1a is a schematic diagram showing the reaction relationship between the aqueous solution and the sintered ore immersed in the aqueous solution,

도 1b는 도 1a의 상태가 지속됨에 따라 CaCO3이 화합물로 형성되는 것을 나타낸 개략도이고,FIG. 1B is a schematic diagram showing that CaCO 3 is formed into a compound as the state of FIG. 1A continues

도 2a는 본 발명의 수처리방법에 따른 침지시간과 소결광의 분화율을 나타낸 그래프이고,Figure 2a is a graph showing the immersion time and the differentiation rate of the sintered ore according to the water treatment method of the present invention,

도 2b는 본 발명의 수처리방법에 따른 침지시간과 소결광의 저온환원분화지수를 나타낸 그래프이며,Figure 2b is a graph showing the immersion time and the low temperature reduction differentiation index of the sintered ore according to the water treatment method of the present invention,

도 2c는 본 발명의 수처리방법에 따른 침지시간과 소결광의 환원율을 나타낸 그래프이다.Figure 2c is a graph showing the immersion time and the reduction rate of the sintered ore according to the water treatment method of the present invention.

앞서 설명한 바와 같은 목적을 달성하기 위한 본 발명에 따르면, 고로에 장입되는 소결광의 환원분화강도를 증가시키는 수처리방법에 있어서, 수용액의 산도를 7이상으로 조절하는 단계와 수용액의 Ca2+의 이온농도를 4.4ppm이상으로 조절하는 단계를 거친 수용액 제조단계와, 상기 수용액 제조단계를 거친 수용액에 소결광을 침적시키는 침적단계와, 상기 수용액에 침적된 소결광을 건조하여 고로에 장입하는 장입단계를 포함하는 것을 특징으로 하는 환원분화강도를 증가시키기 위한 소결광의 수처리방법이 제공된다.According to the present invention for achieving the object as described above, in the water treatment method for increasing the reduction differentiation strength of the sintered ore charged in the blast furnace, adjusting the acidity of the aqueous solution to 7 or more and the ion concentration of Ca 2+ in the aqueous solution It includes a step of preparing an aqueous solution through the step of adjusting to more than 4.4ppm, the deposition step of depositing the sintered ore in the aqueous solution, and the charging step of drying the sintered ore deposited in the aqueous solution to charge into the blast furnace Provided is a water treatment method of sintered ore for increasing the reduced differentiation strength.

아래에서, 본 발명에 따른 저온환원분화강도를 증가시키기 위한 소결광의 수처리방법의 양호한 실시예를 첨부한 도면을 참조로 하여 상세히 설명하겠다.In the following, with reference to the accompanying drawings a preferred embodiment of the water treatment method of the sintered ore for increasing the low temperature reduction differentiation strength according to the present invention will be described in detail.

도 1a는 수용액과 수용액에 침지된 소결광과의 반응관계를 나타낸 개략도이고, 도 1b는 도 1a의 상태가 지속됨에 따라 CaCO3이 화합물로 형성되는 것을 나타낸 개략도이다.FIG. 1A is a schematic view showing a reaction relationship between an aqueous solution and a sintered ore immersed in an aqueous solution, and FIG. 1B is a schematic view showing that CaCO 3 is formed of a compound as the state of FIG. 1A continues.

도 1a에 도시된 바와 같이, 수용액이 소결광의 둘레를 감싸고 있다. 그리고 소결광의 내부에는 소결광의 생성과정 중에 미반응한 생석회가 잔존하며, 이 생석회는 소결광의 둘레를 감싸는 수용액과 접하게 되어 수산화칼슘(Ca(OH)2)을 형성한다.As shown in FIG. 1A, an aqueous solution surrounds the sintered ore. In the sintered ore, unreacted quicklime remains during the production of sintered ore, which is in contact with an aqueous solution surrounding the sintered ore to form calcium hydroxide (Ca (OH) 2 ).

