KR20000045863A - Method for forming multilayer copper interconnect of semiconductor device - Google Patents

Method for forming multilayer copper interconnect of semiconductor device Download PDF

Info

Publication number
KR20000045863A
KR20000045863A KR1019980062459A KR19980062459A KR20000045863A KR 20000045863 A KR20000045863 A KR 20000045863A KR 1019980062459 A KR1019980062459 A KR 1019980062459A KR 19980062459 A KR19980062459 A KR 19980062459A KR 20000045863 A KR20000045863 A KR 20000045863A
Authority
KR
South Korea
Prior art keywords
forming
film
semiconductor device
depositing
tisin
Prior art date
Application number
KR1019980062459A
Other languages
Korean (ko)
Inventor
박대규
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980062459A priority Critical patent/KR20000045863A/en
Publication of KR20000045863A publication Critical patent/KR20000045863A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for forming a multilayer copper interconnect is to improve an electrical property of the copper interconnect by depositing and nitrifying a TaSix thin film to obtain a ternary system material of TiSiN. CONSTITUTION: A method for forming a multilayer copper interconnect of a semiconductor device comprises the steps of: forming a contact hole on a lower interlayer insulating film to expose an active area(12) of the semiconductor device; forming a first TiSiN film(30) by depositing a TaSi on an interlayer insulating film having the contact hole thereon and accomplishing a high temperature nitrification to form the first TiSiN film; forming a lower interconnect by depositing a copper(32) on the first TiSiN film to fill the contact hole and forming an oxidization preventing film(34) thereon; forming an upper interlayer insulating film(22) on a resulted product and forming a via on the film to make a part of the lower interconnect to be exposed; forming a second TiSiN film(36) by depositing a TaSi on the via and nitrifying it under a low temperature nitrogen atmosphere; and forming an upper interconnect by depositing a copper(38) on the second TiSiN film to fill the contact hole and forming thereon the oxidization preventing film.

Description

반도체소자의 다층 구리 배선 형성방법Method for forming multilayer copper wiring of semiconductor device

본 발명은 반도체장치의 금속 배선 형성방법에 관한 것으로서, 특히 비저항이 작으며 신뢰성이 우수한 구리를 금속 배선용으로 이용할 때 구리 배선의 확산을 방지함으로써 구리 배선 공정의 신뢰성을 높일 수 있는 반도체소자의 다층 구리 배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming metal wiring in a semiconductor device. In particular, multilayer copper of a semiconductor device capable of increasing the reliability of a copper wiring process by preventing the diffusion of copper wiring when a copper having a low specific resistance and high reliability is used for metal wiring. It relates to a wiring forming method.

통상적으로 금속 배선으로 널리 사용되는 금속으로는 텅스텐, 알루미늄 및 알루미늄 합금 등이 있었다. 이 금속들은 비교적 용이하게 식각되므로 금속 배선을 형성하기 위하여 전면(blanket) 증착, 노광 및 식각 공정 등의 일련의 공정들을 거치게 된다.Typically, tungsten, aluminum, aluminum alloy, and the like are widely used as metal wirings. Since these metals are relatively easily etched, they go through a series of processes, such as blanket deposition, exposure and etching processes, to form metal interconnects.

최근에는, 반도체 소자가 점점 고집적화됨에 따라 금속 배선공정시 통상적으로 사용된 텅스텐, 알루미늄에 대비하여 비저항이 작으며 반도체 소자의 성능 향상, 예를 들어 RC 지연시간 감소와 신뢰성 향상에 유리한 장점을 가지고 있는 구리를 금속 배선 재료로 대체하고자 많은 연구가 이루어지고 있다.In recent years, as semiconductor devices have been increasingly integrated, their resistivity is lower than that of tungsten and aluminum, which are commonly used in metal wiring processes, and have advantages in improving the performance of semiconductor devices, for example, reducing RC delay time and improving reliability. Much research is being done to replace copper with metallization materials.

