KR20000020547A - Heat transfer tube of condenser endurable at underwater pressure wave - Google Patents

Heat transfer tube of condenser endurable at underwater pressure wave Download PDF

Info

Publication number
KR20000020547A
KR20000020547A KR1019980039204A KR19980039204A KR20000020547A KR 20000020547 A KR20000020547 A KR 20000020547A KR 1019980039204 A KR1019980039204 A KR 1019980039204A KR 19980039204 A KR19980039204 A KR 19980039204A KR 20000020547 A KR20000020547 A KR 20000020547A
Authority
KR
South Korea
Prior art keywords
tube
cooling water
condenser
heat exchange
seawater
Prior art date
Application number
KR1019980039204A
Other languages
Korean (ko)
Inventor
김주평
이두정
김종인
김지호
윤주현
이준
조봉현
김환열
김용완
박천태
최병선
서재광
강형석
장문희
김시환
Original Assignee
이종훈
한국전력공사
김성년
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종훈, 한국전력공사, 김성년, 한국원자력연구소 filed Critical 이종훈
Priority to KR1019980039204A priority Critical patent/KR20000020547A/en
Publication of KR20000020547A publication Critical patent/KR20000020547A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: A spiral heat transfer tube is provided to efficiently cope with the underwater pressure wave can be generated by the underwater explosion without using a vertical tube type heat delivery tube of a condenser used in a power plant. CONSTITUTION: A spiral heat exchange tube(3) has the both ends to be welded by a seawater separating plate(2). The seawater used for cooling water is flowed into a cooling water inlet(7) via a pipe(5) for the inflow of cooling water and then into the spiral heat exchange tube welded on the seawater separating plate. The seawater heated while condensing the vapors by flowing in the spiral heat exchange tube is discharged to a cooling water outlet(8) via the outlet of the spiral heat exchange tube and finally out of a condenser via a tube(6) for cooling water discharge. The heat transfer area per each tube is increased by multiple times compared to a vertical tube or a U-type tube so that the numbers of the heat exchange tubes can be reduced.

Description

수중 압력파에 견딜수 있는 복수기 열전달 튜브Agitator heat transfer tube that can withstand underwater pressure waves

본 발명은 수중 압력파에 견딜수 있는 복수기 열전달 튜브에 관한 것으로서, 더 상세하게는 기존 발전소에 사용되는 복수기의 직관형 열전달 튜브를 사용하지 않고, 수중 폭발 등에 의해 발생할 수 있는 수중 압력파에 효율적으로 대처할 수 있는 나선형 열전달 튜브를 사용하는 방법에 관한 것이다.The present invention relates to a condenser heat transfer tube capable of withstanding underwater pressure waves, and more particularly, to effectively cope with underwater pressure waves that may occur due to underwater explosion, without using a straight-line heat transfer tube of the condenser used in existing power plants. A method of using a spiral heat transfer tube that can be.

일반적으로 해변에 건설된 발전소에서 사용되는 복수기는 해수를 이용하여 발전기 터빈에서 방출되는 수증기를 응축시키기 위하여 직관 또는 U-자형으로 굽은 열전달 튜브를 사용하는 일종의 열교환기이다. 이때 해수는 복수기 열교환 튜브의 안쪽을 흐르면서 수증기와 열교환을 하여 온도가 상승된 후에 바다로 배출되며, 발전기 터빈에서 전력을 생산하고 복수기 열전달 튜브 외측으로 방출되는 수증기는 복수기 열전달 튜브 내를 흐르는 해수와 열교환을 하여 응축수로 된다. 이때 사용되는 복수기 열전달 튜브는 설치 및 제작상의 편의에 의하여 직관 또는 U-자형으로 구부려서 사용하는 것이 일반적이나, 이와 같은 재래식 방식을 사용할 경우 수중 폭발 등에 의해서 발생하는 수중 압력파에는 상대적으로 취약한 설계이다.In general, a condenser used in a seaside power plant is a type of heat exchanger that uses a straight tube or U-shaped bent heat transfer tube to condense water vapor discharged from a generator turbine using seawater. At this time, the sea water is exchanged with water vapor through the inside of the condenser heat exchange tube, and is discharged to the sea after the temperature rises. To condensate. In this case, the condenser heat transfer tube used is generally used by bending in a straight tube or U-shaped for convenience of installation and manufacturing, but it is relatively weak in the underwater pressure wave generated by underwater explosion when using such a conventional method.

본 발명은 스프링이 축방향의 진동에 상대적으로 강하듯이 복수기 열교환 튜브의 형태를 직관이 아닌 나선형으로 만들 경우 수중 폭발 등에 의하여 발생하는 수중 압력파에는 상대적으로 강한 구성이 되게 한 것이다. 또한 나선형으로 만들 경우 직관형에 비하여 상대적으로 튜브당 전열 면적이 증가하므로 배관의 개수를 줄일 수 있는 장점도 있을 수 있다.According to the present invention, when the spring is relatively strong to vibration in the axial direction, when the shape of the condenser heat exchanger tube is helically formed instead of a straight pipe, it is made to have a relatively strong configuration against underwater pressure waves generated by underwater explosion. In addition, the spiral may have the advantage of reducing the number of pipes because the heat transfer area per tube increases relative to the straight tube.

도 1 은 본 발명의 나선형 복수기 열전달 투브의 설치 개념도(종단면)1 is a conceptual diagram of installation of the spiral multiplier heat transfer tube of the present invention (vertical section)

도 2 는 본 발명의 나선형 복수기 열전달 튜브의 설치 개념도(횡단면)Figure 2 is a conceptual diagram of the installation of the spiral condenser heat transfer tube of the present invention (cross section)

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

(1) : 복수기 드럼 (2) : 해수 분리판(1): condenser drum (2): seawater separator

(3) : 나선형 열교환 튜브 (4) : 튜브 지지대(3): spiral heat exchanger tube (4): tube support

(5) : 냉각수 유입용 배관 (6) : 냉각수 배출용 배관(5): Cooling water inlet piping (6): Cooling water discharge piping

(7) : 냉각수 입구 (8) : 냉각수 출구(7): cooling water inlet (8): cooling water outlet

(9) : 응축수 (10) : 응축용 증기(9): condensate (10): condensation steam

도 1 및 도 2 는 각각 나선형으로 된 열교환 튜브를 사용한 복수기의 종단면 및 횡단면을 나타낸다. 나선형 열교환 튜브(3)는 튜브(3)의 양단이 해수 분리판(2)에 용접되며, 냉각수로 사용되는 해수는 냉각수 유입용 배관(5)을 통하여 냉각수 입구(7)측으로 유입되어 해수 분리판(2)에 용접되어 있는 나선형 열교환 튜브(3) 내로 유입된다. 나선형 열교환 튜브(3) 내를 흐르면서 증기를 응축시키며 가열된 해수는 반대 방향에 있는 해수 분리판(2)에 용접된 나선형 열교환 튜브(3) 출구를 통하여 냉각수 출구(8)측으로 방출되며, 최종적으로 냉각수 배출용 배관(6)을 통하여 복수기 외부로 방출된다. 나선형 튜브(3)는 축 방향으로 설치된 여러 개의 튜브 지지대(4)에 의하여 적절한 간격으로 지지되며, 열교환 튜브(3)가 자중에 의하여 밑으로 쳐지는 것이 방지된다. 나선형으로 된 열교환 튜브(3)를 길이 방향으로 지지하는 것은, 직관형이나 U자형 튜브를 사용하는 방식과 동일하므로 별다른 문제는 예상되지 않는다.1 and 2 show longitudinal and transverse cross sections of the condenser using spiral heat exchange tubes, respectively. In the spiral heat exchange tube 3, both ends of the tube 3 are welded to the seawater separation plate 2, and the seawater used as the cooling water flows into the cooling water inlet 7 side through the cooling water inlet pipe 5 and is separated from the seawater separation plate. It flows into the spiral heat exchange tube 3 welded to (2). Steam condenses as it flows through the spiral heat exchange tube (3) and the heated sea water is discharged to the cooling water outlet (8) side through the spiral heat exchange tube (3) outlet welded to the seawater separator (2) in the opposite direction, and finally It is discharged to the outside of the condenser through the cooling water discharge pipe (6). The helical tube 3 is supported at appropriate intervals by several tube supports 4 installed in the axial direction, and the heat exchange tube 3 is prevented from being struck down by its own weight. Supporting the helical heat exchange tube 3 in the longitudinal direction is the same as that of using a straight or U-shaped tube, so no other problem is expected.

첨부된 도면중 미설명 부호 (1)은 복수기 드럼이고, (9)는 응축수이며, (10)은 응축수 증기이다.In the accompanying drawings, reference numeral 1 denotes a condenser drum, 9 denotes condensate, and 10 denotes condensate steam.

나선형의 열교환 튜브를 사용하기 때문에 튜브당 열전달 면적은 직관형이나 U자형 튜브에 비하여 수배 증가하며 (나선형의 방식에 따라 좌우됨), 복수기가 동일한 열전달 면적을 갖기 위해서는 열교환 튜브 개수를 줄일 수 있다. 따라서 직관형에 비하여 열교환 튜브 개수가 줄어들기 때문에 해수 분리판과 열교환 튜브를 용접해야 하는 부분도 함께 줄일 수 있으므로 열교환 튜브 용접 부위의 불량으로 인한 복수기 내로의 해수 유입 가능성을 줄일 수 있다. 열교환 튜브 개수가 직관형에 비하여 상대적으로 줄어들기 때문에 열교환 튜브 내부를 흐르는 해수의 유속이 빨라져서 열전달 측면에서 유리하나, 복수기에 해수를 공급하는 해수 펌프의 전력 소모량은 증가할 것으로 예상된다.Because of the use of helical heat exchange tubes, the heat transfer area per tube is many times higher than that of straight or U-shaped tubes (depending on the spiral type), and the number of heat exchange tubes can be reduced in order for the condenser to have the same heat transfer area. Therefore, since the number of heat exchange tubes is reduced compared to the straight tube type, the portion of the seawater separator and the heat exchange tube to be welded can also be reduced, thereby reducing the possibility of seawater inflow into the condenser due to the failure of the heat exchange tube welding site. Since the number of heat exchange tubes is relatively reduced compared to the straight tube type, the flow rate of seawater flowing inside the heat exchange tubes is faster, which is advantageous in terms of heat transfer, but the power consumption of the seawater pump for supplying seawater to the condenser is expected to increase.