그리고, 도 1b에 도시된 바와 같이, 충분한 수용액이 소결광의 둘레에 공급될 경우에는 대기중의 CO2가 수용액 속에 용해되어 이온화된 CO3 -2이온과, Ca(OH)2가 이온화되어 형성된 Ca+2이온이 결합하여 CaCO3의 화합물이 석출된다.And, as shown in Figure 1b, when a sufficient aqueous solution is supplied around the sintered ore, CO 2 in the atmosphere is dissolved in the aqueous solution, ionized CO 3 -2 ions and Ca (OH) 2 formed by ionizing Ca +2 ions are bonded to precipitate a compound of CaCO 3 .

이러한 화합물(CaCO3)은 소결광 내의 공극이나 취약한 조직을 따라 소결광 표면으로 성장하기 때문에 내부의 공극들을 채우면서 공극의 입구로 나오게 된다. 이 때, 화합물의 생성 및 성장을 촉진시킬 수 있는 조건으로 수용액이 존재하여야 하며, 그리고, 수용액 중에 Ca+2이온이 충분히 존재하여야 한다.Since the compound (CaCO 3 ) grows on the surface of the sintered ore along the pores or fragile structure in the sintered ore, the compound (CaCO 3 ) fills the pores therein and exits to the entrance of the pores. At this time, an aqueous solution should exist under conditions that can promote the production and growth of the compound, and sufficient Ca + 2 ions should be present in the aqueous solution.

이렇게 공극과 취약한 조직을 따라 성장한 화합물(CaCO3)이 채워진 소결광은 고로의 저온환원영역에서의 환원가스의 침투를 방해하여 저온환원분화를 억제하여 고로 내의 통기성을 유지한다. 그리고 CaCO3의 화합물의 다른 특성의 하나로 반응식 1에 나타난 바와 같이 650~850℃의 온도영역에서 완전히 분해되어 CO2가 휘발된다. 그리고 그 자리에 공극이 추가로 발생되기 때문에 소결광 내부 깊숙이 까지 환원가스의 침투가 용이하여 고온의 구역에서의 환원율을 더욱 향상시키는 효과가 있다.The sintered ore filled with the compound (CaCO 3 ) grown along the pores and fragile tissues prevents infiltration of the reducing gas in the low temperature reduction region of the blast furnace, thereby inhibiting low temperature reduction differentiation to maintain breathability in the blast furnace. And one of the other properties of the compound of CaCO 3 is completely decomposed in the temperature range of 650 ~ 850 ℃ as shown in Scheme 1 CO 2 is volatilized. In addition, since the voids are further generated in place, the penetration of the reducing gas into the sintered ore can be easily penetrated, thereby further improving the reduction rate in the high temperature zone.

[시험예][Test Example]

도면에서, 도 2a는 본 발명의 수처리방법에 따른 침지시간과 소결광의 분화율을 나타낸 그래프이고, 도 2b는 본 발명의 수처리방법에 따른 침지시간과 소결광의 저온환원분화지수를 나타낸 그래프이며, 도 2c는 본 발명의 수처리방법에 따른 침지시간과 소결광의 환원율을 나타낸 그래프이다.In the drawings, Figure 2a is a graph showing the immersion time and the differentiation rate of the sintered ore according to the water treatment method of the present invention, Figure 2b is a graph showing the immersion time and low temperature reduction differentiation index of the sintered ore according to the water treatment method of the present invention, 2c is a graph showing the immersion time and the reduction rate of the sintered ore according to the water treatment method of the present invention.

한편, 표 1은 소결광의 공극 및 취약조직에 CaCO3화합물을 석출시키기 위한 실험으로 소결광의 둘레를 감싸는 침지수의 산도와 이온농도를 나타낸 표이고, 표 2는 표 1에 사용된 침지수의 종류 및 침지기간에 따라 화합물의 성장속도를 나타낸 표이며, 표 3은 침지수의 Ca+2이온과 결합되어 발생하는 화합물의 깁스자유에너지를 나타낸 표이다.On the other hand, Table 1 is a table showing the acidity and ion concentration of the immersion water surrounding the sintered ore as an experiment to precipitate the CaCO 3 compound in the pores and fragile structure of the sintered ore, Table 2 is the type of immersion water used in Table 1 And a table showing the growth rate of the compound according to the immersion period, Table 3 is a table showing the Gibbs free energy of the compound generated by combining with Ca +2 ions of the immersion water.