한편, 반도체 소자의 고집적화는 스텝 커버리지 및 비아(또는 콘택홀) 매립 특성이 좋지 않을 경우 금속 배선이 단락되거나 신뢰성이 저하되기 때문에 구리 이중 상감 공정에서의 콘택홀 매립 특성을 향상시킬 수 있는 구리(Cu) 증착 공정이 요구되고 있으나, 종래 금속 배선 형성시 예를 들어 알루미늄(Al) 배선의 경우 알루미늄의 확산을 방지하기 위해 사용되는 TiN을 구리 배선 공정시에도 이용할 경우 TiN막내의 구리 확산 계수가 높아진다.On the other hand, the high integration of the semiconductor device may improve the contact hole filling characteristics in the copper double damascene process because the metal wiring is shorted or the reliability is deteriorated when the step coverage and the via (or contact hole) filling characteristics are poor. Although a deposition process is required, the diffusion coefficient of copper in the TiN film is increased when TiN, which is used to prevent the diffusion of aluminum, is also used in the copper wiring process.

그러므로, 구리 배선 공정시 구리 확산을 방지하기 위한 새로운 재료적인 연구가 진행되고 있는데, 그 중에서도 TaN, WNx 등의 이원계 확산 방지물질과 TiSiN, WSiN, TaSiN 등의 삼원계 확산 방지물질이 연구중에 있다.Therefore, new material researches for preventing copper diffusion in the copper wiring process are being conducted. Among them, binary diffusion preventing materials such as TaN and WNx and ternary diffusion preventing materials such as TiSiN, WSiN and TaSiN are being studied.

그러나, 확산 방지 특성이 우수한 삼원계 확산 방지막의 경우 질화막 제조 기술은 화합물 타겟을 반응성 스퍼터링 방법으로 제조하고 있는데, 삼원계 화합물의 경우 제 2의 원소인 실리콘(Si)양이 5∼10% 이상일 경우 비저항이 1mΩ-㎝ 이상으로 증가되어 이를 적용하는데 어려움이 있다.However, in the case of the tertiary diffusion barrier layer having excellent diffusion preventing properties, the nitride film fabrication technique manufactures the compound target by the reactive sputtering method. In the case of the tertiary compound, when the amount of silicon (Si) which is the second element is 5-10% or more, The specific resistance is increased to 1 mΩ-cm or more, which makes it difficult to apply.

본 발명의 목적은 구리 배선의 확산 방지용으로 TaSiN의 삼원계 물질을 형성하기 위하여 TaSix 박막을 증착하고 질화처리를 실시함으로써 저저항을 갖는 구리배선의 전기적 특성을 향상시킬 수 있는 반도체소자의 다층 구리 배선 형성방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to deposit a TaSix thin film and perform nitriding to form a TaSiN ternary material for preventing diffusion of copper wiring, thereby increasing the electrical properties of a copper wiring having low resistance. It is to provide a formation method.

도 1 내지 도 4는 본 발명에 따른 반도체소자의 다층 구리 배선 형성방법을 순서적으로 설명하기 위한 공정순서도이다.1 to 4 are process flowcharts for sequentially explaining a method for forming a multilayer copper wiring of a semiconductor device according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 반도체기판 12: 활성 영역10: semiconductor substrate 12: active region

20: 하부 층간절연막 22: 상부 층간절연막20: lower interlayer insulating film 22: upper interlayer insulating film