Claims (1)

복수기 열교환 튜브를 설계하는데 있어서, 복수기 드럼(1) 내부의 해수 분리판(2)에 다수개의 나선형 열교환 튜브(3)의 양단을 용접하고 이 나선형 열교환 튜브(3) 축방향으로 복수개의 튜브 지지대(4)를 설치하며 상기, 해수 분리판(2) 좌·우측에 각각 냉각수 입·출구(7)(8)를 형성함과,In the design of the condenser heat exchanger tube, both ends of the plurality of spiral heat exchanger tubes 3 are welded to the seawater separator plate 2 inside the condenser drum 1, and the plurality of tube supports in the axial direction of the spiral heat exchanger tube 3 4) and the cooling water inlet and outlet (7) (8) on the left and right sides of the seawater separator (2), respectively, 또한, 상기 냉각수 입구(7) 일측부에 냉각수 유입용 배관(5)을 고정시키고 냉각수 출구(8) 일측부에 냉각수 배출용 배관(6)을 고정시키며 해수 분리판(2) 내부에 응축수(9)와 응축용 증기(10)를 유입시킨 것을 특징으로 하는 수중 압력파에 견딜 수 있는 복수기 열전달 튜브.In addition, the cooling water inlet pipe (5) is fixed to one side of the cooling water inlet (7), and the cooling water discharge pipe (6) is fixed to one side of the cooling water outlet (8) and condensate (9) inside the seawater separator (2). And a condenser heat transfer tube capable of withstanding underwater pressure waves, characterized by the introduction of the condensation steam (10).
KR1019980039204A 1998-09-22 1998-09-22 Heat transfer tube of condenser endurable at underwater pressure wave KR20000020547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980039204A KR20000020547A (en) 1998-09-22 1998-09-22 Heat transfer tube of condenser endurable at underwater pressure wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980039204A KR20000020547A (en) 1998-09-22 1998-09-22 Heat transfer tube of condenser endurable at underwater pressure wave

Publications (1)

Publication Number Publication Date
KR20000020547A true KR20000020547A (en) 2000-04-15

Family

ID=19551452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980039204A KR20000020547A (en) 1998-09-22 1998-09-22 Heat transfer tube of condenser endurable at underwater pressure wave

Country Status (1)

Country Link
KR (1) KR20000020547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094153A (en) * 2001-06-11 2002-12-18 엘지전자 주식회사 a tube of heat exchanger
CN109945683A (en) * 2019-03-16 2019-06-28 南通文鼎换热设备科技有限公司 A kind of efficient coiled pipe heating and ventilating equipment of Dean Vortice effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094153A (en) * 2001-06-11 2002-12-18 엘지전자 주식회사 a tube of heat exchanger
CN109945683A (en) * 2019-03-16 2019-06-28 南通文鼎换热设备科技有限公司 A kind of efficient coiled pipe heating and ventilating equipment of Dean Vortice effect

Similar Documents

Publication Publication Date Title
WO2011043779A1 (en) Dual enhanced tube for vapor generator
JP4773374B2 (en) Heat exchanger
US11454452B2 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
CN110691953B (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant
MXPA05003380A (en) Once-through evaporator for a steam generator.
KR20000020547A (en) Heat transfer tube of condenser endurable at underwater pressure wave
RU2378594C1 (en) Heat exchanger
KR102072087B1 (en) A high-degree vacuum series condenser
CN201754044U (en) Corrugated pipe heat net heater
KR100749223B1 (en) Multi-stage flash evaporator
CN106288896B (en) Outer ripple heat exchange of heat pipe and desalination plant
JPH0474601B2 (en)
EP0153966A1 (en) Bayonet tube heat exchanger
JP2012122672A (en) Heat exchanger and water treatment device
KR100363719B1 (en) Spiral Wound Heat Transferring Equipment on the Single Passage for the Super-heater
CN206235218U (en) Outer ripple heat exchange of heat pipe and sea water desalinating unit
CA1163627A (en) Bayonet tube heat exchanger
RU2360181C1 (en) High-pressure heater of regeneration system of steam turbine
CN109959275B (en) Heat exchanger and molten salt steam generator comprising at least one heat exchanger series
CN219588911U (en) Heat pipe steam generating device
RU2341751C1 (en) Heat exchanger
CN218270313U (en) Flue gas waste heat anticorrosion ultrathin heat exchange condenser pipe device
RU97478U1 (en) HIGH PRESSURE HEATER FOR TURBO INSTALLATIONS
CN217430833U (en) Node tube evaporator and super-efficient evaporator with node tubes
RU2775748C1 (en) Steam turbo plant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application