본 발명에 따르면, 산도를 조절된 산도조절단계와 이온농도를 조절하는 이온농도조절단계를 거친 침지수에 제조된 소결광을 침적하여 소결광과 침지수의 일정기간동안 반응하도록 한 후에, 소결광을 건조하여 고로에 장입하는 단계를 포함한다.According to the present invention, after depositing the sintered ore prepared in the immersion water after the acidity adjustment step and the ion concentration control step to control the ion concentration to react for a certain period of time, the sintered ore is dried Charging to the blast furnace.

이와 같이, 본 발명에 따른 시험에서 3종류의 침지수의 산도와 이온농도를 각각 표 1에 나타내었다. 산도(pH)가 6.4이며 Ca+2의 이온농도가 0.1ppm인 증류수와, 산도가 6.9이며 Ca+2의 이온농도가 4.4ppm인 담수 및, 산도가 11.3이며 Ca+2의 이온농도가 202ppm인 석회침출수에 소결광을 표 2에 나타난 바와 같이 각각 5, 10, 20, 30일 동안 침적시킨 후, CaCO3의 화합물의 발생을 비교하였다.Thus, the acidity and ion concentration of the three types of immersion water in the test according to the present invention are shown in Table 1, respectively. Distilled water with an acidity (pH) of 6.4 and a Ca +2 ion concentration of 0.1 ppm, fresh water with an acidity of 6.9 and a Ca +2 ion concentration of 4.4 ppm, and an acidity of 11.3 and a Ca +2 ion concentration of 202 ppm. After sintered ore in lime leachate was deposited for 5, 10, 20 and 30 days, respectively, as shown in Table 2, the occurrence of CaCO 3 compounds was compared.

종류Kinds 산도Acidity 이온농도(ppm)Ion concentration (ppm) Ca+2 Ca +2 Mg+2 Mg +2 Na+ Na + K+ K + SO4 -2 SO 4 -2 Cl- Cl - 증류수(종래예)Distilled Water (Prior Example) 6.46.4 0.10.1 -- 담수(본발명예1)Freshwater (Inventive Example 1) 6.96.9 4.44.4 1.11.1 8.48.4 2.02.0 10.110.1 6.06.0 석회침출수(본발명예2)Lime leachate (inventive example 2) 11.311.3 202202 0.10.1 126126 7979 438438 383383

여기에서, Tr은 극히 미량을 나타낸다.Here, Tr represents an extremely small amount.

종류Kinds 침지기간(일)Immersion period (days) 비고Remarks 55 1010 2020 3030 증류수(종래예)Distilled Water (Prior Example) ×× ×× ×× ΟΟ CaCO3의 화합물Compound of CaCO 3 담수(본발명예1)Freshwater (Inventive Example 1) ×× ΟΟ ΟΟ ΟΟ CaCO3의 화합물Compound of CaCO 3 석회침출수(본발명예 2)Lime leachate (inventive example 2) ΟΟ ΟΟ ΟΟ CaCO3, CaSO4의 화합물 공존Compound coexistence of CaCO 3 , CaSO 4

여기에서 ×는 화합물의 석출이 없음, ○은 화합물의 석출이 소량 형성, ◎는 화합물의 석출이 다량 형성됨을 나타낸다.Where x is no precipitation of a compound, (circle) shows a small amount of precipitation of a compound, and (circle) shows that a large amount of precipitation of a compound is formed.

표 2에 의하면, 증류수의 경우는 30일이 경과하여 화합물이 소결광의 표면에까지 석출되었고, 담수는 10일, 석회침출수는 5일만에 화합물이 소결광 표면까지 석출되었다. 이 때, 발생한 화합물은 CaCO3이며, 특히 석회침출수의 경우는 침지수중에 다량의 Ca+2이온과 SO4 -2이온이 존재하여 CaCO3뿐만 아니라, CaSO4형태의 화합물이 소결광의 표면에 공존하였다.According to Table 2, in the case of distilled water, the compound precipitated to the surface of the sintered ore after 30 days, and the compound precipitated to the surface of the sintered ore in fresh water for 10 days and lime leachate for 5 days. At this time, the generated compound is CaCO 3 , especially in the case of lime leachate, a large amount of Ca +2 ions and SO 4 -2 ions are present in the immersion water so that not only CaCO 3 but also CaSO 4 compounds coexist on the surface of the sintered ore. It was.