30: 제 1 TiSiN막 32, 38: 구리30: first TiSiN film 32, 38: copper

34, 40: 산화방지막 36: 제 2 TiSiN막34, 40: antioxidant film 36: second TiSiN film

상기 목적을 달성하기 위하여 본 발명의 제조 방법은 반도체소자의 다층 구리 배선 형성 방법에 있어서, 반도체 소자의 활성 영역이 노출되도록 평탄화된 하부 층간절연막에 콘택홀을 형성하는 단계와, 콘택홀이 형성된 층간절연막 상부에 TaSi을 증착하고 고온의 질화 공정을 실시하여 제 1 TiSiN막을 형성하는 단계와, 제 1 TiSiN막 상부에 콘택홀을 채우도록 구리를 증착하여 하부 배선을 형성하고 그 위에 산화방지막을 형성하는 단계와, 상기 결과물에 상부 층간절연막을 형성하고 상부 층간절연막내에 하부 배선의 일부가 개방되도록 비아를 형성하는 단계와, 비아 위에 TaSi를 증착하고 저온 질소분위기에서 질화처리를 실시하여 제 2 TiSiN막을 형성하는 단계와, 제 2 TiSiN막 상부에 콘택홀을 채우도록 구리를 증착하여 상부 배선을 형성하고 그 위에 산화방지막을 형성하는 단계를 포함하여 이루어진 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method of forming a multilayer copper interconnection of a semiconductor device, the method comprising: forming a contact hole in a lower interlayer insulating film planarized to expose an active region of a semiconductor device, and forming an interlayer with a contact hole Depositing TaSi on the insulating film and performing a high temperature nitriding process to form a first TiSiN film; and depositing copper so as to fill a contact hole on the first TiSiN film to form a lower wiring and an antioxidant film thereon; Forming a second TiSiN film by forming an upper interlayer insulating film on the resultant, forming a via so that a portion of the lower wiring is opened in the upper interlayer insulating film, depositing TaSi on the via and performing nitriding in a low temperature nitrogen atmosphere. And depositing copper to fill the contact hole on the second TiSiN film to form an upper wiring and oxidizing thereon. It characterized in that made in a step of forming a final.

본 발명의 제조 방법에 있어서, 제 1 TiSiN막을 형성하기 전에 Ti을 10∼100Å으로 증착하는 단계를 더 포함하도록 한다.In the manufacturing method of the present invention, the method further comprises depositing Ti at 10 to 100 GPa before forming the first TiSiN film.

바람직하게는 본 발명의 TaSi의 증착은 스퍼터링 내지 화학기상증착 공정을 이용하며 TaSi의 두께를 50∼1000Å으로 한다.Preferably, the deposition of TaSi of the present invention uses a sputtering to chemical vapor deposition process, and the thickness of TaSi is 50 to 1000 Pa.

더 바람직하게는 본 발명의 제 1 TiSiN막 형성을 위한 콘택홀 위의 TaSi에 실시되는 질화처리 공정은 퍼니스 어닐링 내지 급속 열공정을 이용하며 N2내지 NH3가스를 사용하며 650∼900℃의 온도 조건으로 진행한다.More preferably, the nitriding process performed on TaSi on the contact hole for forming the first TiSiN film of the present invention uses a furnace annealing to rapid thermal process, uses N 2 to NH 3 gas, and has a temperature of 650 to 900 ° C. Proceed to condition.

더욱 바람직하게는 본 발명의 제 2 TiSiN막 형성을 위한 비아 위의 TaSi에 실시되는 질화처리 공정은 0∼500℃의 온도 조건에서 진행하며 N2내지 NH3가스분위기에서 플라즈마공정을 실시한다.More preferably, the nitriding process performed on TaSi on the via for forming the second TiSiN film of the present invention is carried out at a temperature condition of 0 to 500 ° C. and the plasma process is performed in an N 2 to NH 3 gas atmosphere.

또한, 본 발명의 산화 방지막은 TiN, TaN 및 WN 중의 어느 하나를 이용하여 형성한다.In addition, the antioxidant film of this invention is formed using any one of TiN, TaN, and WN.

그러므로, 본 발명에 따른 기술적 원리를 살펴보면, 임의의 조성비를 갖는 TaSix 화합물을 증착한 다음 질소 분위기에서 750∼800℃의 열처리 또는 저온의 플라즈마 처리하여 TaySixNz의 삼원계 화합물을 형성한다. 이때, x,y의 조성 영역은 초기 타겟 화합물의 조성에 의존하며 z는 질화처리시의 공정변수(온도, 유량, 플라즈마 조건)에 달려 있는데, 예를 들어 TaSix 타겟의 x가 2일 때 TaSi2가 되며 이때의 벌크 비저항은 18∼25Ω-㎝으로 매우 낮다.Therefore, looking at the technical principle according to the present invention, TaSix compound having an arbitrary composition ratio is deposited and then thermally treated at a temperature of 750-800 ° C. or plasma at low temperature to form a tertiary compound of Ta y Si x N z . . At this time, the composition region of x, y depends on the composition of the initial target compound and z depends on the process variables (temperature, flow rate, plasma conditions) during the nitriding treatment, for example, TaSi 2 when x of the TaSix target is 2 The bulk resistivity at this time is very low, 18-25 Ω-㎝.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 4는 본 발명에 따른 반도체소자의 다층 구리 배선 형성방법을 순서적으로 설명하기 위한 공정순서도이다.1 to 4 are process flowcharts for sequentially explaining a method for forming a multilayer copper wiring of a semiconductor device according to the present invention.

우선, 도 1에 도시된 바와 같이 반도체기판(10)에 통상의 소자 제조 공정을 진행한 후에 반도체 소자간을 연결하기 위한 금속 배선 공정을 실시한다. 이에, 반도체기판(10) 상부에 있는 하부 층간절연막(20)을 선택적으로 식각해서 기판의 소정 활성 영역이 노출되는 콘택홀을 형성한다. 그 다음, 스퍼터링 내지 화학기상증착 공정을 이용하여 하부 층간절연막(20) 상부에 TaSix를 50∼1000Å의 두께로 증착하고 고온의 질화 공정을 실시함으로써 TaSi이 TaSiN 삼원계 물질로 변형된 제 1 TiSiN막(30)을 형성한다. 화학기상증착 공정으로 TaSix를 증착할 경우에는 Ta의 소스로서 TaCl4또는 PET(Penta Ethoxy TantalAte): Ta(C2H5)5를 사용하며 Si의 소스로서 SiH4또는 Si2H6을 사용하며 동시에 H2와 Ar을 사용하기도 한다. 이때 기판의 온도는 100∼800℃로 한다. 또한 질화 공정은 퍼니스 어닐링(furnace annealing) 내지 급속 열공정(rapid thermal annealing)을 이용하며 N2내지 NH3가스를 사용하며 650∼900℃의 온도 조건으로 진행한다.First, as shown in FIG. 1, after the normal device manufacturing process is performed on the semiconductor substrate 10, a metal wiring process for connecting the semiconductor devices is performed. Accordingly, the lower interlayer insulating layer 20 on the semiconductor substrate 10 is selectively etched to form a contact hole through which a predetermined active region of the substrate is exposed. Then, the first TiSiN film in which TaSi is transformed into a TaSiN ternary material by depositing TaSix to a thickness of 50 to 1000 GPa on the lower interlayer insulating film 20 by using a sputtering or chemical vapor deposition process and performing a high temperature nitriding process. 30 is formed. When depositing TaSix by chemical vapor deposition, TaCl 4 or PET (Penta Ethoxy TantalAte): Ta (C 2 H 5 ) 5 is used as the source of Ta, and SiH 4 or Si 2 H 6 is used as the source of Si. At the same time, H 2 and Ar may be used. At this time, the temperature of the board | substrate shall be 100-800 degreeC. In addition, the nitriding process uses furnace annealing to rapid thermal annealing and uses N 2 to NH 3 gas and proceeds at a temperature of 650 to 900 ° C.

이어서, 도 2에 도시된 바와 같이 제 1 TiSiN막(30) 상부에 콘택홀을 채우도록 구리를 증착하여 하부 배선(32)을 형성한다. 이때, 구리 증착공정은 화학기상증착법, 전기도금(electro-plating) 또는 이온화된 구리 스퍼터링(ionized Cu-sputtering)방법을 이용한다. 그리고, 하부 배선(32)의 구리의 표면산화를 방지하고자 인트(in situ)로 TiN, TaN 및 WN 중에서 어느 한 물질을 선택하여 하부 배선(32) 위에 증착해서 산화방지막(32)을 형성한다.Subsequently, as shown in FIG. 2, copper is deposited to fill the contact hole on the first TiSiN film 30 to form the lower wiring 32. At this time, the copper deposition process uses a chemical vapor deposition method, electroplating (electro-plating) or ionized copper sputtering (ionized Cu-sputtering) method. In order to prevent surface oxidation of copper of the lower interconnection 32, any one of TiN, TaN, and WN is selected as an in situ and deposited on the lower interconnection 32 to form an antioxidant layer 32.

그 다음 도 3에 도시된 바와 같이, 상기 결과물에 절연물질을 증착하고 이를 평탄화하여 상부 층간절연막(22)을 형성한 후에 사진 및 식각 공정으로 상기 하부배선(32)의 일부가 개방되도록 비아를 형성한다. 그 위에 TaSix를 증착하고 저온 질소분위기에서 질화처리를 실시하여 제 2 TiSiN막(36)을 형성한다. 이때, 질화처리 공정은 0∼500℃의 온도 조건에서 진행하며 N2내지 NH3가스분위기에서 플라즈마공정을 이용한다.Next, as shown in FIG. 3, an insulating material is deposited on the resultant and planarized to form an upper interlayer insulating layer 22, and then a via is formed to open a portion of the lower wiring 32 by a photo and etching process. do. TaSix is deposited thereon and nitrided in a low temperature nitrogen atmosphere to form a second TiSiN film 36. At this time, the nitriding process is carried out at a temperature condition of 0 ~ 500 ℃ and using a plasma process in the N 2 to NH 3 gas atmosphere.

계속해서 도 4에 도시된 바와 같이 제 2 TiSiN막(36) 상부에 콘택홀을 채우도록 구리를 증착하여 상부 배선(38)을 형성하고 그 위에 구리의 표면 산화를 방지하기 위하여 산화방지막(40)을 형성한다.Subsequently, as shown in FIG. 4, copper is deposited to fill the contact hole on the second TiSiN film 36 to form the upper wiring 38, and the antioxidant film 40 is formed thereon to prevent surface oxidation of the copper thereon. To form.

본 발명의 다층 구리 배선 형성방법에서, 제 1 TiSiN막(30)을 형성하기 전에 Ti을 10∼100Å으로 증착하여 활성 영역(12)의 자연 산화막을 제거할 수 있다. 그리고, 하부 배선 및 상부배선의 영역 확보를 위한 콘택홀 내지 비아 형성시 통상의 듀얼 데마신(dual damascene) 공정을 이용할 수도 있다.In the method of forming the multilayer copper wiring of the present invention, before forming the first TiSiN film 30, Ti may be deposited at 10 to 100 kV to remove the native oxide film of the active region 12. In addition, a conventional dual damascene process may be used when forming contact holes or vias for securing the area of the lower wiring and the upper wiring.

또한, 본 발명에서 막을 형성하고자 실시되는 질화공정시 고온의 열공정을 통한 TaSiN의 형성은 구리배선이 기판의 활성영역과 연결될 때 적용이 가능하며, 저온 플라즈마를 통한 질화처리는 종말처리 공정의 TaSiN의 형성에 적합하다.In addition, the formation of TaSiN through a high temperature thermal process during the nitriding process performed to form a film in the present invention can be applied when copper wiring is connected to the active region of the substrate, and nitriding through low temperature plasma is TaSiN in the terminal treatment process. Suitable for the formation of

그러므로, 본 발명은 임의의 조성비를 갖는 TaSix 화합물을 증착한 다음 질소 분위기에서 750∼800℃의 열처리 또는 저온의 플라즈마 처리하여 TaySixNz의 삼원계 화합물로 이루어진 TiSiN막(30,36)을 형성한다. 이때, x,y의 조성 영역은 초기 타겟 화합물의 조성에 의존하며 z는 질화처리시의 공정변수(온도, 유량, 플라즈마 조건)에 달려 있으며, 예를 들어 TaSix 타겟의 x가 2일때 TaSi2가 되며 이때의 벌크 비저항은 18∼25Ω-㎝으로 매우 낮다.Therefore, the present invention provides a TiSiN film (30, 36) made of a ternary compound of Ta y Si x N z by depositing a TaSix compound having an arbitrary composition ratio and then performing a heat treatment at 750 to 800 ° C. or a low temperature plasma treatment in a nitrogen atmosphere. To form. At this time, the composition region of x, y depends on the composition of the initial target compound and z depends on the process variables (temperature, flow rate, plasma conditions) during the nitriding treatment. For example, when Ta of the TaSix target is 2, TaSi 2 is The bulk resistivity at this time is very low, 18-25 Ω-cm.

상기한 바와 같이 본 발명은, 반도체소자의 고밀도화와 신호전달 속도의 향상에 따라 RC지연 시간의 최소화를 위한 구리 배선 형성시 구리 원자가 하부의 절연막 내지 기판으로 확산되는 것을 방지하고자 구비 배선 형성 전에 비저항이 낮은 TaSiN막을 추가 증착함으로써 고온에서도 안정된 구리 배선을 확보할 수 있으며 다층 구리 배선의 전기적 특성 저하를 방지할 수 있는 장점을 가지고 있다.As described above, according to the present invention, in order to prevent copper atoms from diffusing into an insulating layer or a substrate under the formation of a copper wiring for minimizing the RC delay time according to the increase in the density of the semiconductor device and the improvement of the signal transmission speed, the resistivity before forming the wiring is provided. By further depositing a low TaSiN film, it is possible to secure stable copper wiring even at high temperatures and to prevent deterioration of electrical characteristics of the multilayer copper wiring.

Claims (6)

반도체소자의 다층 구리 배선 형성 방법에 있어서,In the method of forming a multilayer copper wiring of a semiconductor device, 반도체 소자의 활성 영역이 노출되도록 평탄화된 하부 층간절연막에 콘택홀을 형성하는 단계;Forming a contact hole in the lower interlayer insulating film planarized to expose the active region of the semiconductor device; 상기 콘택홀이 형성된 층간절연막 상부에 TaSi을 증착하고 고온의 질화 공정을 실시하여 제 1 TiSiN막을 형성하는 단계;Depositing TaSi on the interlayer insulating film on which the contact hole is formed and performing a high temperature nitriding process to form a first TiSiN film; 상기 제 1 TiSiN막 상부에 콘택홀을 채우도록 구리를 증착하여 하부 배선을 형성하고 그 위에 산화방지막을 형성하는 단계;Depositing copper to fill a contact hole over the first TiSiN film to form a lower wiring and an antioxidant layer thereon; 상기 결과물에 평탄화된 상부 층간절연막을 형성하고 상기 막에 하부 배선의 일부가 개방되도록 비아를 형성하는 단계;Forming a planarized upper interlayer insulating film on the resultant, and forming a via to open a portion of the lower wiring to the film; 상기 비아 위에 TaSi를 증착하고 저온 질소분위기에서 질화처리를 실시하여 제 2 TiSiN막을 형성하는 단계; 및Depositing TaSi on the via and performing nitriding in a low temperature nitrogen atmosphere to form a second TiSiN film; And 상기 제 2 TiSiN막 상부에 콘택홀을 채우도록 구리를 증착하여 상부 배선을 형성하고 그 위에 산화방지막을 형성하는 단계를 포함하여 이루어진 것을 특징으로 하는 반도체소자의 다층 구리 배선 형성방법.Forming a top wiring by depositing copper to fill a contact hole on the second TiSiN film, and forming an anti-oxidation film thereon. 제1항에 있어서, 상기 제 1 TiSiN막을 형성하기 전에The method of claim 1, wherein before forming the first TiSiN film. Ti을 10∼100Å으로 증착하는 단계를 더 포함하는 것을 특징으로 하는 반도체소자의 다층 구리 배선 형성방법.A method for forming a multilayer copper wiring line in a semiconductor device, further comprising depositing Ti at 10 to 100 GPa. 제1항에 있어서, 상기 TaSi의 증착은The method of claim 1, wherein the deposition of TaSi is 스퍼터링 내지 화학기상증착 공정을 이용하며 TaSi의 두께를 50∼1000Å으로 하는 것을 특징으로 하는 반도체소자의 다층 구리 배선 형성방법.A method for forming a multilayer copper wiring of a semiconductor device, wherein the thickness of TaSi is set to 50 to 1000 GPa using a sputtering to chemical vapor deposition process. 제1항에 있어서, 상기 제 1 TiSiN막 형성을 위한 콘택홀 위의 TaSi에 실시되는 질화처리 공정은The nitriding process of claim 1, wherein the nitriding process is performed on TaSi on the contact hole for forming the first TiSiN film. 퍼니스 어닐링 내지 급속 열공정을 이용하며 N2내지 NH3가스를 사용하며 650∼900℃의 온도 조건으로 진행하는 것을 특징으로 하는 반도체소자의 다층 구리 배선 형성방법.A method for forming a multilayer copper interconnection of a semiconductor device, characterized by using a furnace annealing to rapid thermal process and using N 2 to NH 3 gas and proceeding at a temperature of 650 to 900 ° C. 제1항에 있어서, 상기 제 2 TiSiN막 형성을 위한 비아 위의 TaSi에 실시되는 질화처리 공정은The nitriding process of claim 1, wherein the nitriding process is performed on TaSi on the via for forming the second TiSiN film. 0∼500℃의 온도 조건에서 진행하며 N2내지 NH3가스분위기에서 플라즈마공정을 실시하는 것을 특징으로 하는 반도체소자의 다층 구리 배선 형성방법.A method of forming a multilayer copper interconnection of a semiconductor device, characterized in that the plasma process is performed in an N 2 to NH 3 gas atmosphere while the temperature is in the range of 0 to 500 ° C. 제1항에 있어서, 상기 산화 방지막은The method of claim 1, wherein the antioxidant film TiN, TaN 및 WN 중의 어느 하나를 이용하여 형성하는 것을 특징으로 하는 반도체소자의 다층 구리 배선 형성방법.A method for forming a multilayer copper interconnection of a semiconductor device, characterized in that it is formed using any one of TiN, TaN, and WN.
KR1019980062459A 1998-12-30 1998-12-30 Method for forming multilayer copper interconnect of semiconductor device KR20000045863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980062459A KR20000045863A (en) 1998-12-30 1998-12-30 Method for forming multilayer copper interconnect of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980062459A KR20000045863A (en) 1998-12-30 1998-12-30 Method for forming multilayer copper interconnect of semiconductor device

Publications (1)

Publication Number Publication Date
KR20000045863A true KR20000045863A (en) 2000-07-25

Family

ID=19569122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980062459A KR20000045863A (en) 1998-12-30 1998-12-30 Method for forming multilayer copper interconnect of semiconductor device

Country Status (1)

Country Link
KR (1) KR20000045863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845052B1 (en) * 2006-06-07 2008-07-09 주식회사 하이닉스반도체 Semiconductor device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845052B1 (en) * 2006-06-07 2008-07-09 주식회사 하이닉스반도체 Semiconductor device and method for fabricating the same

Similar Documents

Publication Publication Date Title
US6121685A (en) Metal-alloy interconnections for integrated circuits
US6147000A (en) Method for forming low dielectric passivation of copper interconnects
KR100429522B1 (en) Method of Forming Amorphous Conducting Diffusion Barriers
US5939788A (en) Copper diffusion barrier, aluminum wetting layer and improved methods for filling openings in silicon substrates with cooper
US6242349B1 (en) Method of forming copper/copper alloy interconnection with reduced electromigration
US7220674B2 (en) Copper alloys for interconnections having improved electromigration characteristics and methods of making same
KR100339179B1 (en) Copper interconnection structure incorporating a metal seed layer
US6660634B1 (en) Method of forming reliable capped copper interconnects
US7679193B2 (en) Use of AIN as cooper passivation layer and thermal conductor
US6303505B1 (en) Copper interconnect with improved electromigration resistance
US6150270A (en) Method for forming barrier layer for copper metallization
US6506668B1 (en) Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability
US6211084B1 (en) Method of forming reliable copper interconnects
US20040004288A1 (en) Semiconductor device and manufacturing method of the same
KR100403063B1 (en) Method for forming dual-layer low dielectric barrier for interconnects and device formed
EP2162906B1 (en) A method for producing a copper contact
US7694871B2 (en) Self-encapsulated silver alloys for interconnects
US5926736A (en) Low temperature aluminum reflow for multilevel metallization
US7224065B2 (en) Contact/via force fill techniques and resulting structures
KR100701673B1 (en) METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
KR20000045863A (en) Method for forming multilayer copper interconnect of semiconductor device
KR19990059074A (en) Metal wiring formation method of semiconductor device
JP3164152B2 (en) Method for manufacturing semiconductor device
KR100454629B1 (en) Method for forming conductive interconnection of semiconductor device to improve diffusion preventing ability
KR20040037305A (en) Method of forming a metal wiring in a semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination