KR20000052614A - 저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트방법 및 장치 - Google Patents

저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트방법 및 장치 Download PDF

Info

Publication number
KR20000052614A
KR20000052614A KR1019990064442A KR19990064442A KR20000052614A KR 20000052614 A KR20000052614 A KR 20000052614A KR 1019990064442 A KR1019990064442 A KR 1019990064442A KR 19990064442 A KR19990064442 A KR 19990064442A KR 20000052614 A KR20000052614 A KR 20000052614A
Authority
KR
South Korea
Prior art keywords
image
region
voltage contrast
dose
size
Prior art date
Application number
KR1019990064442A
Other languages
English (en)
Other versions
KR100653499B1 (ko
Inventor
로치워에이웨인
가나이겐이치
Original Assignee
하이든 마틴
슐럼버거 테크놀로지즈, 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하이든 마틴, 슐럼버거 테크놀로지즈, 아이엔씨. filed Critical 하이든 마틴
Publication of KR20000052614A publication Critical patent/KR20000052614A/ko
Application granted granted Critical
Publication of KR100653499B1 publication Critical patent/KR100653499B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2594Measuring electric fields or potentials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

본 발명은 저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트 방법 및 장치에 관한 것으로, 패턴된 기판내 결함은 패턴된 기판의 일부의 이미지를 생성하고 패턴된 기판내 임의의 결함을 확인하기 위해 기준과 상기 이미지를 비교하는 충전된 입자빔 조사수단을 이용한 조사에 의해 검출되며, 상기 수단의 파라미터는 이미지 균일성 및 콘트라스트, 특히 전압 콘트라스트를 개선하기 위해 최적화되고, 기판의 한 영역의 영상화에 앞서 상기 수단은 주위 영역내 비대칭 충전에 의해 발생된 효과를 제거 또는 감소시키기 위해 이미지 영역을 둘러싸는 영역을 충전하며, 상기 수단은 이미지 영역중 다수의 이미지를 생성하기 위해 이미지 영역을 영상화하는 단계와 주위 영역을 충전하는 단계 사이에서 교대하고, 상기 이미지 영역은 평준화되며, 그 결과로 정확한 결함 검출을 위해 개선된 콘트라스트를 갖는 매우 균일한 이미지가 생성되는 것을 특징으로 한다.

Description

저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트 방법 및 장치{VOLTAGE CONTRAST METHOD AND APPARATUS FOR SEMICONDUCTOR INSPECTION USING LOW VOLTAGE PARTICLE BEAM}
관련특허출원
본 출원은 공동계류중인 미국특허출원 제08/892,734호(1997년 7월 15일 출원), 미국특허출원 제08/782,740호(1997년 1월 13일 출원), 미국특허출원 제09/012,227호(1998년 1월 23일 출원), 본 출원과 동일자로 출원된 미국특허출원 제 호, "Microstructure Defect Detection"(대리인 명세서 제65.0287호), 본 출원과 동일자로 출원된 미국특허출원 제 호, "Feature-Based Defect Detection"(대리인 명세서 제65.0288호), 본 출원과 동일자로 출원된 미국특허출원 제 호, "Detection of Defects in Patterned Substrates"(대리인 명세서 제65.0293호)와 관련된 것이고, 모두의 내용이 참조에 의해 본 명세서에서 구체화되어 있다.
발명의 배경
기술분야
본 발명은 충전된 입자빔을 이용한 검사에 의해 반도체 웨이퍼와 같은 패턴된 기판내 결함의 검출에 관한 것이다. 특히, 본 발명은 충전된 입자빔 조사 수단에 의해 생성된 이미지의 전압 콘트라스트 및 균일성을 개선하는 것과 관련된다.
관련기술의 기재
결함 검출은 반도체장치 제조에서 중요한 측면이다. 가급적 다수의 제조 스테이지에서의 조기 검출은 다수의 웨이퍼가 영향을 받기전에 결함원인이 확인되고 제거될 수 있도록 한다. 현재, KLA-Tencor의 21XX-시리즈 웨이퍼 검사수단과 같은 광검사수단을 이용하여 대부분의 인라인 검사가 수행된다. 그러나, 이들 광수단은 회절로 인한 흐려짐과 그 작은 집속 깊이에 의해 그 성능이 제한된다. 이들 광수단의 작은 집속깊이는 초미세한 특징을 영상화하기 위해 요구되는 다수의 애퍼처 대물렌즈의 고유 제한이 된다. 장치의 표면에서가 아닌 임의의 결함은 대개 초점이 맞지 않을 것이고 따라서 검출할 수 없다. 그러한 표면하의 결함의 예로는 다규소 게이트 단락, 개방 바이어 및 접촉, 및 금속 스트링거가 있다. 또한, 광수단의 회절-제한 해상도는 작은 표면 결함을 흐리게 하여, 그들을 0.25㎛ 이하의 최소 CDs(critical dimensions) 수축과 같이 검출할 수 없게 한다. 이들은 최소 CD이거나 그 이하인 분실 또는 임시 패턴의 영역 및 ~0.1㎛ 입자와 같은 결함을 포함한다.
충전된 입자빔 조사는 진보된 반도체 제조에서 중요한 기술중의 하나가 될 것이다. 종래의 SEMs(scanning electron microscopes), FIBs(focused ion beam microscopes), 및 전자빔(e-beam) 결함 검출시스템을 포함하는 충전 입자빔 조사수단은 광수단보다 훨씬 더 높은 해상도를 가지고, 더 작은 크기의 결함을 검출할 수 있다. 전자빔 결함 검출시스템은 또한 킬러 결함, 즉 "개방" 및 "단락"형 결함의 전기적 효과에서 발생되는 전압 콘트라스트 변화를 측정하므로써 표면하의 결함을 검출할 수 있다. 예를 들어, T.ATON 외 다수의 Testing integrated circuit microstructures using charging-induced voltage contrast(J.VAC.SCI.TECHNOL. B8(6),1990.11/12,pp.2041-2044); K.JENKINS외 다수의 Analysis of silicide process defects by non-contact electron-beam charging(30TH ANNUAL PROCEEDING RELIABILITY PHYSICS 1992, IEEE, 1992.3/4, pp.304-308); J.THONG,ED.의 ELECTRON BEAM TESTING TECHNOLOGY(Pelnum Press 1993, p.41); 및 T.CASS의 Use of the Voltage Contrast Effect for the Automatic Detection of Electrical Defects on In-Process Wafers(KLA Yield Management Seminar 1996, pp.506-2 내지 506-11) 참조.
슐럼버거의 전자빔 결함 검출기술은 양 또는 음전압 콘트라스트 모드에서 작용한다. 양쪽의 모드에서, 조사하에서 웨이퍼상의 부동 전기도전체는 충전된 입자(예를 들어 전자)로 웨이퍼 표면을 프리차지함으로써 전위까지 상승된다. 그들이 다른 콘트라스트로 나타나기 때문에, 부동과 접지 커넥터가 구별될 수 있다. 양전압 콘트라스트 모드에서, 부동 도전체는 접지 도전체보다 더 양전압으로 충전되는 반면, 음전압 콘트라스트 모드에서는 부동 도전체가 좀더 음전압으로 충전된다. 집속된, 저전압 입자(전자)빔은 웨이퍼의 도전체의 전하상태를 질문한다. 다이의 전압 콘트라스트 이미지(또는 일부분의 이미지)와 참조(예를 들어 이웃하는 다이)의 전압 콘트라스트 이미지를 비교함으로써, 다이내에 결함을 위치시킬 수 있다. 결함을 확인하기 위해 이러한 기법이 전압 콘트라스트 편차에 의존하기 때문에, (1)배경 콘트라스트가 균일한 균일 전압 콘트라스트 이미지; (2)회로가 FOV의 다른 구역내에 위치하는 경우 상기 회로를 위한 일관된 콘트라스트; 및 (3)다른 잠재적인 연결을 가지는 회로소자 사이의 특이 콘트라스트(예를 들어, 큰 차이)를 가지는 것이 중요하다.
충전된 입자빔 조사시스템에서의 한가지 문제점은 결과적인 이미지가 종종 질적으로 비균일하다는 것이다. 이미지의 전압 콘트라스트 또는 토포그래피 콘트라스트에서 원치않는 변화가 종종 존재한다. 패턴된 기판(웨이퍼 또는 다이)의 불균일 충전은 전압 콘트라스트내 비균일성을 발생시킬 수 있다. 표면 충전은 제 1 빔조사동안 진행중인 충전 프로세스 및 제 2 전자포집 효율에 영향을 미칠 수 있다. 전자빔 결함 검출시스템은 제 1 전자가 제 1 전류보다 더 많은 제 2 전자 방출전류를 유도하는 2개의 크로스오버 전압사이에서 작용한다. 이것은 FOV내 부동 도전체가 양으로 충전될 것이라는 것을 의미한다. 웨이퍼로 회복된 포착되지 않은 제 2 전자는 FOV 둘레 구역을 음으로 충전할 수 있어, MRF("micro" retarding field)를 생성한다. MRF는 표면 충전 프로세스에 영향을 미치고, 이미지의 전압 콘트라스트로 여러가지 문제점을 발생시킬 수 있다. 첫째, MRF는 일부 제 2 전자가 웨이퍼의 FOV 구역으로 다시 받아들여지지 않도록 할 수 있어서, 양전압 콘트라스트를 감소시킨다. 둘째, 만일 시스템의 확대가 상세한 조사를 위해 증가된다면, MRF는 양전압 콘트라스트 모드가 음으로 스위치되도록 할 수 있다. 고확대에서, 강한 MRF는 FOV 구역으로의 제 2 전자를 충분히 지연시킴으로써, FOV 구역을 음으로 충전한다. 셋째, MRF는 이미지에 예측할 수 없는 "고스트 특징(ghost feature)" 및 사이트 종속 콘트라스트 변화를 생성할 수 있다. MRF는 FOV의 가장자리에서 비등방성이고, FOV의 가장자리에서 회복된 제 2 전자의 밀도는 FOV의 중심에서의 밀도와 상당히 다를 수 있다. 이것은 부동 구조체의 불균일 충전을 발생시킨다. 또한, FOV의 가장자리 및 중심으로부터 방출된 제 2 전자를 검출하는 효율이 크게 다를 수 있다. 이러한 문제점은 전자빔 결함 검출시스템의 신뢰성을 크게 저하시키는 잘못된 콘트라스트차를 생성한다.
1995년 이후, 슐럼버거(Schlumberger)사는 높은 빔전류에서의 파형을 측정하기 위해 패시베이션된 ICs(integrated circuits)상에 상업적으로 이용가능한 IDS 10000 시스템과 같은 전자빔 프로버(probers)를 사용해왔다. 전자빔 프로버는 넓은 구역을 스캔하고, 더 좁은 영역을 영상화한다. 고전류 벡터 빔은 패시베이션된 IC상의 전기용량성 AC 파형을 측정하기 위해 펄스된다. 넓은 구역을 스캔하기에 앞서 좁은 구역을 영상화하는 것은 좁은 영역에서의 불안정한 표면 충전을 감소시켜서, (시간의 함수로서) 좀더 안정적이고 정확한 전압 파형을 생성한다. 각각의 다이상의 도전체 구역에서 측정이 이루어지기 때문에 이미지의 콘트라스트 또는 균일성은 관심사가 아니다. 이 방법은 완성되지 않은 패턴된 기판보다는 전기적 자극과 연결된 작용하는 IC에서만 응용할 수 있다.
또한, 충전된 입자빔 수단에 의해 생성된 측정을 개선하기 위한 노력이 공지되어 있다. 1998년 7월 23일자 국제공개 WO98.32153로 공개된 국제특허출원 PCT/US98/00782는 SEMs을 이용하는 마이크로회로의 CDs를 측정하는 방법에 관한 것이다. 좁은 스캔 구역상에서의 SEM의 다중 스캔은 구역의 특징을 어둡게 하는 다크 이미지를 발생시킨다. 더 넓은 구역의 스캔은 이미지를 밝게 한다. 그러나, 이 방법은 다른 잠재적인 연결을 가지는 특징들간의 이미지 콘트라스트 차이를 향상시키기보다는 단순하게 이미지를 밝게 하기만 한다. 또한, 단순하게 구역을 밝게 하는 것은 이미지의 균일성을 개선하지 못할 것이다.
따라서, 패턴된 기판의 결함 검출을 향상시키기 위해, 충전된 입자빔 조사수단에 의해 생성된 이미지의 균일성 및 콘트라스트 품질을 개선할 팔요가 있다. 특히, 이미지의 전압 콘트라스트를 향상시키는 것이 바람직하다.
도 1은 본 발명에 따른 충전된 입자빔 조사수단의 개략도,
도 2는 도 1의 충전된 입자빔 조사수단의 개략도,
도 3은 포착되지 않은 제 2 전자의 결과로 생성된 영상화 영역 외부의 음으로 충전된 영역을 설명하는 웨이퍼 일부의 평면도,
도 4a-4b는 각각 0.05㎜ 및 0.5㎜ FOV(field of view)를 둘러싸는 음전하의 효과를 설명하는 웨이퍼의 컴퓨터 시뮬레이션을 나타내는 도면,
도 5a-5c는 각각 역상대비 모드, 멀티플렉싱없는 정상대비 모드, 및 멀티플렉싱하는 정상대비 모드에서 취해진 충전접촉을 포함하는 웨이퍼의 전압 콘트라스트 이미지를 나타내는 도면,
도 6은 프리차지 삭제 영역을 포함하는 도 3의 웨이퍼부의 평면도,
도 7a-7b는 각각 멀티플렉싱하는, 그리고 멀티플렉싱없이 취해진 반도체 웨이퍼상의 다수의 SRAM 메모리셀의 양전압 콘트라스트 이미지를 나타내는 도면,
도 8은 본 발명에서 일정한 충전된 전하빔 조사수단을 위한 최적화 프로세스에 대한 흐름도,
도 9는 본 발명에서 일정한 결함 검출 프로세스에 대한 흐름도, 및
도 10은 제 1 영상화 빔과 플러드빔 사이의 멀티플렉싱을 설명하는, 충전된 전하빔 조사수단의 제어 파형도이다.
본 발명의 한 실시예에 따르면, 패턴된 기판내 결함을 검출하는 방법은 기판상에 충전된 입자빔을 보내는 단계, 기판상에서 빔을 스캔하는 단계, 및 결과적인 이미지의 콘트라스트 및 균일성을 개선하기 위해 빔의 파라미터를 최적화하는 단계를 포함한다. 결함 검출은 장치가 완전히 제조되지 않은 경우에 착수된다. 상기 방법은 기판의 제 1 영역의 적어도 일부분의 이미지를 획득하는 단계를 더 포함한다. 이러한 단계는 기판의 제 2 영역을 충전하고 제 1 영역을 영상화하는 단계를 포함한다. 제 2 영역은 제 1 영역을 둘러싸고 있다. 그리고, 획득된 이미지는 패턴된 기판내 임의의 결함을 확인하기 위해 (예를 들어, 인간의 이미지 조사에 의해 또는 프로세서를 이용하여 자동으로) 기준과 비교된다.
이미지의 전압 콘트라스트 품질은 임의의 하나 이상의 스캔 영역 크기, 스캔 속도, 빔 선량, 빔 전류, 빔 에너지, (예를 들어, 렌즈의 초점을 흐리게 하는 것에 의한) 빔스폿 크기, 웨이퍼 처크 바이어스전압, 전하 제어판 바이어스 전압, 에너지 필터 전압, 및 회로 패턴에 관련되는 스캔 방향을 조정함으로써 최적화될 수도 있다. 제 1 및 제 2 영역의 스캔을 위한 세팅이 동일할 필요는 없다.
추가적인 실시예에 따르면, 전압 콘트라스트 품질을 최적화하는 방법은 미국특허출원 제08/892,734호(1997년 7월 15일 출원), 미국특허출원 제08/782,740호 (1997년 1월 13일 출원), 및 미국특허출원 제09/012,227호(1998년 1월 23일 출원)에 기술된 바와 같은 전하 제어장치를 이용한다. 웨이퍼 표면에 수직인 전계는 이미지 스캔(소영역 스캔) 및 프리차지 스캔동안 표면 충전을 제어하기 위해 웨이퍼를 사이에 두고 있는 2개 전극을 바이어스함으로써 발생될 수 있다. 영상화 및 프리차지 스캔동안 사용된 전계 강도는 다를 수 있다. 전압 콘트라스트 이미지는 또한 종래의 전자빔 프로버 실행을 따르는 작은 스캔동안 에너지 필터 전압을 조정함으로써 향상될 수 있다.
또다른 실시예에 따르면, 패턴된 기판내 결함을 검출하는 방법은 기판상으로 충전된 입자빔을 보내는 단계, 기판상에서 빔을 스캔하는 단계, 및 결과적인 전압 콘트라스트 이미지를 향상시키기 위해 빔의 파라미터를 최적화하는 단계를 포함한다. 빔의 파라미터를 최적화하는 단계는 성능 매트릭스를 생성하는 단계를 포함한다. 상기 방법은 또한 플러드 건으로부터의 플러드 빔으로 기판의 제 1 영역을 충전하는 단계 및 제 2 영역의 전압 콘트라스트 이미지를 획득하기 위해 제 1 건으로부터의 집속된 빔을 이용하여 제 1 영역에 둘러싸인, 기판의 제 2 영역에 질문하는 단계를 포함한다. 획득된 전압 콘트라스트 이미지는 패턴된 기판내 임의의 결함을 확인하기 위해 기준과 비교된다.
추가적인 실시예에 따르면, 전압 콘트라스트 이미지 및 이미지 획득 속도를 최적화하기 위한 방법은 충전된 입자빔을 제어하는 파라미터에 대한 상한 및 하한을 판정하는 단계를 포함한다. 상한은 가장 우수한 전압 콘트라스트 이미지가 생성되는 상위 제 1 영역 크기 및 산량을 한정하고, 하한은 이미지 획득속도가 최적화되는 하위 제 1 영역 크기 및 산량을 한정한다. 최고의 전압 콘트라스트 이미지는 다른 잠재적인 연결을 가지는 회로들간의 커다란 콘트라스트 차이를 가진다. 또한, 전압 콘트라스트는 동일한 잠재적인 연결의 회로의 FOV상에서 일관된 콘트라스트로 균일하다. 상기 방법은 또한각각의 제 1 영역 크기 및 선량에서 충전 오퍼레이션을 수행하기 위해 요구되는 시간과 전압 콘트라스트 품질을 나타내는 성능 매트릭스를 생성하는 단계, 및 요구된 전압 콘트라스트 품질에 기초하여 특정한 제 1 영역 크기 및 선량을 성능 매트릭스로부터 선택하는 단계를 포함한다.
본 발명의 또다른 실시예에 따르면, 패턴된 기판내 결함을 검출하는 장치는 충전된 입자빔 컬럼, 검출기, 및 적어도 하나의 프로세서를 포함한다. 충전된 입자빔은 기판의 제 1 영역을 충전하고 제 1 영역보다 작은 제 2 영역을 스캔하며, 제 2 영역의 이미지를 획득하기 위해 패턴된 기판을 조사한다. 충전된 입자빔이 제 1 영역을 충전할 때의 높은 진폭과 충전된 입자빔이 제 2 영역을 스캔할 대의 낮은 진폭에서 스캐너가 작동한다. 충전된 입자빔은 균일한 콘트라스트를 가지는 이미지를 생성하기 위해 제 2 영역을 스캔하기에 앞서 제 1 영역을 충전한다. 검출기는 기판으로부터 제 2 전자신호를 검출한다. 이러한 신호들은 제 2 영역의 이미지를 형성하기 위해 사용되고, 적어도 1개의 프로세서가 패턴된 기판내 결함을 확인하기 위해 기준과 획득된 이미지를 비교한다.
또다른 실시예에 따르면, 패턴된 기판내 결함 검출장치는 충전된 입자빔 컬럼, 기계식 스테이지, 검출기, 및 적어도 1개의 프로세서를 포함한다. 컬럼과 관련하여 상기 단계에서 패턴된 기판을 위치시킨다. 컬럼은 인-더-렌즈 플러드 건과 같은 플러드 건, 제 1 건, 및 주전계 및 부전계 가능출력을 가지는 커다란 FOV 렌즈와 같은 스캐너를 포함한다. 플러드 건은 기판의 제 1 영역을 충전하기 위해 플러드 빔을 방출하고, 제 1 건은 제 2 영역의 이미지를 획득하기 위해 제 1 영역보다 작은 제 2 영역을 스캔하기 위해 집속빔을 방출한다. 플러드 빔은 집속빔이 균일한 전압 콘트라스트를 가지는 이미지를 생성하기 위해 제 2 영역을 스캔하기전에 제 1 영역을 충전한다. 빔 스캐너는 플러드 빔이 제 1 영역을 충전하는 경우에 높은 진폭으로, 그리고 집속빔이 제 2 영역을 스캔하는 경우에 낮은 진폭으로 작용한다. 검출기에 의해 검출된 제 2 전자신호는 제 2 영역의 이미지를 형성하기 위해 프레임 그래버로 전송된다. 큰 FOV 대물렌즈의 경우, 스테이지를 제거할 필요가 있기전에 기판의 다른 부분상에서 다수의 이미지가 획득될 수 있다. 또다른 영역으로 이동하기전에 영역을 프리차치함으로써, 앞선 영역을 영상화함으로써 발생되는 인공물을 피할 수 있다. 상기한 단계들을 반복함으로써 각각의 프리차지 단계 사이에서 1 이상의 이미지가 획득될 수 있다. 적어도 1개의 프로세서는 패턴된 기판내 결함을 확인하기 위해 1 이상의 기준과 획득된 이미지를 비교한다.
따라서, 본 발명은 접촉부 또는 채워지지않은 바이어스와 같은 기판의 도전 또는 반도전 영역을 조사함으로써 불완전한 패턴된 기판내 결함을 검출하기 위한 방법 및 장치 모두를 제공한다. 특히, 본 발명은 결함의 검출을 촉진하는 이미지의 콘트라스트 및 균일성을 개선한다. 우수한 전압 콘트라스트 이미지는 이미지를 통한 균일한 배경 콘트라스트, FOV중 다른 영역에 위치한 경우 회로를 위한 일관된 콘트라스트, 및 다른 잠재적인 연결을 가지는 장치들간의 특이 전압 콘트라스트를 가진다. 우수한 전압 콘트라스트 이미지와 기준(예를 들어, 또다른 다이 또는 미리 저장된 이미지)과의 비교는 잘못된 결함을 일으키는 경향이 적다.
본 발명은 더 이해될 수도 있고, 첨부한 도면을 참조하여 당업자에게 그 다수의 목적, 특징, 및 이점이 명백해질 것이다.
다른 도면에서 동일한 참조부호의 사용은 유사 또는 동일한 구성요소를 나타낸다.
도 1은 패턴된(적어도 부분적으로 완성된) 반도체 웨이퍼의 조사에 적당한 본 발명에 따른 충전된 입자빔 조사수단(10)을 나타내고 있다. 수단(10)은 전자광학컬럼(12), X-Y 스테이지(14), 및 진공챔버(16)를 포함한다. 전자광학컬럼(12)은 예를 들어 지르코늄-텅스텐 캐소드와 함께, 최신의 SEMs(scanning electron microscopes)에서 사용된 형태의 TFE(Thermal Field Emission) 전자총과 같은 전자빔 소스(18)를 가진다. 전자총은 이온 펌프(20)에 의해 직접적으로 펌프된다. 전자총내 높은 진공은 최신 SEMs에서와 같이 차동 펌프 애퍼처(도시되지 않음)에 의해 챔버(16)와 컬럼(12)의 레스트로부터 분리된다. 제 1 빔 랜딩에너지는 예를 들어 500eV 내지 1.5keV 범위에서 조정가능하다. 예를 들어 ~500pA 내지 ~10nA 또는 25-50nA까지의 범위에서, 전자빔 콘덴서렌즈(26) 및 빔 제한 애퍼처(도시되지 않음)등을 이용하여, 웨이퍼 처크(24)상에 장착된 웨이퍼(22) 또는 시편에서의 빔 전류가 < 0.1㎛의 스폿 크기로 조정가능하다. 바이어스 소스(32)를 가지는 전하제어판(30) 및 바이어스 소스(28)를 가지는 웨이퍼 처크(24)과 함께 전자광학컬럼(12)은 LCCM(Local Charge Control Module)이다.
전자광학컬럼(12)은 공지된 VAIL(Variable Axix Immersion Lens)와 같은 큰 FOV(field of view) 전자빔 대물렌즈(34)를 포함한다. 대물렌즈(34)는 상업적으로 입수가능한 Schlumberger ATE IDS 5000 및 IDS 10000 전자빔 프로브 시스템에서 사용되는 것과 유사한 VAIL 렌즈가 될 수 있다. 예를 들어, 시편이 "마그네틱병"속에 있고 강한 정전용량 수집필드를 적용할 필요없이 제 2 전자의 충분한 수집 및 시준을 허용하는 경우, 렌즈는 마그네틱-침지형태가 된다. 강한 정전용량 수집필드는 불안정한 표면 충전을 발생시킬 수도 있고, 전압 콘트라스트를 향상시키기 위해 에너지 필터, 추출 전위, 및 독립적인 웨이퍼 바이어스의 최적화를 방해할 수 있기 때문에 바람직하지 않다. 렌즈(34)는 (30-100㎚와 같은) 고해상도로 큰 FOV(예를 들어 0.25㎜ 내지 1.5㎜ 교차)를 성취하기 위해 선편향 및 편향 코일(도시되지 않음) 모두가 장착될 수 있다. 한 실시예에서, 0.25-1.5㎜에 걸친 FOV는 < 50㎚의 해상도로 논증되었다.
대물렌즈(34)는 웨이퍼의 도전체의 전하상태를 질문하기 위한 신속한 영상화를 위해 저전압, 고해상도 제 1 영상화 빔과 프리차지 웨이퍼(22) 및 그 도전체를 위한 넓은 고전류 전자 플러드 빔 사이의 신속한 멀티플렉싱을 허용하는 플러드 빔 벤딩 전극(38)과 "인-더-렌즈" 전자 플러드 건(36)이 장착된다. 웨이퍼(22)를 손상시키지 않기 때문에, 저전압 제 1 영상화 빔이 적절하다. 또한, 제어가능한 충전은 저전압 빔과 함께 성취될 수 있다. 예를 들어 1㎒ 내지 100㎒의 화소 획득속도로 빠른 영상화가 수행된다. 상기한 공동계류중인 미국특허출원 제08/782,740호(1997년 1월 13일 출원), 미국특허출원 제09/012,227호(1998년 1월 23일 출원)에 적당한 플러드 건이 설명되어 있다. 웨이퍼 처크(24)와 전하제어판(30) 및 그 각각의 바이어스 소스(28,32)와 결합하여 플러드 건(36)은 GCCM(Global Charge Control Module)이 된다. 대안에서, 제 1 빔은 웨이퍼의 도전체의 프리차지 및 웨이퍼의 영상화 모두를 위해 사용된다.
제 2 전자는 표면상에서 제 1 빔을 래스터-스캔함으로써 웨이퍼(22)의 표면에서 생성된다. 이들 제 2 전자는 렌즈 필드에 의해 수집되고, 렌즈(26) 구경을 통해 되돌아오며, 종래의 Wien 필터(40)에 의해 제 1 전자빔으로부터 분리되고, 이는 마그네틱계와 전계를 교차했다. 그리고, 제 2 전자는 Evahart-Thornley 검출기로서 알려진 섬광제-PMT 결합과 같은 전자 검출기(42)에 의해 검출된다. 다른 검출기 조합이 이용될 수도 있다. 플러드 빔이 사용중인 경우 생성된 강한 제 2 전자전류로부터 빠른 노화 및 손상에 대해 전자 검출기(42)를 보호하기 위해 유리하게 설비가 이뤄진다. 검출기(42)는 스캔된 시편 구역의 이미지를 형성하기 위해 사용될 수 있는 신호를 공급한다.
도 1에서, 바이어스 소스(32)로부터 전하제어판(30)으로, 그리고 바이어스 소스(28)로부터 웨이퍼 처크(24)로 독립적인 바이어스 전압을 적용하기 위한 설비가 준비되어 있다. 웨이퍼 처크(24)에 적용된 바이어스 전압은 웨이퍼(22)의 기판에 효과적으로 적용된다. 이들 바이어스 전압은 검출될 결함의 타입 및 영상화되는 웨이퍼의 타입에 따라 전압 콘트라스트를 최적화하기 위해, 요구되는 경우 컴퓨터 제어하에서 독립적으로 설정될 수 있다. 상기한 동시계류중인 미국특허출원 제08/892,734호(1997년 7월 15일 출원)에서 좀더 상세하게 설명한 바와 같이, 상기 시스템은 양 또는 음의 웨이퍼 표면 전압을 생성하도록 작동될 수 있다. 웨이퍼 바이어스는 또한 웨이퍼(22)의 표면에서 독립적으로 빔 랜딩 에너지를 변화시키기 위해 사용될 수 있다. 예를 들어 규화물과 같은 박막층을 가지는 일부 웨이퍼가 빔 펀치스루로부터 다른 층에 대한 전하 누출을 방지하기 위해 해상도를 손상시키지 않고서 낮은 랜딩 에너지를 요구하는 것이 바람직하다.
렌즈(34) 구경에는 바이어스 전압 소스(46)를 가지는, 에너지 필터 메시라고도 불리우는 평탄한 필터 전극(44)이 장착된다. 전극(44)은 상기한 Schlumberger IDS 5000 및 IDS 10000 시스템에서와 같이, 지연 필드 전자에너지 분광계로서 작용한다. 예를 들어 웨이퍼에서 0 내지 ~15eV 에너지 오프된 범위에서의 특정 지연 전위 또는 에너지 범위를 이용하여 제 2 전자를 수집함으로써 특정한 웨이퍼 타입을 위해 전압 콘트라스트를 최적화하기 위해 에너지 필터가 이용될 수 있다.
X-Y 스테이지(14)는 예를 들어 핸들에 장비된 종래의 고속 웨이퍼 스테이지, 예를 들어 최대 300㎜ 직경의 웨이퍼이고, 웨이퍼의 전체 상위면의 조사를 허용한다. 웨이퍼(22)는 종래의 정전형 처크와 같은 웨이퍼 처크(24)상에 지지된다. 일반적으로, 스테이지(14)는 진공환경에서 사용하기에 적당해야 한다. 스테이지(14)는: (1) 원치않는 빔 편향 및 렌즈 간섭을 최소화하고; (2) 청정실 호환성 표준을 만족시키며; (3) 적절한 정확성을 성취하도록 설계된다. 스테이지(14)는 최대의 가능한 범위의 결함의 검출을 가능하게 하기 위해 정밀한 스캐닝 및 단계화된 오퍼레이션뿐만 아니라 고속 오퍼레이션도 가능하다. 예를 들어, 스테이지는 < 0.3초의 침강시간, 100㎜/s의 선형속도, 및 ~0.1㎛ 이내의 위치 정확성을 검추랗기 위한 레이저-간섭계 피드백을 가질 수도 있다. 스테이지(14)상의 웨이퍼(22)의 정렬 및 오퍼레이션에 대한 추가적인 세부사항이 상기한 동시계류중인 본 출원과 동일자로 출원된 미국특허출원 제 호(대리인 명세서 제65.0293호)에 나타나 있다.
수단(10)의 진공챔버(16)는 무유 배킹(backing) 펌프(도시되지 않음) 및 터보 펌프(48)에 의해 직접적으로 펌프된 진공이다. 진공챔버(16)는 신속한 스테이지(14)의 가속 및 감속에 기인하여 예언적으로 이동을 중단하고 또한 환경적인 진동을 중지하는 활성 진동분리 플랫폼(50)상에 장착된다. 종래의 웨이퍼 로드로크 서브시스템(loadlock subsystem)(52)은 시간이 경과함에 따른 웨이퍼 변경을 최소화하고 주진공챔버가 긴 주기를 위한 1E-6 Torr와 같은 고진공으로 유지되도록 하기 위해 포함된다. 진공(16)에서 유지시키는 것은 또한 웨이퍼의 탄화수소 오염을 최소화한다. 웨이퍼 로드로크 서브시스템(52)은 일반적으로 웨이퍼 카세트(54)로부터의 자동적인 웨이퍼의 로딩 및 언로딩을 위해 웨이퍼 처리로봇을 포함한다.
도 2는 충전된 입자빔 조사수단(10)의 블럭도이다. 대개 종래의 것인 이미지 처리 서브시스템(56)은 이미지 정렬 및 이미지 비교를 위해 데이터 처리를 수행한다. Mercury Computer Systems of Chelmsford(Massachusetts)의 적절하게 프로그램된 멀티프로세서-어레이 컴퓨터와 같은 이미지 처리 서브시스템은 비디오 입출력보드, 프로세서 어레이, RAM, 및 큰 디스크 기억장치를 포함한다. 예를 들어, 이미지 처리 서브시스템(56)은 검출 데이터 및 기준 이미지 저장을 위해 32개 300㎒ 파워 PC 프로세서, 4Gbytes의 RAM, 및 200Gbytes 디스크 기억장치의 어레이를 구비할 수 있다. 이미지 처리 서브시스템(56)은 메모리를 위한 셀대 셀 비교; 랜덤한 논리를 위한 다이대 기준 또는 다이대 다이 비교; 및 접촉부 및 다른 층을 위한 특징기반 비교를 포함하지만 그에 제한되지는 않는 종래의 이미지 처리 알고리즘 범위를 실행시키도록 프로그램될 수 있다. 특징기반 비교는 동시계류중인 본 출원과 동일자로 출원된 미국특허출원 제 호(대리인 명세서 제65.0288)에 좀더 상세하게 설명되어 있다.
결함 검출시스템(58)은 시스템 제어 소프트웨어(도시되지 않음) 및 윈도우 NT 운영시스템을 실행시키기는 펜티엄 프로세서 및 디스플레이(62)를 가지는 PC와 같은 제어 컴퓨터(60)를 포함한다. 결함 검출시스템(58)은 또한 상기한 시스템 구성요소를 작동시키기 위해 신호를 제공하기 위한 컴퓨터(60)의 제어하에서 제어 전자수단(64)를 포함한다. 결함 검출시스템(58)은 유리하게 미리 정해진 저장된 결함 검출방법에 기초한 자동화 공장 환경내 오퍼레이터 또는 실험실 또는 프로세스 개발 환경내 엔지니어에 의한 사용을 지원하기 위해 다중레벨의, 사용하기 쉽고, 그래픽적인 사용자 인터페이스(도시되지 않음)을 포함할 수도 있다. 종래의 소프트웨어는 시스템 제어, 이미지 처리, 자동 빔 셋업, 빔 정렬, 자동집속, 및 자동 비점수차 교정과 같은 기능을 위해 제공될 수 있다.
종래의 제어 전자수단(64)은 예를 들어, 이온 펌프 및 TFE 건 제어기(66), 진공 시퀀서(68), 에어로봇 제어기(70), 진공로봇 제어기(72), 로드 로크 제어기(74), 터보 펌프 제어기(76), 및 조압연 펌프 제어기(78)를 포함한다.
이미지 처리 서브시스템(56)은 전자광학 컬럼 제어기(82), 비디오 다지타이저(84), 기계식 스테이지 제어기(86), 빔 위치 및 기계식 스테이지 위치 피드백을 위한 간섭계 제어기(88), 디스플레이를 위해 컴퓨터(60)를 제어하기 위한 이미지 신호를 공급하기 위한 비디오 출력 스테이지(90), 및 VxWorks등과 같은 실시간 작동 시스템을 가지는 실시간 제어 컴퓨터(92)를 포함하는 이미지 캡처 프로세싱 전자공학수단(80)의 일부를 형성한다. 전자 검출기(42)(도 1)로부터의 신호는 자동초점 신호 성능을 가질 수도 있고 전자 검출기 신호를 비디오 다지타이저(84)로 전달하는 저소음 비디오 증폭기로 공급된다.
상기한 바와 같이, 수단(10)의 오퍼레이션동안 제 2 전자가 웨이퍼(22)의 표면에서 발생된다. 이들 제 2 전자의 일부는 렌즈(26)에 의해 재포착되고 전자 검출기(42)에 의해 검출되며, 상기 전자 검출기는 스캔된 웨이퍼 영역의 이미지를 형성하기 위해 신호를 발생한다. 다른 제 2 전자는 전극 및 에너지 필터 세팅에 따라 표면상으로 복귀된다. 이들 복귀된 제 2 전자의 일부는 전자 소스(18)의 제 1 빔의 영상화 영역 외부에 놓인다. 도 3은 이미지 영역(96) 외부의 포착되지 않은 제 2 전자에 의해 생성된 음충전된 영역(98) 및 이미지 영역(96)을 포함하는 웨이퍼의 일부를 나타내는 평면도이다. 이미지 영역(96)을 둘러싸는 영역을 음으로 충전하는 이들 제 2 전자는 후술되는 바와 같이, 영상화 영역상에서의 직접적인 MRF("micro" retarding field)의 개발에서 발생된다.
도 4a-4b는 FOV내 표면 충전 및 전압 콘트라스트에서 음전하를 둘러싸는 영향을 설명하는 웨이퍼의 컴퓨터 시뮬레이션을 나타내는 도면이다. 상기 시뮬레이션은 웨이퍼의 반경을 따른 r 및 컬럼축을 따른 z를 이용하여, 웨이퍼를 위한 r-z 평면에서 동일전위선을 나타내고 있다. 웨이퍼는 접지된 규소의 최상부상에 0.75㎛ 두께의 이산화규소층으로 구성된다. 웨이퍼는 충전되지 않은 FOV 영역을 둘러싸는 1㎜ 반경에 저장된 음의 표면전하를 가진다. 둘러싸고 있는 전하의 유일한 영향의 분석을 간소화하기 위해, 웨이퍼 처크 및 전하제어판 모두는 접지되고, FOV는 충전되지 않은 것으로 간주된다. FOV는 각각 -5x10-9C/㎠과 -4x10-9C/㎠의 주위 전하밀도를 가지고, 도 4a에서 0.05㎜ 반경 및 도 4b에서 0.5㎜ 반경을 가진다.
이들 시뮬레이션은 FOV 외부의 전하가 FOV의 최상부에 바로 MRF를 생성하는 것을 설명한다. 또한, MRF는 FOV가 더 작을 경우 더 강하다. 0.05㎜ 반경 FOV(도 4a)는 주위 영역에서 -1V의 전개에 기인하여 -0.38V MRF에서 발생된다. 실제로, 주위 영역에서 수 V 내지 10V의 전개가 종종 관찰된다. 강한 MRF의 설치는 이 영역을 좀더 음으로 충전하기 위해 이미지 영역(96)으로의 제 2 전자의 대부분을 지연시킨다. 이것은 정상대비를 축소시킨다. MRF는 또한 시뮬레이션 데이터에서 나타나는 바와 같이, 지연된 강도가 FOV상에서 다르기 때문에 비균일 충전을 유도할 수 있다. 고확대에서, MRF는 양전압 콘트라스트 모드를 음으로 스위치시킬 정도로 강하다. MRF는 또한 "고스트 특징"으로 나타나는 복잡한 충전 필드를 생성할 수 있다.
도 5a-5b는 MRF의 원치않는 결과를 설명하는 도면이다. 도 5a는 금속으로 채워진 바이어를 포함하는 반도체 웨이퍼의 극소 부분의 기준 이미지이다. +7V에서 웨이퍼 처크 및 접지 전위에서 전하제어판을 이용하여 역상대비모드에서 이미지가 취해졌다. 도 5b는 -25V에서 웨이퍼 처크 및 접지 전위에서 전하제어판을 이용하는 동일한 웨이퍼의 양전압 콘트라스트 이미지이다. 도 5a-5b가 다른 전압 콘트라스트 모드를 이용하여 취해졌지만, 2개 도면은 휘도만이 다를뿐 유사한 전압 콘트라스트를 표시한다. 강한 MRF 및 고확대 영상화는 도 5b의 전압 콘트라스트 이미지를 양에서 음으로 스위치했다. 또한, 도 5b에서 MRF는 콘트라스트가 더이상 균일하지 않도록 표면 충전을 변경했다. 이것은 잠깐 나타나는 바람직하지 않은 "고스트 특징"이 이미지의 하위부를 따라 연장되는 경우, 배경에서 가장 눈에 잘 띈다.
충전된 입자빔 조사수단(10)은 이미지 영역(96)을 영상화하기에 앞서 이미지 영역(96)을 둘러싸는 영역(100)(도 6)을 프리차지함으로써 도 5b의 MRF와 관련된 문제를 감소 또는 제거한다. 도 6에 도시된 바와 같이, 영역(100)은 이미지 영역(96)보다 크고, 그것을 포함하고 있다. 프리차지 영역(100)은 앞선 이미지 획득동안 디포지션된 음전하를 제거하여, MRF의 강도를 제거하거나 감소시킨다. 도 5c는 이미지 영역(96)을 영상화하기에 앞서 프리차지 영역(100)이 전압 콘트라스트 이미지를 개선하는 방법을 나타내고 있다. 도 5c의 이미지는 도 5b에서와 동일한 양전압 콘트라스트 모드 작동 조건 및 프리차지 영역(100)과 스캔 영역(96) 사이의 멀티플렉싱을 이용하여 획득되었다. 복귀된 제 2 전자의 영향을 제거하기 위해 이미지 스캔당 10 프리차지 스캔을 멀티플렉싱함으로써 이미지가 취해졌다. 프리차지 영역(100)은 이미지 영역(96)의 64배가 된다. 도 5c의 이미지는 바람직하게 어떠한 "고스트 특징"없이 균일한, 정상대비를 가진다. 큰 프리차지 영역(100)을 이용하여, MRF는 대수롭지 않게 되고, GCCM은 수 V 또는 그 이하의 요구된 전압이내로 표면 전위를 초래하기 위해 음성 피드백 루프 메카니즘을 효과적으로 제공한다.
도 7a-7b는 프리차지 영역(100)과 이미지 영역(96) 사이의 멀티플렉싱이 이미지의 전압 콘트라스트 품질을 개선하는 방법을 설명하고 있다. 도 7a는 이미지 영역(96)과 프리차지 영역(100) 사이의 멀티플렉싱을 이용하여 취해진 반도체 웨이퍼상의 다수의 SRAM 메모리 셀의 양전압 콘트라스트 이미지이다. 도 7b는 멀티플렉싱없이 취해진 동일한 메모리 셀의 양전압 콘트라스트 이미지이다. 도 7b에서보다 도 7a에서 가장 밝은 영역과 가장 어두운 영역 사이에 더 높은 정도의 콘트라스트가 있다. 또한, 도 7b의 이미지는 이미지의 하위부내 여러 도트가 흑이 된 것과 같은 잘못된 콘트라스트를 가진다.
이들 실시예는 MRF를 감소 또는 제거하기 위해 프리차지 영역(100)이 공통전압 콘트라스트 문제에 대한 효과적인 해결안이 된다는 것을 설명하고 있다. 프리차지 영역(100)과 이미지 영역(96) 사이의 멀티플렉싱은 전압 콘트라스트를 최적화하고, 시간이 경과하여 전압 콘트라스트가 퇴쇠되는 것을 방지하며, 고확대에서 전압 콘트라스트 모드 스위칭을 방지하고, 전하-주입된 "고스트" 특징 및 콘트라스트-사이트 종속성을 제거할 수 있다.
영역(100)은 수 개의 방법으로 프리차지될 수 있다. 한 실시예에서, 플러드 건(36)으로부터의 플러드 빔은 영역(100)을 프리차지한다. 대신, 전자소스(18)의 전자총으로부터의 제 1 빔은 이미지 영역(96)을 영상화하는 것에 추가로 영역(100)을 프리차지한다. 이론적으로, 영역(98)내 음충전을 감소할 수 있을 정도로 큰 스캔 영역(100)에 요구된다. 그러나, 더 큰 영역(100)을 스캔하는 단계는 더 긴 시간이 걸려서, 낮은 전하밀도때문에 처리량을 적게한다(예를 들어, 수단(10) 이미지 영역(96)의 이미지를 획득하는 속도).
본 발명에 따르면, 충전된 입자빔 조사수단(10)을 최적화하는 단계는 상기 수단을 위한 성능 매트릭스를 생성하는 단계 및 전압 콘트라스트 품질 및 처리율을 최대화하는 그들 파라미터를 선택하는 단계를 포함한다. 예를 들어, 도 8은 이미지의 전압 콘트라스트 및 상기 수단의 처리율(예를 들어 이미지 획득속도)을 최적화하기 위해 전자 선량 및 스캔 영역(100)을 조정하기 위한 흐름도를 나타내고 있다. 전자 선량은 처리율에 영향을 미치지 않고서 빔을 증가시킴으로써 증가될 수도 있다는 것에 주의해야한다. 제 1 단계(110)에서, 수단(10)은 패턴된 기판 또는 웨이퍼의 소영역의 이미지를 획득한다. 단계(112)에서, 오퍼레이터는 전압 콘트라스트 이미지내 개선이 대수롭지 않게 될 때까지 이미지 영역(96)으로부터 프리차지영역(100)의 크기를 증가시킴으로써 전압 콘트라스트를 평가한다. 이 시점에서, 프리차지 영역(100)내 빔의 선량 밀도는 프리차지 영역(100)내 전하를 효과적으로 제거하기에는 너무 낮다. 그리고 오퍼레이터는 전압 콘트라스트 이미지내 개선이 대수롭지 않게 될 때까지 프리차지 영역(100)의 크기를 일정하게 유지시키는 동안, 빔의 선량을 증가시킨다. 프리차지 영역(100)이 큰 경우, 오퍼레이터는 (단지 좁은 스캔선 대신) 전체 영역이 조사된다는 것을 보장하도록 큰 스폿 크기를 선택할 수도 있다. 프리차지 빔의 선량을 증가시키는 단계는 빔 전류 및/또는 스캔시간(즉, 빔이 온인 시간)을 증가시키는 단계를 포함한다. 이 실시예에서, 전류가 일정한 것으로 가정되는 것에 주의해야 한다. 이들 앞의 2단계는 전압 콘트라스트가 더 이상 개선되지 않을 때까지 반복되고, 최대 프리차지 영역 크기 및 선량이 기록된다. 최대 프리차지 영역 크기 및 선량은 최고 전압 콘트라스트 이미지를 이루기위한 상한을 표시한다.
다음 단계(114)에서, 오퍼레이터는 전압 콘트라스트를 희생하여 수단(10)의 처리율을 최적화한다. 최대 프리차지 영역 크기에서 시작하면, 오퍼레이터는 전압 콘트라스트 품질이 수용불가능할 때까지 선량을 그 최대값으로 유지하는 동안 프리차지 영역 크기를 감소시킨다. 오퍼레이터는 그 최소 프리차지 영역 크기를 기록한다. 그리고, 오퍼레이터는 프리차지 영역 크기를 그 최대 크기로 복귀하고, 전압 콘트라스트가 수용불가능할 때까지 최대 선량에서부터 선량을 감소시키며, 이 최소 선량을 기록한다.
일단 최대 및 최소 프리차지 영역 크기 및 선량이 얻어지면, 오퍼레이터는 단계(116)에서 성능 매트릭스를 생성한다. 성능 매트릭스는 최소값에서 최대값 범위의 각각의 프리차지 영역 크기 및 선량에서, 프리차지 영역 및 결과적인 전압 콘트라스트 품질을 스캔 또는 충전하기 위해 요구되는 시간을 나타낸다. 성능 매트릭스의 예가 표 1에 도시되어 있다. 요구된 전압 콘트라스트 품질에 기초하여, 단계(118)에서 오퍼레이터는 성능 매트릭스로부터 적절한 세팅을 선택한다. 만일 여러 세팅이 요구된 전압 콘트라스트 품질을 달성하는 경우, 오퍼레이터는 처리율을 최적화하기 위해 최소량의 프리차지 시간으로 적절하게 세팅을 선택해야한다. 예를 들어, 표 1에 도시된 실시예를 이용하여, 만일 우수한 전압 콘트라스트가 특수 조사를 위해 필요한 경우, 오퍼레이터는 오퍼레이션을 위해 2x10-10선량을 가지는 250x250㎛ 프리차지 영역을 선택해야 한다.
영역/선량 1x10-10C 2x10-10C 4x10-10C
100x100㎛ 30㎳/poor 60㎳/poor 90㎳/okay
150x150㎛ 30㎳/poor 60㎳/poor 90㎳/okay
200x200㎛ 30㎳/poor 60㎳/okay 90㎳/good
250x250㎛ 30㎳/okay 60㎳/good 90㎳/good
성능 매트릭스를 생성할 때, 표면 충전에 영향을 미치는 다수의 다른 "영향력 있는" 파라미터는 스캔 영역(96,100)을 조정하는 단계와 관련하여 고려되어야 한다. 이들 파라미터는 빔 에너지, 빔 전류, 스폿 크기(예를 들어, 빔의 초점을 흐리게 하여), 회로 패턴과 관련된 스캔 방향, 및 전하제어모듈(예를 들어, 웨이퍼 처크 바이어스 전압, 전하제어판 바이어스 전압, 및 에너지 필터 전압)을 포함한다. 다수의 파라미터가 있기 때문에, 그들 모두를 동시에 조정하는 것이 불가능하다. 다음은 이들 파라미터의 조정을 단순화하는 프로시저이다. 첫째, 오퍼레이터는 영역 스캔(100)없이, (열등한 콘트라스트 품질에서 검출될 수 있는 바와 같은) MRF 전개를 회피하거나 지연하기에 충분할 정도로 멀지만 다른 잠재적인 연결의 회로들 사이의 콘트라스트를 평가하는 것이 어렵게 될 정도로 멀지는 않도록 줌아웃하여 이미지를 획득한다. 오퍼레이터는 한번에 상기한 파라미터중의 하나를 변화시키고, 콘트라스트를 검사하며, 다른 회로들 사이에 우수한 콘트라스트를 제공하는 값을 선택한다. 오퍼레이터는 파라미터 각각에서 이러한 프로세스를 반복한다. 결과적인 값의 세트는 기준선으로서 사용된다. 오퍼레이터는 또한 전압 콘트라스트상에서의 그 영향면에서 상기 파라미터들을 랭크한다.
다음, 오퍼레이터는 표 1에 도시된 바와 같은 성능 매트릭스 프로시저를 "영향력 있는" 파라미터(예를 들어, 빔 에너지, 빔 전류 등) 조정 프로시저로 통합함으로써 전압 콘트라스트 품질을 최적화한다. 오퍼레이터는 기준선 파라미터로부터 시작하는 성능 매트릭스를 생성한다. 만일 매트릭스내 어떠한 콘트라스트 품질도 만족스럽지 못한 경우, 오퍼레이터는 최상의 결과를 생성하는 성능 매트릭스 파라미터를 선택해야 한다. 그리고, 오퍼레이터는 "영향력 있는" 리스트에서 가장 영향력 있는 것으로 먼저 확인된 파라미터를 조정한다. 최상의 결과를 제공하는 값으로 이 파라미터를 세팅한 후, 오퍼레이터는 리스트에서 다음으로 가장 영향력 있는 파라미터를 위해 이러한 프로시저를 반복할 필요가 있을 것이다. 오퍼레이터는 가장 만족스러운 파라미터가 발견되기전에 여러 파라미터를 위해 이들 프로시저를 반복할 필요가 있을 수도 있다.
도 9는 충전된 입자빔 조사수단(10)이 패턴된 기판 또는 웨이퍼내 결함을 검출하기 위해 사용하는 프로세스의 흐름도이다. 상기한 바와 같이, 제 1 단계(120)는 수단(10)의 처리율 및 이미지 품질을 최적화하기 위한 것이다. 단계(122)에서, 수단(10)은 전자소스(18)로부터의 제 1 빔 또는 플러드 빔을 이용하여 패턴된 기판의 프리차지 영역(100)을 스캔한다. 수단(10)이 프리차지 영역(100)을 스캔하는 경우, 컬럼(12)내 빔 편광기(도시되지 않음) 또는 한 세트의 X-Y 스캐너는 프리차지 영역(100)의 더 큰 영역에 미치기 위해 고진폭으로 작동한다. 단계(124)에서, 수단(10)은 이미지 영역(96)의 이미지를 획득하기 위해 제 1 빔을 이용하여 패턴된 기판의 이미지 영역(96)을 스캔한다. 상기한 바와 같이, 제 1 빔은 웨이퍼(22)의 손상을 막기 위해 일반적으로 500eV 내지 1.5keV 사이의 저전압에서 작동한다. X-Y 스캐너의 세트는 제 1 빔이 패턴된 기판의 고해상도 이미지를 얻기 위해 이미지 영역(96)을 스캔하는 경우 저진폭으로 작동한다. 적절한 실시예에서, 플러드 빔은 제 1 영상화 빔의 빔 전류의 적어도 4배의 빔 전류를 가지고, 이미지 영역(96)의 적어도 2배의 프리차지 영역(100)을 스캔한다. 단계(126)에서, 획득된 이미지는 패턴된 기판내 임의의 결함을 확인하기 위해 기준과 비교된다. 획득된 이미지가 비교되는 기준은 동일한 패턴된 기판의 또다른 부분, 다른 패턴된 기판, 또는 데이터베이스에 저장된 이미지가 될 수도 있다. 단계(128)에서, 수단(10)은 그것이 최종 이미지를 획득했는지 여부에 대해 질문한다. 만일 수단(10)이 최종 이미지를 획득하지 않았다면, 수단(10)은 단계(130)에서 다음 FOV로 이동하고, 전체적인 조사 프로세스가 완료될 때까지 반복 단계(122-128)가 반복된다. 수단(10)은 스테이지 이동 또는 큰 FOV 렌즈의 이미지 스캔 시프트에 의해 다음 FOV로 이동한다.
이미지를 획득하기에 앞서 주위 영역을 항상 프리차지하는 것이 바람직하지만, 새로운 위치 및 그 주위 영역에서의 일반적인 전위 분포가 별로 변경되지 않았을 수도 있으므로, 장치 또는 웨이퍼상의 새로운 위치에서 1차 이미지를 획득할 경우 영역을 프리차지할 필요가 없을 수도 있다. 새로운 위치에서 1차 이미지를 획득하기에 앞서 주위 영역을 프리차지할지 여부에 대한 결정은 최적화 프로세스로 인수화되어야 한다.
전압 콘트라스트 이미지내 통계적 소음을 감소시키기 위해, 때때로 동일한 영역의 다수 프레임 스캔을 획득하고 이들 이미지를 함께 평준화할 필요가 있다. 그러나, 각각의 프레임 스캔은 스캔된 영역의 표면 전위를 변경하고, 주위 영역상의 포착되지 않은 제 2 전자를 누적하여, 이미지 영역(96)의 전위를 특히 고확대 조사모드로 재빨리 변경하는 MRF를 형성하게 된다. MRF 및 이미지 영역(96)의 표면 전위에서의 변화와 함께, 이미지 프레임 데이터의 평준화는 부적절하게 되고, 결국 프리차지 영역(100)의 이점을 무효화하게 될 것이다.
표면 전위의 연속적인 변화에 대한 해결책은 이미지 영역(96)의 연속적인 이미지들 사이의 영역(100)을 프리차지하는 것이다. 한 실시예가 도 9 및 도 10에 설명되어 있다. 수단(10)은 이미지 영역(96)의 다수 이미지를 생성하기 위해 각각 단계(122) 및 단계(124)에서 스캔 프리차지 영역(100)과 이미지 영역(96) 사이에서 멀티플렉싱할 수 있다. 도 10은 수단(10)이 이미지 영역(96)의 다수 이미지를 생성하기 위해 넓은, 고전류 플러드 빔과 고해상도 제 1 영상화 빔 사이에서 멀티플렉스하는 방법을 나타내는 제어 파형을 나타내고 있다(가로축은 시간이다). 플러드 빔이 활성화되는 경우, 제 1 빔은 임시적으로 블랭크오프되고, 플러드 빔은 패턴된 기판상으로 편향된다. X-Y 스캐너는 플러드 빔 또는 제 1 영상화 빔이 활성화되는지 여부에 따라 고진폭과 저진폭 사이에서 스위치한다(도시되지 않음). 단계(122)는 각각의 단계(124)전에 삽입될 필요는 없지만 또다른 다중 영상화 프레임으로 이동하기전 다중 영상화 프레임(단계(124))후 삽입될 수 있다는 것에 주의해야 한다. 이들 획득된 이미지들의 회전하는 평균은 패턴된 기판내 결함을 식별하기 위해 기준과 비교될 수 있다. 대안적으로, 다수의 이미지가 간단한 수학식으로 평준화될 수 있다. 상기 수단이 MRF 및 패턴된 기판상의 다른 비대칭적 충전의 효과를 제거 또는 감소시키기 위해 최적화되었기 때문에, 결과적인 이미지는 향상된 콘트라스트로 매우 균일하다.
몇몇의 특수한 실시예를 참조하여 본 발명을 설명했지만, 상기 기재는 본 발명을 설명하기 위한 것이지 본 발명을 제한하는 것으로 파악되어서는 안된다. 예를 들어, 본 발명이 전압 콘트라스트 영상화에 대하여 설명되었지만, 종래의 SEMs 또는 다른 충전된 입자 현미경에 의해 생성된 이미지를 개선하기 위해 사용될 수도 있다. 또한, 프리차지를 위해 스캔된 플러드 빔을 이용할 필요는 없다. 대신, 프리차지 오퍼레이션을 수행하기 위해 플러드 건이 넓은 스캔되지 않은 빔을 이용하여 사용될 수 있다. 첨부된 특허청구범위에 의해 한정된 바와 같은 본 발명의 참정신 및 범주에서 벗어나지 않고서 당업자에 의해 다양한 수정이 있을 수도 있다.
상기한 방법에 의해 좀더 균일한 영상화 환경을 제공하고 결함 검출을 용이하게 할 수 있다.

Claims (47)

  1. 충전된 입자빔을 기판상으로 보내는 단계;
    기판상에서 빔을 스캔하는 단계;
    이미지 획득속도 및 결과적인 이미지의 콘트라스트 및 균일성을 개선하기 위해 빔의 파라미터를 최적화하는 단계;
    기판의 제 2 영역을 충전하고 제 1 영역을 영상화하는 단계를 포함하여, 기판으로부터의 충전된 입자로부터 기판의 제 1 영역의 적어도 일부분의 이미지를 획득하는 단계; 및
    패턴된 기판내 결함을 확인하기 위해 기준과 획득된 이미지를 비교하는 단계로 이루어지고,
    상기 제 2 영역은 제 1 영역을 포함하는 것을 특징으로 하는 패턴된 기판내 결함검출방법.
  2. 제 1 항에 있어서,
    파라미터를 최적화하는 단계는 스캔 영역 크기, 스캔 속도, 빔 선량, 빔 전류, 빔 에너지, 빔스폿 크기, 웨이퍼 처크 바이어스 전압, 전하제어판 바이어스전압, 에너지 필터 전압, 및 회로 패턴과 관련된 스캔 방향중의 적어도 하나를 최적화하는 단계를 포함하고, 제 1 및 제 2 영역에서 최적화된 파라미터는 동일할 필요는 없는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    파라미터를 최적화하는 단계는 이미지의 배경이 이미지를 통해 동일한 정도의 콘트라스트를 가지도록 이미지의 전압 콘트라스트를 개선하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    파라미터를 최적화하는 단계는 기판상의 회로가 동일한 잠재적 연결을 가지는 다른 회로와 동일한 정도의 콘트라스트를 가지도록 이미지의 전압 콘트라스트를 개선하는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    파라미터를 최적화하는 단계는 기판상의 회로가 제 1 영역내 어느 곳에 위치한 경우 동일한 전압 콘트라스트 일관성을 가지도록 이미지의 전압 콘트라스트를 개선하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    파라미터를 최적화하는 단계는 이미지의 가장 밝은 영역과 가장 어두운 영역 사이에 더 큰 편차가 있도록 이미지의 전압 콘트라스트를 개선하는 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서,
    파라미터를 최적화하는 단계는:
    이미지 획득속도가 최적화되는 각각의 낮은 빔 선량 및 낮은 제 2 영역 크기에서 최고 전압 콘트라스트 이미지가 생성되는 각각의 높은 빔 선량 및 높은 제 2 영역 크기까지 범위가 정해지는 빔 선량 및 제 2 영역 크기를 포함하는 성능 매트릭스를 생성하는 단계; 및
    요구된 전압 콘트라스트 품질에 기초하여 성능 매트릭스로부터 특정한 제 2 영역 크기 및 빔 선량을 선택하는 단계를 포함하고,
    상기 성능 매트릭스는 각각의 제 2 영역 크기 및 빔 선량에서 충전 오퍼레이션을 수행하기 위해 요구된 시간 및 전압 콘트라스트 품질을 나타내는 것을 특징으로 하는 방법.
  8. 제 6 항에 있어서,
    파라미터를 최적화하는 단계는:
    스캔 영역 크기, 스캔 속도, 빔 선량, 빔 전류, 빔 에너지, 빔스폿 크기, 웨이퍼 처크 바이어스 전압, 전하제어판 바이어스전압, 에너지 필터 전압, 및 회로 패턴과 관련된 스캔 방향중의 적어도 하나를 이용하여 성능 매트릭스를 생성하는 단계; 및
    요구된 전압 콘트라스트 품질에 기초하여 성능 매트릭스로부터 특정한 세팅을 선택하는 단계를 포함하고,
    상기 성능 매트릭스는 각각의 세팅에서 충전 오퍼레이션을 수행하기 위해 요구된 시간 및 전압 콘트라스트 품질을 나타내는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    기준은 데이터베이스, 또다른 패턴된 기판, 및 동일한 패턴된 기판의 다른 부분내 저장된 이미지중의 임의의 하나인 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서,
    빔은 전자빔 소스로부터 생성되는 것을 특징으로 하는 방법.
  11. 제 10 항에 있어서,
    제 1 영역을 영상화하기 위해 제 1 전자총으로부터 집속빔을 방출하는 단계 및 제 2 영역을 충전하기 위해 플러드 건으로부터 플러드 빔을 방출하는 단계를 포함하는 것을 특징으로 하는 방법.
  12. 제 11 항에 있어서,
    플러드 빔이 온인 경우 고진폭에서 스캔하고, 집속빔이 온인 경우 저진폭에서 스캔하는 단계를 포함하는 것을 특징으로 하는 방법.
  13. 제 1 항에 있어서,
    다수의 제 1 영역의 이미지를 획득하기 위해 제 2 영역을 충전하는 단계와 제 1 영역을 영상화하는 단계 사이를 교대하는 단계; 및
    다수의 이미지를 평준화하는 단계를 포함하는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서,
    다수의 이미지를 평준화하는 단계는 다수의 이미지의 순환 평균을 생성하는 단계를 포함하는 것을 특징으로 하는 방법.
  15. 제 13 항에 있어서,
    다수의 이미지를 평준화하는 단계는 간단한 수학적 평준화 단계를 포함하는 것을 특징으로 하는 방법.
  16. 충전된 입자빔을 기판상으로 보내는 단계;
    기판상에서 빔을 스캔하는 단계;
    성능 매트릭스를 생성하는 단계를 포함하여, 이미지 획득속도 및 획득된 이미지의 콘트라스트 및 균일성을 개선하기 위해 빔의 파라미터를 최적화하는 단계;
    플러드 건으로부터의 플러드 빔을 이용하여 기판의 제 1 영역을 충전하는 단계;
    제 2 영역의 전압 콘트라스트 이미지를 획득하기 위해 제 1 건으로부터의 집속빔을 이용하여 기판의 제 2 영역에 질문하는 단계; 및
    패턴된 기판내 결함을 확인하기 위해 기준과 획득된 전압 콘트라스트 이미지를 비교하는 단계로 이루어지고,
    상기 제 2 영역은 제 1 영역에 의해 포함되며,
    파라미터를 최적화하는 단계는 이미지의 배경이 이미지를 통해 동일한 정도의 콘트라스트를 가지고, 기판상의 회로가 동일한 잠재적 연결을 가지는 다른 회로와 동일한 정도의 콘트라스트를 가지며, 이미지의 가장 밝은 영역과 가장 어두운 영역 사이에 더 큰 편차가 존재하도록 획득된 이미지의 전압 콘트라스트를 개선하는 것을 특징으로 하는 패턴된 기판내 결함검출방법.
  17. 제 16 항에 있어서,
    성능 매트릭스 생성단계는:
    최고 전압 콘트라스트 이미지가 생성되는 플러드 빔을 위한 높은 빔 선량 및 높은 제 1 영역 크기를 판정하는 단계;
    이미지 획득속도가 최적화되는 플러드 빔을 위한 낮음 빔 선량 및 낮은 제 1 영역 크기를 판정하는 단계; 및
    낮은 제 1 영역 크기 내지 높은 제 1 영역 크기까지의 제 1 영역 크기 범위 및 낮은 빔 선량 내지 높은 빔 선량까지의 빔 선량 범위에서 충전 오퍼레이션을 수행하기 위해 요구된 시간 및 전압 콘트라스트 품질을 판정하는 단계를 포함하고,
    상기 낮은 제 1 영역 크기는 제 2 영역의 낮은 크기보다 큰 것을 특징으로 하는 방법.
  18. 제 17 항에 있어서,
    높은 제 1 영역 크기 및 높은 빔 선량을 판정하는 단계는:
    전압 콘트라스트 이미지내 개선이 검출불가능할 때까지 빔 선량을 일정하게 유지하는 동안 제 2 영역으로부터 제 1 영역 크기를 증가시키는 단계;
    전압 콘트라스트 이미지내 개선이 검출불가능할 때까지 제 1 영역 크기를 일정하게 유지시키는 동안 빔 선량을 증가시키는 단계; 및
    전압 콘트라스트 이미지내 개선이 검출불가능할 때까지 앞의 단계를 반복하는 단계를 포함하는 것을 특징으로 하는 방법.
  19. 제 18 항에 있어서,
    빔 선량을 증가시키는 단계는 플러드 빔의 빔 전류를 증가시키는 단계를 포함하는 것을 특징으로 하는 방법.
  20. 제 18 항에 있어서,
    빔 선량을 증가시키는 단계는 플러드 빔이 온인 시간을 증가시키는 단계를 포함하는 것을 특징으로 하는 방법.
  21. 제 17 항에 있어서,
    낮은 제 1 영역 크기 및 낮은 빔 선량을 판정하는 단계는:
    전압 콘트라스트 이미지가 수용불가능할 때까지 높은 빔 선량으로 빔 선량을 유지하는 동안 높은 제 1 영역 크기로부터 제 1 영역 크기를 감소시키는 단계; 및
    전압 콘트라스트 이미지가 수용불가능할 때까지 높은 제 1 영역 크기로 제 1 영역 크기를 유지하는 동안 높은 빔 선량으로부터 빔 선량을 감소시키는 단계를 포함하는 것을 특징으로 하는 방법.
  22. 제 21 항에 있어서,
    빔 선량을 감소시키는 단계는 플러드 빔의 빔 전류를 감소시키는 단계를 포함하는 것을 특징으로 하는 방법.
  23. 제 21 항에 있어서,
    빔 선량을 감소시키는 단계는 플러드 빔이 온인 시간을 감소시키는 단계를 포함하는 것을 특징으로 하는 방법.
  24. 제 17 항에 있어서,
    파라미터를 최적화하는 단계는 또한 요구된 전압 콘트라스트 품질에서 충전 오퍼레이션을 수행하기 위해 요구된 최소량의 시간에 대응하는 빔 선량 및 제 1 영역 크기를 성능 매트릭스로부터 선택하는 단계를 포함하는 것을 특징으로 하는 방법.
  25. 제 16 항에 있어서,
    제 1 영역은 제 2 영역 크기의 적어도 2배인 것을 특징으로 하는 방법.
  26. 제 16 항에 있어서,
    플러드 빔은 집속빔의 크기보다 적어도 4배 크기의 빔 전류를 가지는 것을 특징으로 하는 방법.
  27. 제 16 항에 있어서,
    충전된 입자빔은 전자빔 소스로부터 생성되는 것을 특징으로 하는 방법.
  28. 제 16 항에 있어서,
    제 1 영역을 충전할 경우 고진폭에서 스캔하고, 제 2 영역에 질문할 경우 저진폭에서 스캔하는 단계를 포함하는 것을 특징으로 하는 방법.
  29. 제 16 항에 있어서,
    다수의 제 2 영역 이미지를 획득하기 위해 제 1 영역을 충전하는 단계와 제 2 영역에 질문하는 단계 사이에서 교대하는 단계; 및
    다수의 이미지를 평준화하는 단계를 포함하는 것을 특징으로 하는 방법.
  30. 패턴된 기판내 결함검출방법에 있어서,
    전압 콘트라스트 이미지 및 이미지 획득속도를 최적화하는 단계는:
    최고 전압 콘트라스트 이미지가 생성되는 충전된 입자빔을 위한 높은 빔 선량 및 높은 제 1 영역 크기를 판정하는 단계;
    이미지 획득속도가 최적화되는 낮은 빔 선량 및 낮은 제 1 영역 크기를 판정하는 단계;
    낮은 제 1 영역 크기 내지 높은 제 1 영역 크기까지 범위를 갖는 제 1 영역 크기 및 낮은 빔 선량 내지 높은 빔 선량까지 범위를 갖는 빔 선량을 포함하는 성능 매트릭스를 생성하는 단계; 및
    요구된 전압 콘트라스트 품질에 기초하여 성능 매트릭스로부터 특정한 제 1 영역 크기 및 빔 선량을 선택하는 단계로 이루어지고,
    상기 낮은 제 1 영역 크기는 제 2 영역의 낮은 크기보다 크며,
    상기 성능 매트릭스는 각각의 제 1 영역 크기 및 빔 선량에서 충전 오퍼레이션을 수행하기 위해 요구된 시간 및 전압 콘트라스트 품질을 나타내고,
    상기 특정한 제 1 영역 크기 및 빔 선량은 균일한 전압 콘트라스트 이미지를 생성하는 것을 특징으로 하는 패턴된 기판내 결함검출방법.
  31. 제 30 항에 있어서,
    높은 제 1 영역 크기 및 높은 빔 선량을 판정하는 단계는:
    전압 콘트라스트 이미지내 개선이 수용불가능할 때까지 빔 선량을 일정하게 유지하는 동안 제 2 영역으로부터 제 1 영역 크기를 증가시키는 단계;
    전압 콘트라스트 이미지내 개선이 수용불가능할 때까지 제 1 영역 크기를 일정하게 유지시키는 동안 빔 선량을 증가시키는 단계; 및
    전압 콘트라스트 이미지내 개선이 수용불가능할 때까지 앞의 단계를 반복하는 단계를 포함하는 것을 특징으로 하는 방법.
  32. 제 31 항에 있어서,
    빔 선량을 증가시키는 단계는 플러드 빔의 빔 전류를 증가시키는 단계를 포함하는 것을 특징으로 하는 방법.
  33. 제 31 항에 있어서,
    빔 선량을 증가시키는 단계는 플러드 빔이 온인 시간을 증가시키는 단계를 포함하는 것을 특징으로 하는 방법.
  34. 제 30 항에 있어서,
    낮은 제 1 영역 크기 및 낮은 선량을 판정하는 단계는:
    전압 콘트라스트 이미지가 수용불가능할 때까지 높은 선량으로 빔 선량을 유지하는 동안 높은 제 1 영역 크기로부터 제 1 영역 크기를 감소시키는 단계; 및
    전압 콘트라스트 이미지가 수용불가능할 때까지 높은 제 1 영역 크기로 제 1 영역 크기를 유지하는 동안 높은 선량으로부터 빔 선량을 감소시키는 단계를 포함하는 것을 특징으로 하는 방법.
  35. 제 34 항에 있어서,
    빔 선량을 감소시키는 단계는 플러드 빔의 빔 전류를 감소시키는 단계를 포함하는 것을 특징으로 하는 방법.
  36. 제 34 항에 있어서,
    빔 선량을 감소시키는 단계는 플러드 빔이 온인 시간을 감소시키는 단계를 포함하는 것을 특징으로 하는 방법.
  37. 제 30 항에 있어서,
    제 1 영역 크기 및 빔 선량을 선택하는 단계는 요구된 전압 콘트라스트 품질에서 충전 오퍼레이션을 수행하기 위해 요구된 최소량의 시간에 대응하는 제 1 영역 크기 및 빔 선량을 선택하는 단계를 포함하는 것을 특징으로 하는 방법.
  38. 기판의 제 1 영역을 충전하기 위해 기판상으로 충전된 입자빔을 방출하고, 제 2 영역의 이미지를 획득하기 위해 기판의 제 2 영역을 스캔하는, 스캐너를 포함하는 충전된 입자빔 컬럼;
    제 2 영역의 이미지를 획득하기 위해 기판으로부터 제 2 전자신호를 검출하기 위한 컬럼내에 위치한 검출기; 및
    패턴된 기판내 결함을 확인하기 위해 획득된 이미지와 기준을 비교하는 적어도 하나의 프로세서로 이루어지고,
    상기 제 2 영역은 제 1 영역보다 작으며, 상기 스캐너는 충전된 입자빔이 제 1 영역을 충전하는 경우 고진폭에서, 그리고 충전된 입자빔이 제 2 영역을 스캔하는 경우 저진폭에서 작동하고,
    상기 충전된 입자빔은 이미지를 통해 균일한 콘트라스트를 가지는 이미지를 생성하기 위해 제 2 영역을 스캔하기에 앞서 제 1 영역을 충전하는 것을 특징으로 하는 패턴된 기판내 결함검출장치.
  39. 제 38 항에 있어서,
    컬럼은 전자빔 소스를 포함하는 것을 특징으로 하는 장치.
  40. 제 39 항에 있어서,
    컬럼은 플러드 건 및 제 1 전자총을 포함하고, 플러드 건은 제 1 영역을 충전하기 위해 플러드 빔을 방출하며, 제 1 전자총은 제 2 영역을 영상화하기 위해 저전압 집속빔을 방출하는 것을 특징으로 하는 장치.
  41. 제 39 항에 있어서,
    컬럼은 큰 FOV 렌즈를 포함하는 것을 특징으로 하는 장치.
  42. 제 39 항에 있어서,
    컬럼은 글로벌 및 로컬 전하제어모듈을 포함하는 것을 특징으로 하는 장치.
  43. 스캐너, 플러드 건 및 제 1 건을 포함하는 충전된 입자빔 컬럼;
    제 2 영역의 이미지를 획득하기 위해 기판으로부터 제 2 전자신호를 검출하기 위한 컬럼내에 위치한 검출기; 및
    패턴된 기판내 결함을 확인하기 위해 획득된 이미지와 기준을 비교하는, 검출기와 연결된 적어도 하나의 프로세서로 이루어지고,
    상기 플러드 건은 기판의 제 1 영역을 충전하기 위해 플러드 빔을 방출하고, 상기 제 1 건은 제 2 영역의 이미지를 획득하기 위해 기판의 제 2 영역을 스캔하기 위해 집속빔을 방출하며, 상기 제 2 영역은 제 1 영역보다 작고, 상기 스캐너는 플러드 빔이 제 1 영역을 충전하는 경우 고진폭으로, 그리고 집속빔이 제 2 영역을 스캔하는 경우 저진폭으로 작동하며,
    이미지의 배경이 이미지를 통해 동일한 정도의 콘트라스트를 가지고, 기판상의 회로가 동일한 잠재적인 연결을 가지는 다른 회로와 동일한 정도의 콘트라스트를 가지며, 이미지의 가장 밝은 영역과 가장 어두운 영역 사이에 더 큰 편차가 존재하도록 균일한 전압 콘트라스트를 가지는 이미지를 생성하기 위해 집속빔이 제 2 영역을 영상화하기전에 상기 플러드 빔이 제 1 영역을 충전하는 것을 특징으로 하는 패턴된 기판내 결함검출장치.
  44. 제 43 항에 있어서,
    플러드 건 및 제 1 건은 전자빔 소스인 것을 특징으로 하는 장치.
  45. 제 43 항에 있어서,
    컬럼은 큰 FOV 렌즈를 포함하는 것을 특징으로 하는 장치.
  46. 제 43 항에 있어서,
    컬럼은 글로벌 및 로컬 전하제어모듈을 포함하는 것을 특징으로 하는 장치.
  47. 제 43 항에 있어서,
    컬럼은 에너지 필터를 포함하는 것을 특징으로 하는 장치.
KR1019990064442A 1999-01-08 1999-12-29 저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트방법 및 장치 KR100653499B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9/227395 1999-01-08
US09/227395 1999-01-08
US09/227,395 US6344750B1 (en) 1999-01-08 1999-01-08 Voltage contrast method for semiconductor inspection using low voltage particle beam

Publications (2)

Publication Number Publication Date
KR20000052614A true KR20000052614A (ko) 2000-08-25
KR100653499B1 KR100653499B1 (ko) 2006-12-04

Family

ID=22852939

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990064442A KR100653499B1 (ko) 1999-01-08 1999-12-29 저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트방법 및 장치

Country Status (6)

Country Link
US (2) US6344750B1 (ko)
JP (2) JP2000208085A (ko)
KR (1) KR100653499B1 (ko)
DE (1) DE10000365B4 (ko)
FR (1) FR2791776B1 (ko)
TW (1) TW461964B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267903B2 (en) 2012-08-30 2016-02-23 Samsung Electronics Co., Ltd. Methods and apparatuses for inspecting semiconductor devices using electron beams

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189801B2 (ja) * 1998-08-28 2001-07-16 日本電気株式会社 半導体評価装置,これに用いる磁界検出器及びこの製造方法並びに半導体評価用プログラムを記憶した記憶媒体
US6897440B1 (en) 1998-11-30 2005-05-24 Fab Solutions, Inc. Contact hole standard test device
US6344750B1 (en) * 1999-01-08 2002-02-05 Schlumberger Technologies, Inc. Voltage contrast method for semiconductor inspection using low voltage particle beam
JP4066078B2 (ja) * 1999-05-27 2008-03-26 株式会社ニコン 写像型電子顕微鏡
US6545491B2 (en) * 1999-08-27 2003-04-08 Samsung Electronics Co., Ltd. Apparatus for detecting defects in semiconductor devices and methods of using the same
US6586736B1 (en) 1999-09-10 2003-07-01 Kla-Tencor, Corporation Scanning electron beam microscope having an electrode for controlling charge build up during scanning of a sample
JP3737656B2 (ja) * 1999-09-27 2006-01-18 株式会社東芝 荷電ビーム露光方法
JP2001156136A (ja) * 1999-11-30 2001-06-08 Jeol Ltd 荷電粒子ビームを用いたホールの検査方法
US7179661B1 (en) 1999-12-14 2007-02-20 Kla-Tencor Chemical mechanical polishing test structures and methods for inspecting the same
US6528818B1 (en) 1999-12-14 2003-03-04 Kla-Tencor Test structures and methods for inspection of semiconductor integrated circuits
US6445199B1 (en) 1999-12-14 2002-09-03 Kla-Tencor Corporation Methods and apparatus for generating spatially resolved voltage contrast maps of semiconductor test structures
US6633174B1 (en) 1999-12-14 2003-10-14 Kla-Tencor Stepper type test structures and methods for inspection of semiconductor integrated circuits
US6524873B1 (en) 1999-12-14 2003-02-25 Kla-Tencor Continuous movement scans of test structures on semiconductor integrated circuits
US6566885B1 (en) 1999-12-14 2003-05-20 Kla-Tencor Multiple directional scans of test structures on semiconductor integrated circuits
US6636064B1 (en) 1999-12-14 2003-10-21 Kla-Tencor Dual probe test structures for semiconductor integrated circuits
JP2001189263A (ja) * 1999-12-28 2001-07-10 Toshiba Corp 合わせずれ検査方法及び荷電ビーム露光方法
US6664546B1 (en) 2000-02-10 2003-12-16 Kla-Tencor In-situ probe for optimizing electron beam inspection and metrology based on surface potential
US7655482B2 (en) * 2000-04-18 2010-02-02 Kla-Tencor Chemical mechanical polishing test structures and methods for inspecting the same
US7235800B1 (en) * 2000-05-31 2007-06-26 Advanced Micro Devices, Inc. Electrical probing of SOI circuits
JP4034500B2 (ja) * 2000-06-19 2008-01-16 株式会社日立製作所 半導体装置の検査方法及び検査装置、及びそれを用いた半導体装置の製造方法
US7135676B2 (en) * 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
KR100875230B1 (ko) 2000-06-27 2008-12-19 가부시키가이샤 에바라 세이사꾸쇼 하전입자선에 의한 검사장치 및 그 검사장치를 사용한장치제조방법
KR100873447B1 (ko) * 2000-07-27 2008-12-11 가부시키가이샤 에바라 세이사꾸쇼 시트빔식 검사장치
US7067335B2 (en) * 2000-08-25 2006-06-27 Kla-Tencor Technologies Corporation Apparatus and methods for semiconductor IC failure detection
US6995393B2 (en) * 2000-08-25 2006-02-07 Kla-Tencor Technologies Corporation Apparatus and methods for semiconductor IC failure detection
DE10052198A1 (de) * 2000-10-20 2002-05-02 Akt Electron Beam Technology G Verfahren und Vorrichtung zum Testen von mikroelektronischen Komponenten
US6593152B2 (en) * 2000-11-02 2003-07-15 Ebara Corporation Electron beam apparatus and method of manufacturing semiconductor device using the apparatus
JP3732738B2 (ja) * 2000-12-08 2006-01-11 ファブソリューション株式会社 半導体デバイス検査装置
US20020085761A1 (en) * 2000-12-30 2002-07-04 Gary Cao Enhanced uniqueness for pattern recognition
DE10103061B4 (de) * 2001-01-24 2010-04-08 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Inspektion der Tiefe einer Öffnung in einer dielektrischen Materialschicht
US6589860B1 (en) * 2001-03-16 2003-07-08 Advanced Micro Devices, Inc. System and method for calibrating electron beam defect inspection tool
US6627884B2 (en) 2001-03-19 2003-09-30 Kla-Tencor Technologies Corporation Simultaneous flooding and inspection for charge control in an electron beam inspection machine
JP3698075B2 (ja) 2001-06-20 2005-09-21 株式会社日立製作所 半導体基板の検査方法およびその装置
US6642726B2 (en) * 2001-06-29 2003-11-04 Kla-Tencor Corporation Apparatus and methods for reliable and efficient detection of voltage contrast defects
US6784425B1 (en) * 2001-06-29 2004-08-31 Kla-Tencor Technologies Corporation Energy filter multiplexing
US6855568B2 (en) 2001-06-29 2005-02-15 Kla-Tencor Corporation Apparatus and methods for monitoring self-aligned contact arrays using voltage contrast inspection
US6732002B1 (en) 2001-08-23 2004-05-04 Kla-Tencor Corporation Apparatus and methods for predicting multiple product chip yields through critical area matching
US6861666B1 (en) 2001-10-17 2005-03-01 Kla-Tencor Technologies Corporation Apparatus and methods for determining and localization of failures in test structures using voltage contrast
US7280945B1 (en) 2001-10-17 2007-10-09 Kla-Tencor Technologies Corporation Apparatus and methods for detection of systematic defects
JP3859480B2 (ja) * 2001-10-17 2006-12-20 株式会社ルネサステクノロジ 検査方法
US6948141B1 (en) 2001-10-25 2005-09-20 Kla-Tencor Technologies Corporation Apparatus and methods for determining critical area of semiconductor design data
US6918101B1 (en) 2001-10-25 2005-07-12 Kla -Tencor Technologies Corporation Apparatus and methods for determining critical area of semiconductor design data
KR100435833B1 (ko) * 2001-11-29 2004-06-10 (주)가이아진 바이오칩 이미지 분석 시스템 및 그 방법
US6573736B1 (en) * 2002-01-09 2003-06-03 Taiwan Semiconductor Manufacturing Company Primary ion or electron current adjustment to enhance voltage contrast effect
JP3913555B2 (ja) * 2002-01-17 2007-05-09 ファブソリューション株式会社 膜厚測定方法および膜厚測定装置
JP2003332396A (ja) * 2002-05-13 2003-11-21 Mitsubishi Electric Corp 半導体装置の検査方法
US7129694B2 (en) 2002-05-23 2006-10-31 Applied Materials, Inc. Large substrate test system
US6774648B1 (en) 2002-05-23 2004-08-10 Kla-Tencor Technologies Corporation Apparatus and methods for optically detecting defects in voltage contrast test structures
DE10227332A1 (de) * 2002-06-19 2004-01-15 Akt Electron Beam Technology Gmbh Ansteuervorrichtung mit verbesserten Testeneigenschaften
US7038441B2 (en) * 2002-10-02 2006-05-02 Suss Microtec Testsystems Gmbh Test apparatus with loading device
US6903338B2 (en) * 2003-01-30 2005-06-07 Kla-Tencor Technologies Corporation Method and apparatus for reducing substrate edge effects in electron lenses
US7469057B2 (en) * 2003-02-26 2008-12-23 Taiwan Semiconductor Manufacturing Corp System and method for inspecting errors on a wafer
US6872942B1 (en) * 2003-04-01 2005-03-29 Kla-Tencor Technologies Corporation High-speed inspection of flat substrates with underlying visible topology
JP4154282B2 (ja) * 2003-05-14 2008-09-24 株式会社日立ハイテクノロジーズ 回路パターンの検査装置
US7132301B1 (en) * 2003-06-19 2006-11-07 Kla-Tencor Technologies Corporation Method and apparatus for reviewing voltage contrast defects in semiconductor wafers
US6931337B2 (en) * 2003-06-24 2005-08-16 International Business Machines Corporation Lithography tool image quality evaluating and correcting
JP5308624B2 (ja) * 2003-07-11 2013-10-09 アプライド マテリアルズ イスラエル リミテッド 基準構造素子を使用して構造素子の断面特徴を決定するためのシステム及び方法
DE602004021750D1 (de) * 2003-07-14 2009-08-13 Fei Co Zweistrahlsystem
US7466151B2 (en) * 2003-08-29 2008-12-16 Aisin Seiki Kabushiki Kaisha Electric-field distribution measurement method and apparatus for semiconductor device
US6828571B1 (en) * 2003-09-17 2004-12-07 Kla-Tencor Technologies Corporation Apparatus and methods of controlling surface charge and focus
EP1671346A2 (en) * 2003-09-23 2006-06-21 Zyvex Corporation Method, system and device for microscopic examination employing fib-prepared sample grasping element
US6952106B1 (en) * 2003-10-08 2005-10-04 National Semiconductor Corporation E-beam voltage potential circuit performance library
US7041976B1 (en) * 2003-11-03 2006-05-09 Kla-Tencor Technologies Corporation Automated focusing of electron image
JP4248382B2 (ja) 2003-12-04 2009-04-02 株式会社日立ハイテクノロジーズ 荷電粒子ビームによる検査方法および検査装置
US6980011B1 (en) * 2004-01-13 2005-12-27 Altera Corporation Method and apparatus for detecting electrical failures on a die through maximizing passive voltage contrast on its surface
US20060038554A1 (en) * 2004-02-12 2006-02-23 Applied Materials, Inc. Electron beam test system stage
US7355418B2 (en) * 2004-02-12 2008-04-08 Applied Materials, Inc. Configurable prober for TFT LCD array test
US7319335B2 (en) * 2004-02-12 2008-01-15 Applied Materials, Inc. Configurable prober for TFT LCD array testing
US6833717B1 (en) 2004-02-12 2004-12-21 Applied Materials, Inc. Electron beam test system with integrated substrate transfer module
CN1696652A (zh) * 2004-02-23 2005-11-16 塞威公司 带电粒子束装置探针操作
JP4537730B2 (ja) * 2004-02-25 2010-09-08 エスアイアイ・ナノテクノロジー株式会社 半導体検査方法及びそのシステム
US7326293B2 (en) * 2004-03-26 2008-02-05 Zyvex Labs, Llc Patterned atomic layer epitaxy
US7232997B2 (en) * 2004-04-15 2007-06-19 Nawotec Gmbh Apparatus and method for investigating or modifying a surface with a beam of charged particles
EP1587128B1 (en) 2004-04-15 2011-06-08 Carl Zeiss SMS GmbH Apparatus and method for investigating or modifying a surface with a beam of charged particles
KR100607410B1 (ko) * 2004-07-15 2006-08-02 삼성전자주식회사 기판 정렬 방법 및 장치, 이를 이용한 기판의 결함 검사방법 및 장치
US7075323B2 (en) * 2004-07-29 2006-07-11 Applied Materials, Inc. Large substrate test system
US7315022B1 (en) * 2004-08-02 2008-01-01 Kla-Tencor Technologies Corporation High-speed electron beam inspection
US7256606B2 (en) * 2004-08-03 2007-08-14 Applied Materials, Inc. Method for testing pixels for LCD TFT displays
US7067807B2 (en) * 2004-09-08 2006-06-27 Applied Materials, Israel, Ltd. Charged particle beam column and method of its operation
US7038474B2 (en) * 2004-09-24 2006-05-02 International Business Machines Corporation Laser-induced critical parameter analysis of CMOS devices
KR100567625B1 (ko) 2004-10-19 2006-04-04 삼성전자주식회사 결함 검사 방법 및 이를 수행하기 위한 장치
JP4842533B2 (ja) * 2004-10-27 2011-12-21 株式会社日立ハイテクノロジーズ 不良検査装置
JP4895569B2 (ja) 2005-01-26 2012-03-14 株式会社日立ハイテクノロジーズ 帯電制御装置及び帯電制御装置を備えた計測装置
US7235768B1 (en) * 2005-02-28 2007-06-26 United States Of America As Represented By The Secretary Of The Air Force Solid state vision enhancement device
US7253410B1 (en) 2005-03-16 2007-08-07 Kla-Tencor Technologies Corporation Charge-control pre-scanning for e-beam imaging
US7388218B2 (en) * 2005-04-04 2008-06-17 Fei Company Subsurface imaging using an electron beam
US7535238B2 (en) * 2005-04-29 2009-05-19 Applied Materials, Inc. In-line electron beam test system
US20060273815A1 (en) * 2005-06-06 2006-12-07 Applied Materials, Inc. Substrate support with integrated prober drive
KR100846783B1 (ko) * 2005-11-30 2008-07-16 삼성전자주식회사 불량기판 검출장치 및 방법
US7560939B1 (en) 2006-02-17 2009-07-14 Kla-Tencor Technologies Corporation Electrical defect detection using pre-charge and sense scanning with prescribed delays
US7569818B2 (en) * 2006-03-14 2009-08-04 Applied Materials, Inc. Method to reduce cross talk in a multi column e-beam test system
JP4812484B2 (ja) * 2006-03-24 2011-11-09 株式会社日立ハイテクノロジーズ ボルテージコントラストを伴った欠陥をレビューする方法およびその装置
US7602199B2 (en) * 2006-05-31 2009-10-13 Applied Materials, Inc. Mini-prober for TFT-LCD testing
US7786742B2 (en) * 2006-05-31 2010-08-31 Applied Materials, Inc. Prober for electronic device testing on large area substrates
JP4908934B2 (ja) * 2006-06-08 2012-04-04 株式会社日立ハイテクノロジーズ 半導体ウェーハ検査装置および半導体ウェーハ検査方法
US7488938B1 (en) * 2006-08-23 2009-02-10 Kla-Tencor Technologies Corporation Charge-control method and apparatus for electron beam imaging
JP4789260B2 (ja) * 2006-08-23 2011-10-12 エスアイアイ・ナノテクノロジー株式会社 荷電粒子ビーム装置及びアパーチャの軸調整方法
US20080099675A1 (en) * 2006-10-31 2008-05-01 Hitachi High-Technologies Corporation Inspection apparatus and an inspection method
US7525325B1 (en) * 2006-12-18 2009-04-28 Sandia Corporation System and method for floating-substrate passive voltage contrast
JP4876001B2 (ja) * 2007-03-06 2012-02-15 エルピーダメモリ株式会社 半導体デバイス評価方法及び半導体デバイス評価装置
US7917244B2 (en) * 2007-03-14 2011-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for reducing critical dimension side-to-side tilting error
JP5103050B2 (ja) * 2007-04-06 2012-12-19 株式会社日立ハイテクノロジーズ 電子線応用装置
US7835564B2 (en) * 2007-04-30 2010-11-16 International Business Machines Corporation Non-destructive, below-surface defect rendering using image intensity analysis
US7453273B1 (en) * 2007-05-16 2008-11-18 Xilinx, Inc. Method and apparatus for analyzing current in an integrated circuit under test
JP4606443B2 (ja) * 2007-08-10 2011-01-05 株式会社日立製作所 荷電粒子線を用いた回路パターン用基板検査方法および基板検査装置
JP2009099540A (ja) * 2007-09-27 2009-05-07 Hitachi High-Technologies Corp 試料の検査,測定方法、及び走査電子顕微鏡
US7994476B2 (en) * 2007-11-05 2011-08-09 Applied Materials Israel, Ltd. Apparatus and method for enhancing voltage contrast of a wafer
US8525123B2 (en) * 2008-01-14 2013-09-03 International Business Machines Corporation Charging-free electron beam cure of dielectric material
JP4728361B2 (ja) * 2008-03-06 2011-07-20 株式会社日立製作所 荷電粒子線を用いた基板検査装置および基板検査方法
US7858955B2 (en) * 2008-06-25 2010-12-28 Axcelis Technologies, Inc. System and method of controlling broad beam uniformity
CN101929965B (zh) * 2008-09-04 2012-09-05 汉民微测科技股份有限公司 带电粒子检测装置及检测方法
US8884224B2 (en) * 2009-04-08 2014-11-11 Hermes Microvision, Inc. Charged particle beam imaging assembly and imaging method thereof
JP5702552B2 (ja) * 2009-05-28 2015-04-15 エフ イー アイ カンパニFei Company デュアルビームシステムの制御方法
JP2011154918A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp 荷電粒子線装置
JP5188529B2 (ja) * 2010-03-30 2013-04-24 株式会社日立ハイテクノロジーズ 電子ビーム照射方法、及び走査電子顕微鏡
US8791414B2 (en) * 2010-04-21 2014-07-29 Hermes Microvision, Inc. Dynamic focus adjustment with optical height detection apparatus in electron beam system
US8841933B2 (en) * 2010-09-09 2014-09-23 International Business Machines Corporation Inspection tool and methodology for three dimensional voltage contrast inspection
JP5341924B2 (ja) 2011-01-28 2013-11-13 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
US9046475B2 (en) * 2011-05-19 2015-06-02 Applied Materials Israel, Ltd. High electron energy based overlay error measurement methods and systems
DE102013011491A1 (de) * 2013-07-09 2015-01-29 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Partikelstrahlmikroskops und Partikelstrahlmikroskop
DE112014007346B4 (de) 2013-09-26 2024-05-23 Hitachi High-Tech Corporation Mit einem Strahl geladener Teilchen arbeitende Vorrichtung
CN103811369B (zh) * 2013-10-21 2016-09-07 上海华力微电子有限公司 铜连接孔刻蚀不足缺陷在线检测方法
US9165742B1 (en) 2014-10-10 2015-10-20 Kla-Tencor Corporation Inspection site preparation
US9799575B2 (en) 2015-12-16 2017-10-24 Pdf Solutions, Inc. Integrated circuit containing DOEs of NCEM-enabled fill cells
US10199283B1 (en) 2015-02-03 2019-02-05 Pdf Solutions, Inc. Method for processing a semiconductor wager using non-contact electrical measurements indicative of a resistance through a stitch, where such measurements are obtained by scanning a pad comprised of at least three parallel conductive stripes using a moving stage with beam deflection to account for motion of the stage
DE102015202172B4 (de) * 2015-02-06 2017-01-19 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zur teilchenoptischen Untersuchung eines Objekts
US10643819B2 (en) 2015-03-24 2020-05-05 Kla-Tencor Corporation Method and system for charged particle microscopy with improved image beam stabilization and interrogation
US10978438B1 (en) 2015-12-16 2021-04-13 Pdf Solutions, Inc. IC with test structures and E-beam pads embedded within a contiguous standard cell area
US10593604B1 (en) 2015-12-16 2020-03-17 Pdf Solutions, Inc. Process for making semiconductor dies, chips, and wafers using in-line measurements obtained from DOEs of NCEM-enabled fill cells
US9905553B1 (en) 2016-04-04 2018-02-27 Pdf Solutions, Inc. Integrated circuit containing standard logic cells and library-compatible, NCEM-enabled fill cells, including at least via-open-configured, AACNT-short-configured, GATECNT-short-configured, and metal-short-configured, NCEM-enabled fill cells
US9627370B1 (en) 2016-04-04 2017-04-18 Pdf Solutions, Inc. Integrated circuit containing standard logic cells and library-compatible, NCEM-enabled fill cells, including at least via-open-configured, GATE-short-configured, GATECNT-short-configured, and TS-short-configured, NCEM-enabled fill cells
US9929063B1 (en) 2016-04-04 2018-03-27 Pdf Solutions, Inc. Process for making an integrated circuit that includes NCEM-Enabled, tip-to-side gap-configured fill cells, with NCEM pads formed from at least three conductive stripes positioned between adjacent gates
US10460903B2 (en) * 2016-04-04 2019-10-29 Kla-Tencor Corporation Method and system for charge control for imaging floating metal structures on non-conducting substrates
JP6885576B2 (ja) * 2017-01-19 2021-06-16 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
US9748153B1 (en) 2017-03-29 2017-08-29 Pdf Solutions, Inc. Process for making and using a semiconductor wafer containing first and second does of standard cell compatible, NCEM-enabled fill cells, with the first DOE including side-to-side short configured fill cells, and the second DOE including tip-to-side short configure
US9773774B1 (en) 2017-03-30 2017-09-26 Pdf Solutions, Inc. Process for making and using a semiconductor wafer containing first and second DOEs of standard cell compatible, NCEM-enabled fill cells, with the first DOE including chamfer short configured fill cells, and the second DOE including corner short configured fill cells
US9768083B1 (en) 2017-06-27 2017-09-19 Pdf Solutions, Inc. Process for making and using a semiconductor wafer containing first and second DOEs of standard cell compatible, NCEM-enabled fill cells, with the first DOE including merged-via open configured fill cells, and the second DOE including snake open configured fill cells
US9786649B1 (en) 2017-06-27 2017-10-10 Pdf Solutions, Inc. Process for making and using a semiconductor wafer containing first and second DOEs of standard cell compatible, NCEM-enabled fill cells, with the first DOE including via open configured fill cells, and the second DOE including stitch open configured fill cells
US9865583B1 (en) 2017-06-28 2018-01-09 Pdf Solutions, Inc. Process for making and using a semiconductor wafer containing first and second DOEs of standard cell compatible, NCEM-enabled fill cells, with the first DOE including snake open configured fill cells, and the second DOE including stitch open configured fill cells
US10096530B1 (en) 2017-06-28 2018-10-09 Pdf Solutions, Inc. Process for making and using a semiconductor wafer containing first and second DOEs of standard cell compatible, NCEM-enabled fill cells, with the first DOE including merged-via open configured fill cells, and the second DOE including stitch open configured fill cells
US10578669B2 (en) * 2017-07-10 2020-03-03 Deny Hanan Portable device for soft errors testing
KR102650064B1 (ko) * 2017-09-29 2024-03-22 에이에스엠엘 네델란즈 비.브이. 다중 하전 입자 빔으로 샘플을 검사하는 방법
US11232929B2 (en) 2018-04-25 2022-01-25 Hitachi High-Tech Corporation Method for determining irradiation conditions for charged particle beam device and charged particle beam device
US20200194223A1 (en) * 2018-12-14 2020-06-18 Kla Corporation Joint Electron-Optical Columns for Flood-Charging and Image-Forming in Voltage Contrast Wafer Inspections
KR20210092815A (ko) * 2018-12-31 2021-07-26 에이에스엠엘 네델란즈 비.브이. 멀티 빔을 갖는 인-렌즈 웨이퍼 사전-충전 및 검사
US11133152B2 (en) 2019-03-21 2021-09-28 Applied Materials, Inc. Methods and apparatus for performing profile metrology on semiconductor structures
US11035899B2 (en) * 2019-05-15 2021-06-15 Globalfoundries Singapore Pte. Ltd. System for detection of passive voltage contrast
US20220270849A1 (en) * 2019-08-30 2022-08-25 Asml Netherlands B.V. Photo-electrical evolution defect inspection
TWI834015B (zh) * 2019-12-19 2024-03-01 荷蘭商Asml荷蘭公司 帶電粒子多射束系統及相關的非暫時性電腦可讀媒體
JP7458958B2 (ja) * 2020-10-14 2024-04-01 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417203A (en) * 1981-05-26 1983-11-22 International Business Machines Corporation System for contactless electrical property testing of multi-layer ceramics
JPS593942A (ja) * 1982-06-29 1984-01-10 Toshiba Corp 半導体欠陥検査装置
US4843330A (en) * 1986-10-30 1989-06-27 International Business Machines Corporation Electron beam contactless testing system with grid bias switching
JPS63150844A (ja) * 1986-12-16 1988-06-23 Toshiba Corp 画像改善方法
EP0504944B1 (en) * 1991-03-22 1998-09-23 Nec Corporation Method of analyzing fault using electron beam
JP3148353B2 (ja) 1991-05-30 2001-03-19 ケーエルエー・インストルメンツ・コーポレーション 電子ビーム検査方法とそのシステム
JPH053011A (ja) * 1991-06-21 1993-01-08 Sanyo Electric Co Ltd 電子顕微鏡装置
JP2768069B2 (ja) * 1991-08-20 1998-06-25 日本電気株式会社 集積回路の故障解析方法
JP2911281B2 (ja) * 1991-11-27 1999-06-23 株式会社日立製作所 電子線装置およびその観察方法
JPH05205688A (ja) * 1992-01-28 1993-08-13 Toshiba Corp 走査型電子顕微鏡
JP3730263B2 (ja) 1992-05-27 2005-12-21 ケーエルエー・インストルメンツ・コーポレーション 荷電粒子ビームを用いた自動基板検査の装置及び方法
US5401972A (en) 1993-09-02 1995-03-28 Schlumberger Technologies, Inc. Layout overlay for FIB operations
US5493116A (en) 1993-10-26 1996-02-20 Metrologix, Inc. Detection system for precision measurements and high resolution inspection of high aspect ratio structures using particle beam devices
JP3478612B2 (ja) * 1993-11-16 2003-12-15 浜松ホトニクス株式会社 半導体デバイス検査システム
JPH09184715A (ja) * 1995-12-28 1997-07-15 Hitachi Ltd パターン形状検査装置
JPH09270447A (ja) * 1996-03-29 1997-10-14 Toshiba Corp 結晶欠陥検出装置
JPH09320505A (ja) * 1996-03-29 1997-12-12 Hitachi Ltd 電子線式検査方法及びその装置並びに半導体の製造方法及びその製造ライン
KR19980021213A (ko) * 1996-09-14 1998-06-25 김광호 반도체 웨이퍼 상의 결함 검사방법
US5945833A (en) * 1996-11-27 1999-08-31 University Of Massachusetts Method for testing semiconductor devices which measures internal potential distribution, internal electric field, and internal doping profile
JP4657394B2 (ja) * 1997-01-13 2011-03-23 シュルンベルジェ テクノロジーズ, インコーポレイテッド ウエハにおける欠陥を検知する方法及び装置
US5869833A (en) * 1997-01-16 1999-02-09 Kla-Tencor Corporation Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
JPH11174008A (ja) * 1997-12-15 1999-07-02 Hitachi Ltd 荷電粒子装置
US6232787B1 (en) * 1999-01-08 2001-05-15 Schlumberger Technologies, Inc. Microstructure defect detection
US6344750B1 (en) * 1999-01-08 2002-02-05 Schlumberger Technologies, Inc. Voltage contrast method for semiconductor inspection using low voltage particle beam
US6252412B1 (en) * 1999-01-08 2001-06-26 Schlumberger Technologies, Inc. Method of detecting defects in patterned substrates
CN1122281C (zh) * 2001-06-30 2003-09-24 深圳市朗科科技有限公司 一种多功能半导体存储装置
JP5869979B2 (ja) * 2012-07-25 2016-02-24 矢崎総業株式会社 端子付き電線

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267903B2 (en) 2012-08-30 2016-02-23 Samsung Electronics Co., Ltd. Methods and apparatuses for inspecting semiconductor devices using electron beams

Also Published As

Publication number Publication date
DE10000365B4 (de) 2010-07-01
TW461964B (en) 2001-11-01
US6566897B2 (en) 2003-05-20
US6344750B1 (en) 2002-02-05
JP2012104836A (ja) 2012-05-31
FR2791776B1 (fr) 2003-03-14
JP5539294B2 (ja) 2014-07-02
JP2000208085A (ja) 2000-07-28
US20020149381A1 (en) 2002-10-17
FR2791776A1 (fr) 2000-10-06
DE10000365A1 (de) 2000-07-13
KR100653499B1 (ko) 2006-12-04

Similar Documents

Publication Publication Date Title
KR100653499B1 (ko) 저전압 입자빔을 이용한 반도체 조사용 전압 콘트라스트방법 및 장치
KR100707542B1 (ko) 마이크로구조 결함 검출방법 및 장치
US6586733B1 (en) Apparatus and methods for secondary electron emission microscope with dual beam
US5973323A (en) Apparatus and method for secondary electron emission microscope
JP3973372B2 (ja) 荷電粒子線を用いた基板検査装置および基板検査方法
JP2864347B2 (ja) 自己マスク型fibミリング
US6914441B2 (en) Detection of defects in patterned substrates
JP2007265931A (ja) 検査装置及び検査方法
US7218126B2 (en) Inspection method and apparatus for circuit pattern
KR19990068026A (ko) 집속 이온 빔에 의한 이차 이온 이미지 관찰방법
EP1183707B1 (en) Apparatus and methods for secondary electron emission microscopy with dual beam
US6297503B1 (en) Method of detecting semiconductor defects
US7132301B1 (en) Method and apparatus for reviewing voltage contrast defects in semiconductor wafers
JP2005203241A (ja) 荷電粒子ビーム観察方法及び荷電粒子ビーム装置
JP4178003B2 (ja) 半導体回路パターンの検査装置
US7049588B2 (en) Device for measuring the emission of X-rays produced by an object exposed to an electron beam
JPH0676778A (ja) 2次電子像表示方法および走査電子顕微鏡
JPH07153411A (ja) 電子ビーム観察方法および装置

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121030

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131030

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170929

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 13