그리고, 표 3은 침지수 중에 Ca+2이온과 결합되어 발생되는 화합물의 안정화정도를 나타낸 깁스자유에너지(ΔGfo25℃,1atm)를 나타내었다. 표 3에서 나타낸 자료는 "Atlas of Electrochemical Equilibria in Aqueous Solutions(by MARCEL POURBAIX)"에서 참조하였다.Table 3 shows Gibbs free energy (ΔGfo 25 ° C., 1 atm) indicating the degree of stabilization of the compound generated by binding to Ca + 2 ions in the immersion water. The data shown in Table 3 was referenced in "Atlas of Electrochemical Equilibria in Aqueous Solutions (by MARCEL POURBAIX)".

화합물compound ΔGf°ΔGf ° CaCO3 CaCO 3 -1128.8-1128.8 CaCl2 CaCl 2 -748.1-748.1 Ca(OH)2 Ca (OH) 2 -898.0-898.0 CaSO4 CaSO 4 -1309.1-1309.1 CaSO4ㆍ2H2OCaSO 4 2H 2 O -1797.5-1797.5

표 3에 도시된 바와 같이, CaSO4와 CaCO3화합물이 가장 낮은 깁스자유에너지를 가지며, Ca(OH)2, CaCl2의 순으로 수용액상태에서 안정함을 알 수 있다.As shown in Table 3, CaSO 4 and CaCO 3 compound has the lowest Gibbs free energy, Ca (OH) 2 , CaCl 2 It can be seen that the stable in aqueous solution in order.

또한, 산도에 따라 CO2의 용해도 및 CO3 -2의 이온화의 차이가 있으며, 산도에 따른 반응식은 반응식 2 내지 반응식 4에 나타내었다.Further, according to the pH and the solubility and the difference in the ionization of CO 3 -2 of CO 2, according to the reaction scheme shown in Scheme 2, the pH is to scheme 4.

CO2(g)+H2O=H2CO3(산도〈 7)CO 2 (g) + H 2 O = H 2 CO 3 (pH <7)

CO2(g)+H2O=HCO3 -+H+(산도≒ 7) CO 2 (g) + H 2 O = HCO 3 - + H + ( pH ≒ 7)

CO2(g)+H2O=CO3 -2+2H+(산도 〉7)CO 2 (g) + H 2 O = CO 3 -2 + 2H + (acidity〉 7)

CaO+H2O=Ca(OH)2=Ca+2+2OH- CaO + H 2 O = Ca ( OH) 2 = Ca +2 + 2OH -

반응식 2 내지 반응식 4에서와 같이, 산도 7 이상의 수용액에서는 CO2의 CO3 -2이온화가 지배적이기 때문에 반응식 4와 반응식 5의 반응에 의해 CO2(g)+CaO+2H2O=CaCO3+2H++2OH-의 반응이 촉진되어 CaCO3의 석출이 용이하게 된다.Scheme 2 to Scheme 4 as shown in, the aqueous solution of pH 7 or CO 2, CO 3 -2 of the ionizing is due to the dominant scheme 4 and scheme CO 2 (g) by reaction of 5 + CaO + 2H 2 O = CaCO 3 + The reaction of 2H + + 2OH - is accelerated to facilitate precipitation of CaCO 3 .

도 2a와 도 2b 및 도 2c는 종래의 기술인 증류수에 소결광을 침지시킨 후에 시험한 결과치와, 본 발명의 기술인 담수와 석회침출수에 소결광을 침지시킨 후에 시험한 결과치를 비교한 그래프로서, 도 2a는 소결광을 각각의 수용액에 일정기간 동안 침지시켰을 때 소결광의 분화율을 나타내고 있으며, 도 2b는 각각의 수용액에 침지시킨 소결광이 고로에 장입되어 환원가스(CO)와 접하면서 분화되는 소결광의 저온환원분화지수를 나타내며, 도 2c는 고로에 장입된 소결광이 환원가스와 접하면서 환원되는 환원율을 나타낸다.2A, 2B, and 2C are graphs comparing the results of tests after sintered ore is immersed in distilled water according to the prior art and the results of tests after sintered ore is immersed in fresh water and lime leachate according to the present invention. The differentiation rate of the sintered ore when the sintered ore is immersed in each aqueous solution for a certain period of time shows the differentiation rate of the sintered ore. 2C shows a reduction rate of the sintered ore charged in the blast furnace is reduced while contacting the reducing gas.

도 2a 내지 도 2c에서 나타낸 것과 같이, 본 발명은 산도 6.9이상의 수용액인 담수와 석회침출수에 침지시킨 소결광의 환원과 함께 생성되는 화합물(CaCO3)이 소결광의 공극을 폐쇄하고 소결광의 외부를 코팅함으로써, 소결광의 저온환원분화강도는 증가하게 되고, 그로 인해 저온환원분화지수는 감소하게 된다.As shown in Figures 2a to 2c, the present invention is a compound (CaCO 3 ) produced with the reduction of the sintered ore immersed in fresh water and lime leachate, an aqueous solution of pH 6.9 or more by closing the pores of the sintered ore and coating the outside of the sintered ore , The low temperature reduction differentiation strength of the sintered ore is increased, thereby reducing the low temperature reduction differentiation index.

이런 소결광이 고로 내에서 650~850℃의 온도가 되면, 화합물(CaCO3)은 반응식 1과 같이 이산화탄소와 산화칼슘으로 분해되어 소결광의 공극을 형성하고 코팅 또한 제거된다. 그럼으로써, 소결광의 환원율은 증가된다.When the sintered ore reaches a temperature of 650 to 850 ° C. in the blast furnace, the compound (CaCO 3 ) is decomposed into carbon dioxide and calcium oxide as in Scheme 1 to form pores of the sintered ore and the coating is also removed. Thereby, the reduction rate of the sintered ore is increased.

앞서 상세히 설명한 바와 같이, 본 발명의 저온환원분화강도를 증가시키기 위한 소결광의 수처리방법은 소결광의 분화를 감소시키며 환원율을 증가시키는 장점을 가지고 있으며, 또한 주변설비의 부식을 방지할 수 있다는 장점이 있다.As described in detail above, the water treatment method of the sintered ore for increasing the low temperature reduction differentiation strength of the present invention has the advantage of reducing the differentiation of the sintered ore and increasing the reduction rate, and also has the advantage of preventing corrosion of the peripheral equipment. .

이상에서 본 발명의 저온환원분화강도를 증가시키기 위한 소결광의 수처리방법에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 이 기술분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.The technical idea of the water treatment method of the sintered ore for increasing the low temperature reduction differentiation strength of the present invention has been described above with the accompanying drawings, but this is only illustrative of the best embodiments of the present invention and is not intended to limit the present invention. . In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

Claims (1)

고로에 장입되는 소결광의 환원분화강도를 증가시키는 수처리방법에 있어서,In the water treatment method for increasing the reduced differentiation strength of the sintered ore charged in the blast furnace, 수용액의 산도를 7이상으로 조절하는 단계와 수용액의 Ca2+의 이온농도를 4.4ppm이상으로 조절하는 단계를 거친 수용액 제조단계와,An aqueous solution preparation step of adjusting the acidity of the aqueous solution to 7 or more and adjusting the ion concentration of Ca 2+ of the aqueous solution to 4.4 ppm or more, 상기 수용액 제조단계를 거친 수용액에 소결광을 침적시키는 침적단계와,An immersion step of depositing a sintered ore into the aqueous solution having undergone the aqueous solution manufacturing step; 상기 수용액에 침적된 소결광을 건조하여 고로에 장입하는 장입단계를 포함하는 것을 특징으로 하는 환원분화강도를 증가시키기 위한 소결광의 수처리방법.And a charging step of drying the sintered ore deposited in the aqueous solution and charging the sintered blast furnace.
KR10-1999-0021117A 1999-06-08 1999-06-08 Method of surface treatment of sinter ore for improvement of RDI KR100421736B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0021117A KR100421736B1 (en) 1999-06-08 1999-06-08 Method of surface treatment of sinter ore for improvement of RDI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0021117A KR100421736B1 (en) 1999-06-08 1999-06-08 Method of surface treatment of sinter ore for improvement of RDI

Publications (2)

Publication Number Publication Date
KR20010001705A true KR20010001705A (en) 2001-01-05
KR100421736B1 KR100421736B1 (en) 2004-03-10

Family

ID=19590715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0021117A KR100421736B1 (en) 1999-06-08 1999-06-08 Method of surface treatment of sinter ore for improvement of RDI

Country Status (1)

Country Link
KR (1) KR100421736B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388241B1 (en) * 1999-11-29 2003-06-19 주식회사 포스코 Improvement of reduction degradation strength of iron sinter by carbonic acid gas injection
KR100628467B1 (en) * 2004-12-17 2006-09-26 주식회사 천지테크 Method for surface treating of the iron ores to improve the reduction strength

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113731A (en) * 1984-11-06 1986-05-31 Sumitomo Metal Ind Ltd Manufacture of sintered ore
KR900005431B1 (en) * 1987-12-28 1990-07-30 포항종합제철 주식회사 Process for mixing sintered materials
JPH09272925A (en) * 1996-04-04 1997-10-21 Nippon Steel Corp Production of sintered ore excellent in property at high temperature and cold strength
JPH10226825A (en) * 1997-02-17 1998-08-25 Kawasaki Steel Corp Method for granulating sintering raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388241B1 (en) * 1999-11-29 2003-06-19 주식회사 포스코 Improvement of reduction degradation strength of iron sinter by carbonic acid gas injection
KR100628467B1 (en) * 2004-12-17 2006-09-26 주식회사 천지테크 Method for surface treating of the iron ores to improve the reduction strength

Also Published As

Publication number Publication date
KR100421736B1 (en) 2004-03-10

Similar Documents

Publication Publication Date Title
Egiebor et al. Acid rock drainage formation and treatment: a review
RU2713885C1 (en) Method of eluting calcium from steel-smelting slag and method of extracting calcium from steel-smelting slag
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
KR100421736B1 (en) Method of surface treatment of sinter ore for improvement of RDI
JP5540434B2 (en) Method and apparatus for removing phosphorus dissolved in water
EP0869193B1 (en) Method for processing chromium oxide-containing substances in large quantities
CA1244152A (en) Phosphoric acid/lime hazardous waste detoxification treatment process
KR100672189B1 (en) A process for zinc-phosphate treatment of metallic materials without generating sludge and treatment solution used therefor
JP5135552B2 (en) Method for producing steelmaking slag for water injection
JP3891044B2 (en) Methods for insolubilizing heavy metals in contaminated soil
KR100218548B1 (en) Calcined calcite for neutraliing agent
KR100388241B1 (en) Improvement of reduction degradation strength of iron sinter by carbonic acid gas injection
KR20120063227A (en) Surface coating agent of pyrite using phosphate for reclamation of acid mine drainage
KR20020052870A (en) A method of improving reduction degradation index with CaO solution treatment of sinter ore
JP4434175B2 (en) Methods for insolubilizing heavy metals in contaminated soil
JP2001057211A (en) Negative electrode material for alkaline battery, manufacture thereof, and alkaline battery using the negative electrode material
CA1178059A (en) Process for treating iron sponge
JP4052428B2 (en) Treatment method and treatment agent for lead-containing wastewater
KR20020045324A (en) Surface treatment method of sinter ore for improvement of reduction degradation index
CN109761285B (en) Preparation method of ferric arsenate @ ferrous sulfide alkali-resistant arsenic-fixing material
JP2004154759A (en) Nitrate nitrogen denitrifying treatment material
US6391384B1 (en) Method for providing a corrosion inhibiting solution
KR100628467B1 (en) Method for surface treating of the iron ores to improve the reduction strength
US11577979B1 (en) Processes for treatment of wastewater
US20220297058A1 (en) Carbon dioxide fixation method and carbon dioxide fixation system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee