KR20000014672A - Electrode manufacturing method of lithium ion secondary battery - Google Patents

Electrode manufacturing method of lithium ion secondary battery Download PDF

Info

Publication number
KR20000014672A
KR20000014672A KR1019980034207A KR19980034207A KR20000014672A KR 20000014672 A KR20000014672 A KR 20000014672A KR 1019980034207 A KR1019980034207 A KR 1019980034207A KR 19980034207 A KR19980034207 A KR 19980034207A KR 20000014672 A KR20000014672 A KR 20000014672A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium ion
ion secondary
electrode
active material
Prior art date
Application number
KR1019980034207A
Other languages
Korean (ko)
Other versions
KR100496274B1 (en
Inventor
김진경
Original Assignee
손욱
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손욱, 삼성에스디아이 주식회사 filed Critical 손욱
Priority to KR10-1998-0034207A priority Critical patent/KR100496274B1/en
Publication of KR20000014672A publication Critical patent/KR20000014672A/en
Application granted granted Critical
Publication of KR100496274B1 publication Critical patent/KR100496274B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An electrode manufacturing method of lithium ion secondary battery is provided to prevent environmental pollution because water harmless to human body is used as solvent when cathode active material slurry is manufactured and reduce process and costs due to remove special equipment. Further, according to the present invention, moisture is completely removed by double drying process through heat wind and vacuum and therefore the performance and capacitance of the battery can be enhanced. CONSTITUTION: The electrode manufacturing method of lithium ion secondary battery comprises: a step mixing and agitating the active material of soft carbon, the binder of styrene butadiene, water and tickener; a step coating the slurry as such on a substrate; a step drying it by heat wind under 100¯130°C and 100-5 torr; and a step pressing by a roll and then cutting it into prescribed size. Said soft carbon is corks or low temperature plasticized carbon. The time needed to the dry is about 5¯10 hr.

Description

리튬이온 이차전지의 전극 제조방법Electrode Manufacturing Method of Lithium-ion Secondary Battery

본 발명은 리튬이온 이차전지의 전극 제조방법에 관한 것으로서, 특히 스틸렌 부타디엔 러버(SBR)계 바인더에 물을 용매로 사용할 수 있도록 하는데 적합한 리튬이온 이차전지의 부극 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an electrode of a lithium ion secondary battery, and more particularly, to a method for manufacturing a negative electrode of a lithium ion secondary battery suitable for allowing water to be used as a solvent in a styrene butadiene rubber (SBR) -based binder.

리튬이온전지는 정극 활물질로 리튬-천이금속산화물을 사용하고, 부극활물질로 카본 혹은 카본복합체를 사용하며, 산소기, 질소기, 황산기 등을 포함하는 한 개 이상의 유기 용매에 리튬염을 녹인 액체 전해질을 사용하여, 정극과 부극간에 리튬 이온이 이동될 때 기전력을 발생시킴으로써 충·방전이 이루어지도록 한다.Lithium ion batteries use lithium-transition metal oxides as positive electrode active materials, carbon or carbon complexes as negative electrode active materials, and use a liquid electrolyte in which lithium salt is dissolved in one or more organic solvents including oxygen, nitrogen, and sulfate groups. In this case, charge and discharge are performed by generating an electromotive force when lithium ions are moved between the positive electrode and the negative electrode.

여기서 부극과 같은 전극(電極)은 전지의 종류에 따라 다소 차이가 있지만, 카본으로 된 활물질과, PVDF(polyvinylidene fluoride)로 된 바인더 및 NMP(N-methyl-2-pyrrolidone)로 된 유기 용매를 혼합하여 슬러리를 제조한 다음, 이것을 코퍼(Cu) 호일로 된 기재에 코팅하고, 다시 건조 및 롤 프레스한 다음 소정의 크기로 절단하는 공정에 의해 제조하고 있다.Here, an electrode such as a negative electrode is somewhat different depending on the type of battery, but an active material made of carbon, a binder made of polyvinylidene fluoride (PVDF), and an organic solvent made of N-methyl-2-pyrrolidone (NMP) are mixed. The slurry was prepared, and then coated on a substrate made of copper (Cu) foil, dried, roll-pressed, and cut into a predetermined size.

또 전극의 제조에 사용하는 바인더로서 미국 특허 US 5,380,606호에는 폴리아믹 애시드(polyamic acid)와, 폴리아마이드 레진(polyamide resin), 폴리비닐 피롤리돈(polyvinylpyrrolidone) 그리고 하이드록시알킬셀룰로오즈(hydroxyalkylcellulose)로 된 그룹으로부터 선택된 적어도 하나의 폴리머를 포함하는 혼합 바인더가 개시되어 있다.In addition, US Pat. No. 5,380,606, which is used as a binder for the production of electrodes, is made of polyamic acid, polyamide resin, polyvinylpyrrolidone, and hydroxyalkylcellulose. Mixed binders are disclosed that include at least one polymer selected from the group.

그러나 지금까지 알려진 바인더는 인체에 유해한 물질인 NMP로 된 유기 용매를 사용하고 있기 때문에, 그로 인하여 제조 공정이 복잡하고 여러 장비의 사용이 요구되고 있으며, 사용 및 폐기시 환경 오염을 일으키는 문제가 있다.However, the binders known to date use an organic solvent of NMP, which is a harmful substance to the human body, and thus, the manufacturing process is complicated and the use of various equipments is required, resulting in environmental pollution during use and disposal.

이러한 문제점을 고려한 것으로서 종래에는 물을 용매로 하고, 그 물에 용해 가능한 SBR계 바인더를 사용하여 전극의 활물질 슬러리를 제조하는 방법이 제안되기도 하였다.In consideration of such a problem, a method of manufacturing an active material slurry of an electrode using a SBR binder which has water as a solvent and is soluble in water has been proposed.

그러나 물을 용매로 사용할 경우에는 전극의 제조후 그 내부에 잔존하는 수분으로 인해 전지의 성능에 치명적인 악 영향을 미치게 되므로, 지금까지는 그것의 실용화가 안되고 있는 실정이다.However, when water is used as a solvent, since the moisture remaining inside the electrode after the manufacture of the electrode has a fatal adverse effect on the performance of the battery, it has not been practically used until now.

상술한 종래 기술의 문제점을 해소하기 위한 것으로서, 본 발명은 바인더의 용매로 물을 사용하여 유해성과 환경 오염 문제를 해결하고자 하는 것이며, 아울러 전극의 내부에 잔존하는 수분을 제거하여 전지의 실용화가 가능토록 한 리튬이온 이차전지의 전극 제조방법을 제공함에 그 목적을 두고 있다.In order to solve the above-mentioned problems of the prior art, the present invention is to solve the problem of harmfulness and environmental pollution by using water as the solvent of the binder, it is possible to use the battery by removing the moisture remaining in the interior of the electrode. An object of the present invention is to provide a method for manufacturing an electrode of a lithium ion secondary battery.

이를 위하여 본 발명은 전극의 활물질 슬러리를 제조함에 있어 함습율이 작은 소프트 카본을 활물질로 사용하고, 여기에 SBR계 바인더, 물 및 증점제를 혼합 및 교반하고, 이렇게 제조된 활물질 슬러리를 기재에 코팅한 다음, 100∼130℃의 분위기에서 열풍 건조하고, 이어서 같은 온도에서 10-5torr 이하의 진공도로 건조하며, 롤 프레스한 다음 소정의 크기로 절단하는 공정에 의해 극판을 제조하는 것이다.To this end, the present invention uses a soft carbon having a low moisture content as an active material in preparing the active material slurry of the electrode, and mixing and stirring the SBR-based binder, water, and a thickener, and coating the active material slurry thus prepared on the substrate. Next, hot air is dried in an atmosphere of 100 to 130 ° C., and then at the same temperature. 10 -5 torr The electrode plate is manufactured by the process of drying with the following vacuum degree, rolling press, and cutting | disconnection to predetermined size.

상기한 바와 같이 본 발명은 인체에 유해한 유기 용매 대신 물을 사용하므로 환경 오염을 방지할 수 있으며, 2차에 걸친 건조 공정을 통하여 수분을 거의 완전하게 제거하므로 물을 이용한 전지의 실현이 가능함은 물론, 전지의 성능 및 용량 저하를 방지할 수 있는 것이다.As described above, the present invention uses water instead of organic solvents that are harmful to the human body, thereby preventing environmental pollution. Since the water is almost completely removed through the second drying process, it is possible to realize a battery using water. It is possible to prevent a decrease in performance and capacity of the battery.

이하, 본 발명을 실현하기 위한 바람직한 실시 예를 설명하기로 한다.Hereinafter, preferred embodiments for realizing the present invention will be described.

본 발명에서는 리튬이온 이차전지에 사용되는 전극에 대하여 설명하고 있다.In this invention, the electrode used for a lithium ion secondary battery is demonstrated.

본 발명에 의한 리튬이온 이차전지는 정극 활물질로 리튬-천이금속산화물을 사용하며, 부극 활물질로 카본, 카본복합체를 사용하고, 이것을 바인더, 물 및 증점제와 혼합하여 슬러리를 제조하고 있다. 특히 정극의 활물질은 도전성이 없기 때문에 도전제로 카본을 첨가하여 사용한다.In the lithium ion secondary battery according to the present invention, a lithium-transition metal oxide is used as the positive electrode active material, and carbon and a carbon composite material are used as the negative electrode active material, and this is mixed with a binder, water, and a thickener to prepare a slurry. In particular, since the active material of the positive electrode has no conductivity, carbon is added and used as a conductive agent.

여기서 본 발명에 의한 전극 특히 부극은 활물질 슬러리를 제조함에 있어 인체에 유해한 NMP로 된 유기 용매를 대신하여 물을 사용하고, 그 물에 용해 가능한 SBR계 바인더를 사용하는 것이다.Herein, the electrode, in particular, the negative electrode according to the present invention uses water in place of an organic solvent of NMP, which is harmful to the human body, in the preparation of an active material slurry, and uses an SBR binder which can be dissolved in the water.

물에 용해 가능한 SBR계 바인더로는 Mw/Mn=2∼2.3 이 있다.As SBR binder which can dissolve in water Mw / Mn = 2 to 2.3 There is this.

또 본 발명은 물을 용매로 사용함에 따라 전극의 제조후 수분이 잔존하게 됨을 고려하여, 그 잔존량을 최소로하기 위하여 함습율이 작은 소프트 카본을 사용한다. 소프트 카본으로는 코크스 혹은 저온 소성탄소를 사용할 수 있다.In addition, in the present invention, water is used after the preparation of the electrode due to the use of water as a solvent, in order to minimize the residual amount of the soft carbon having a low moisture content is used. Coke or low-temperature calcined carbon may be used as the soft carbon.

이에 따라 본 발명은 부극의 활물질 슬러리를 제조함에 있어서 소프트 카본을 활물질로 하고, 여기에 SBR계 바인더, 물 및 증점제(CMC)를 함께 혼합하고 교반하여 슬러리를 제조하게 된다.Accordingly, in the present invention, in preparing the active material slurry of the negative electrode, soft carbon is used as the active material, and an SBR-based binder, water, and a thickener (CMC) are mixed and stirred together to prepare a slurry.

이렇게 제조된 부극 활물질 슬러리는 기재의 표면에 코팅되는 것이며, 이때 본 발명의 용매로 사용된 물의 제거가 효과적으로 이루어지도록 한다. 이를 위하여 본 발명에서는 100∼130℃의 분위기에서 5∼10시간 동안 건조하게 되는 바, 이때 수분의 70∼80%가 증발하는 것이며, 이어서 같은 온도로 6∼10시간 동안 행하여지는 10-5torr 이하의 진공 건조에 의해 나머지 10∼15%의 수분이 증발하게 된다.The negative electrode active material slurry thus prepared is coated on the surface of the substrate, and in this case, the water used as the solvent of the present invention is effectively removed. To this end, in the present invention, it is dried for 5 to 10 hours in an atmosphere of 100 to 130 ° C., at which time 70 to 80% of the moisture is evaporated, followed by 6 to 10 hours at the same temperature. 10 -5 torr The remaining 10-15% of water evaporates by the following vacuum drying.

이후 상기한 극판은 롤 프레스와 절단 공정을 거쳐 소정 크기의 전극으로 제조되어 진다.Thereafter, the electrode plate is manufactured as an electrode having a predetermined size through a roll press and a cutting process.

이와 같이 제조된 본 발명의 부극은 세퍼레이터를 개재하여 안쪽에 정극을 배치한 상태에서 맨드릴을 이용하여 권취되는 것이며, 캔의 내부로 수납되고, 전해액을 주입한 후 상기 캔의 개구에 가스켓을 개재하여 캡 어셈블리를 밀봉함으로써 이차전지로 제조되어 진다.The negative electrode of the present invention manufactured as described above is wound using a mandrel while a positive electrode is disposed inside the separator, and is accommodated in the can, and the electrolyte is injected into the opening of the can through a gasket. It is made of a secondary battery by sealing the cap assembly.

이상에서 설명된 구성 및 작용을 통하여 알 수 있는 바와 같이, 본 발명에 의한 리튬이온 이차전지의 전극 제조방법은 종래 기술의 문제점을 실질적으로 해소하고 있다.As can be seen through the configuration and operation described above, the electrode manufacturing method of the lithium ion secondary battery according to the present invention substantially solves the problems of the prior art.

즉, 본 발명은 부극의 활물질 슬러리 제조시 인체에 무해한 물을 용매로 사용하므로 환경 오염을 방지할 수 있고, 특수 시설이 필요 없어지므로 생산 공정과 비용이 축소되는 효과를 얻을 수 있다.That is, the present invention uses water that is harmless to the human body when preparing the active material slurry of the negative electrode as a solvent, it is possible to prevent environmental pollution, and the need for a special facility can be reduced and the production process and cost can be reduced.

또 본 발명에 의하면 2차에 걸친 열풍 건조 및 진공 건조 공정을 통하여 수분을 거의 완전하게 제거함으로써, 물을 이용한 전지의 실용화가 가능하게 되고, 전지의 성능 및 용량을 향상시킬 수 있다.In addition, according to the present invention, water is almost completely removed through the two-step hot air drying and vacuum drying processes, whereby the battery using water becomes practical, and the performance and capacity of the battery can be improved.

Claims (5)

용기에 소프트 카본으로 된 활물질, 스틸렌 부타디엔 러버계의 바인더, 물 및 증점제를 넣고 혼합 및 교반하는 단계와, 이렇게 제조된 활물질 슬러리를 기재에 코팅하는 단계와, 100∼130℃의 분위기에서 열풍 건조하고, 이어서 같은 온도에서 10-5torr 이하의 진공도로 건조하는 단계와, 이어서 롤 프레스한 다음 소정의 크기로 절단하는 공정에 의해 극판을 제조하는 것임을 특징으로 하는 리튬이온 이차전지의 전극 제조방법.Mixing and stirring a soft carbon active material, a styrene butadiene rubber-based binder, water and a thickener into the container, coating the active material slurry on the substrate, and hot-air drying in an atmosphere of 100 to 130 ° C. , Then at the same temperature 10 -5 torr A method of manufacturing an electrode of a lithium ion secondary battery, characterized in that the electrode plate is manufactured by the following vacuum drying step, followed by roll pressing and cutting to a predetermined size. 제 1 항에 있어서, 소트프 카본은 코크스 혹은 저온 소성탄소인 것을 특징으로 하는 리튬이온 이차전지의 전극 제조방법.The method for manufacturing an electrode of a lithium ion secondary battery according to claim 1, wherein the soft carbon is coke or low temperature calcined carbon. 제 1 항 또는 제 2 항에 있어서, 스틸렌 부타디엔 러버는 Mw/Mn=2∼2.3 인 것을 특징으로 하는 리튬이온 이차전지의 전극 제조방법.The styrene butadiene rubber according to claim 1 or 2, Mw / Mn = 2 to 2.3 Electrode manufacturing method of a lithium ion secondary battery, characterized in that. 제 1 항 또는 제 2 항에 있어서, 열풍 건조 시간은 5∼10시간 행하는 것임을 특징으로 하는 리튬이온 이차전지의 전극 제조방법.The electrode production method of a lithium ion secondary battery according to claim 1 or 2, wherein the hot air drying time is performed for 5 to 10 hours. 제 1 항 또는 제 2 항에 있어서, 진공 건조 시간은 6∼10시간 행하는 것임을 특징으로 하는 리튬이온 이차전지의 전극 제조방법.The electrode manufacturing method of a lithium ion secondary battery according to claim 1 or 2, wherein the vacuum drying time is performed for 6 to 10 hours.
KR10-1998-0034207A 1998-08-24 1998-08-24 Method of processing electrode used in secondary li-ion battery KR100496274B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0034207A KR100496274B1 (en) 1998-08-24 1998-08-24 Method of processing electrode used in secondary li-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0034207A KR100496274B1 (en) 1998-08-24 1998-08-24 Method of processing electrode used in secondary li-ion battery

Publications (2)

Publication Number Publication Date
KR20000014672A true KR20000014672A (en) 2000-03-15
KR100496274B1 KR100496274B1 (en) 2005-09-09

Family

ID=19548032

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0034207A KR100496274B1 (en) 1998-08-24 1998-08-24 Method of processing electrode used in secondary li-ion battery

Country Status (1)

Country Link
KR (1) KR100496274B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431459B1 (en) * 2002-01-11 2004-05-12 주식회사 엘지화학 Negative active plate for rechargeable lithium battery and rechargeable lithium battery comprising thereof
KR100553728B1 (en) * 1999-01-22 2006-02-17 삼성에스디아이 주식회사 Method for processing electrode used in secondary battery
CN100352083C (en) * 2003-01-29 2007-11-28 三星Sdi株式会社 Process for manufacture of negative electrode of rechargeable lithium cell, process for manufacture of rechargeable lithium cell and rechargeable lithium cell
US7862929B2 (en) 2003-04-07 2011-01-04 Lg Chem, Ltd. Constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306356A (en) * 1995-05-10 1996-11-22 Mitsubishi Chem Corp Electrode material composition for nonaqueous solvent type secondary battery
JP3509050B2 (en) * 1995-11-24 2004-03-22 株式会社東芝 Lithium secondary battery and method of manufacturing the same
JPH09283119A (en) * 1996-04-10 1997-10-31 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and nonqueous electrolyte secondary battery having this negative electrode
FR2748014B1 (en) * 1996-04-26 1998-07-17 Centre Nat Rech Scient NOVEL FLUORINATED CARBONES, THEIR PREPARATION PROCESS AND THEIR USE AS ELECTRODE MATERIAL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553728B1 (en) * 1999-01-22 2006-02-17 삼성에스디아이 주식회사 Method for processing electrode used in secondary battery
KR100431459B1 (en) * 2002-01-11 2004-05-12 주식회사 엘지화학 Negative active plate for rechargeable lithium battery and rechargeable lithium battery comprising thereof
CN100352083C (en) * 2003-01-29 2007-11-28 三星Sdi株式会社 Process for manufacture of negative electrode of rechargeable lithium cell, process for manufacture of rechargeable lithium cell and rechargeable lithium cell
US8313539B2 (en) 2003-01-29 2012-11-20 Samsung Sdi Co., Ltd. Method of fabricating an anode and a lithium battery
US7862929B2 (en) 2003-04-07 2011-01-04 Lg Chem, Ltd. Constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant

Also Published As

Publication number Publication date
KR100496274B1 (en) 2005-09-09

Similar Documents

Publication Publication Date Title
EP3503264B1 (en) Positive electrode plate and electrochemical battery
KR100280705B1 (en) Electrode active material composition for lithium ion polymer battery and manufacturing method of electrode plate for lithium ion polymer battery using same
JP7308580B2 (en) Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
EP3493303A1 (en) Negative electrode material and preparation method thereof, negative electrode, and all-solid-state lithium ion battery
CN106803561B (en) Functionalized modified diaphragm and preparation method and application thereof
WO2019103409A1 (en) Method for manufacture of sulfur-carbon composite
EP3696892A2 (en) Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same
EP3840090A1 (en) Sulfur-based positive electrode active material for use in solid-state battery, preparation for material, and applications thereof
Swiderska-Mocek Application of quaternary polymer electrolyte based on ionic liquid in LiFePO4/Li, Li4Ti5O12/Li and LiFePO4/Li4Ti5O12 batteries
KR100496274B1 (en) Method of processing electrode used in secondary li-ion battery
CN110661051B (en) Solid-state battery material recovery processing method
WO2023008783A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
CN111868978A (en) Dispersant and binder for lithium ion batteries based on modified lignin and carboxymethylcellulose
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
CN110911647B (en) Method for manufacturing lithium ion single cell
JP2000306602A (en) Lithium secondary battery
CN109256525B (en) High-density flexible electrode plate for all-solid-state battery and preparation method thereof
KR100496275B1 (en) Method of processing electrode used in secondary battery
WO2023008792A1 (en) Cathode material for lithium-sulfur battery comprising biopolymer binder and method for manufacturing same
CN117117329B (en) Sodium ion battery electrolyte and sodium ion battery
CN114267840B (en) Method for reducing oxidation potential of battery and mixed ion capacitor pre-metallizing agent
US20220173378A1 (en) Electrode of eletrical storage device utilizing solid electrolyte, eletrical storage device and method for manufacturing cathode layer or anode layer of eletrical storage device
WO2023177252A1 (en) Method for preparing granules for all-solid-state battery electrode, and electrode for all-solid-state battery
WO2023068621A1 (en) Cathode for lithium secondary battery, and lithium secondary battery comprising same
EP4394924A1 (en) Non-woven organic electrode and stretchable battery using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 14

EXPY Expiration of term