KR19990015272U - heat transmitter - Google Patents

heat transmitter Download PDF

Info

Publication number
KR19990015272U
KR19990015272U KR2019970028502U KR19970028502U KR19990015272U KR 19990015272 U KR19990015272 U KR 19990015272U KR 2019970028502 U KR2019970028502 U KR 2019970028502U KR 19970028502 U KR19970028502 U KR 19970028502U KR 19990015272 U KR19990015272 U KR 19990015272U
Authority
KR
South Korea
Prior art keywords
tank
heat exchanger
refrigerant
cross
sectional area
Prior art date
Application number
KR2019970028502U
Other languages
Korean (ko)
Other versions
KR200312065Y1 (en
Inventor
장길상
Original Assignee
신영주
한라공조 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신영주, 한라공조 주식회사 filed Critical 신영주
Priority to KR2019970028502U priority Critical patent/KR200312065Y1/en
Publication of KR19990015272U publication Critical patent/KR19990015272U/en
Application granted granted Critical
Publication of KR200312065Y1 publication Critical patent/KR200312065Y1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

본 고안은 각각의 튜브에 대해 유동하는 냉매량을 균일하게 하여 열교환량 증대를 도모할 수 있는 열교환기에 관한 것으로, 탱크(11)가 일체로 성형되는 한쌍의 플레이트(12)를 대면접합하여 구성한 다수의 플랫튜브(13)들 사이에 코루게이트핀(14)이 개재되어 구성된 적층형 열교환기에 있어서, 냉매가 유입되어 유동하는 방향으로 탱크(11)의 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 탱크의 단면적을 점차 증가되게 구성한다.The present invention relates to a heat exchanger capable of increasing the amount of heat exchange by uniformizing the amount of refrigerant flowing for each tube, and comprises a plurality of plates 12 which are face-joined with a pair of plates 12 in which the tank 11 is integrally formed. In the stacked heat exchanger having the corrugated fins 14 interposed between the flat tubes 13, the cross-sectional area of the tank 11 is gradually decreased in the direction in which the refrigerant flows in, and the direction in which the refrigerant flows out. To increase the cross-sectional area of the tank gradually.

Description

열교환기heat transmitter

본 고안은 자동차 공기조화장치용의 증발기에 사용되는 열교환기에 관한 것으로, 특히 탱크의 단면적을 냉매 유동방향에 대해 변환시킨 열교환기에 관한 것이다.The present invention relates to a heat exchanger used in an evaporator for an automobile air conditioner, and more particularly, to a heat exchanger in which a cross-sectional area of a tank is converted with respect to a refrigerant flow direction.

일반적으로 열교환기는 탱크와 이 탱크와 연통하는 통로가 형성된 플랫튜브를 다수적층하고, 플랫튜브 사이에 코루게이트핀을 개재함과 동시에 이웃하는 플랫튜브를 탱크부에 접합하여 적층방향으로 연통시키고, 단부의 플랫튜브에 엔드플레이트를 설치하도록 하는 적층형 열교환기가 알려져 있다.In general, a heat exchanger laminates a tank and a plurality of flat tubes having passages communicating with the tank, and interposes adjacent flat tubes to the tank by interposing corrugated fins between the flat tubes and communicating in the stacking direction. Stacked heat exchangers are known which allow end plates to be mounted on flat tubes.

그리고 복수의 압출튜브가 병렬로 배치됨과 동시에 인접 튜브사이에 코루게이트핀이 배치되며, 또한 각 튜브의 양단에는 한쌍의 중공 탱크가 연통되어 접속되어 있으며, 냉매가 튜브군에 의해 구성된 냉매회로를 유통하는 사이에 튜브사이를 유통하는 공기와 열교환을 행하는 단식 및 복식열교환기도 널리 이용되고 있다.A plurality of extruded tubes are arranged in parallel, and corrugated pins are arranged between adjacent tubes, and a pair of hollow tanks are connected and connected to both ends of each tube, and the refrigerant flows through the refrigerant circuit formed by the tube group. Single and double heat exchangers which exchange heat with air flowing between tubes in between are also widely used.

상기한 적층형 열교환기나 단.복식열교환기에 있어서, 이들의 탱크 단면은 냉매유동방향으로 동일한 단면적을 형성하고 있다.In the above-described stacked heat exchanger or single / double heat exchanger, the tank cross sections have the same cross-sectional area in the refrigerant flow direction.

냉매가 탱크내에서 유동할 때 플레이트로 분배되어 흐르며 탱크내의 흐름은 점차적으로 유속이 감속된다. 탱크내의 유속의 변화는 플레이트로 분배되는 유동 속도편차를 의미한다.When the refrigerant flows in the tank, it is distributed to the plate and the flow in the tank gradually slows down the flow rate. The change in flow rate in the tank means the flow velocity deviation distributed to the plate.

따라서 탱크와 결합된 튜브에 냉매 유량분배가 일정하지 않으며 이에 따라 튜브마다 열교환능력이 다르게 나타나 열교환량의 증대를 얻지 못하는 결점이 있다.Therefore, the flow rate of the refrigerant is not constant in the tube combined with the tank, and accordingly, the heat exchange capacity is different for each tube, and thus there is a drawback that an increase in the amount of heat exchange is not obtained.

즉, 탱크의 단면적이 동일하기 때문에 입구파이프로부터 원거리에 위치할수록 탱크를 유동하는 냉매의 유속이 완만하므로, 입구파이프와 근접하는 부분에 결합된 압출튜브(적층형 열교환기일 경우 플랫튜브)와 입구파이프와 상대적으로 원거리에 결합된 압출튜브를 통과하는 냉매의 압력은 다르게 분포되며 따라서 유동면적이 동일한 각각의 튜브를 통과하는 냉매량이 균일하지 못해 열교환 능력을 증대시키지 못하고 있다.That is, since the cross-sectional area of the tank is the same, the flow rate of the refrigerant flowing through the tank is slower as it is located farther from the inlet pipe, so that the extruded tube (flat tube in the case of a laminated heat exchanger) and the inlet pipe are coupled to the inlet pipe. The pressure of the refrigerant passing through the relatively long distanced extrusion tube is distributed differently, and thus the amount of refrigerant passing through each tube having the same flow area is not uniform, and thus the heat exchange capacity is not increased.

본 고안은 이러한 점을 감안하여 안출된 것으로, 특히 각각의 튜브에 대해 유동하는 냉매량을 균일하게 하여 열교환량 증대를 도모할 수 있는 열교환기를 제공하는데 목적이 있다.The present invention has been devised in view of this point, and an object of the present invention is to provide a heat exchanger capable of increasing the amount of heat exchange by making the amount of refrigerant flowing for each tube uniform.

이러한 목적을 달성하기 위한 본 고안의 제1실시예에 따른 적층형 열교환기는 탱크가 일체로 성형되는 한쌍의 플레이트를 대면접합하여 구성한 다수의 플랫튜브들 사이에 코루게이트핀이 개재되어 구성된 적층형 열교환기에 있어서, 냉매가 유입되어 유동하는 방향으로 탱크의 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 탱크의 단면적을 점차 증가되게 하는 것을 특징으로 한다.Laminated heat exchanger according to the first embodiment of the present invention for achieving the above object in a laminated heat exchanger is formed by interposing a corrugated fin between a plurality of flat tubes formed by the face-to-face bonding of a pair of plates in which the tank is integrally formed In addition, the cross-sectional area of the tank is gradually decreased in the direction in which the refrigerant flows in, and the cross-sectional area of the tank is gradually increased in the direction in which the refrigerant flows.

본 고안의 제2실시예에 따른 열교환기는 복수의 튜브가 병렬로 배치됨과 동시에 인접 튜브사이에 핀이 배치되며, 각 튜브의 양단에 한쌍의 중공 탱크가 연통되어 접속된 열교환기에 있어서, 냉매가 유입되어 유동하는 방향으로 탱크의 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 탱크의 단면적을 점차 증가되게 하는 것을 특징으로 한다.In the heat exchanger according to the second embodiment of the present invention, a plurality of tubes are arranged in parallel and a fin is disposed between adjacent tubes, and a pair of hollow tanks are connected to each other in communication with each other, so that refrigerant is introduced. And gradually reduce the cross-sectional area of the tank in the flowing direction, and gradually increase the cross-sectional area of the tank in the flowing direction to allow the refrigerant to flow out.

본 고안 제3실시예에 따른 복식열교환기는 복수의 튜브가 병렬로 배치됨과 동시에 인접 튜브사이에 핀이 배치되며, 각 튜브의 양단에 한쌍의 중공 탱크가 연통되어 접속된 열교환기의 복수개가 공기 유통방향에 대해 전.후로 병설된 전방열교환기 및 후방열교환기; 상기 전방열교환기 및 후방열교환기에 있어서 냉매가 유입되어 유동하는 방향으로 탱크의 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 탱크의 단면적을 점차 증가되게 하는 것을 특징으로 한다.In the double heat exchanger according to the third embodiment of the present invention, a plurality of tubes are arranged in parallel and pins are arranged between adjacent tubes, and a plurality of heat exchangers connected by a pair of hollow tanks connected to both ends of each tube are air circulated. A front heat exchanger and a rear heat exchanger arranged before and after the direction; In the front heat exchanger and the rear heat exchanger, the cross-sectional area of the tank is gradually decreased in the direction in which the refrigerant is introduced and flows, and the cross-sectional area of the tank is gradually increased in the direction in which the refrigerant flows.

이러한 구성에 의하면, 제1,2 및 3실시예의 탱크 단면이 냉매 유동방향으로 점차 축소되게 함으로써 냉매의 유속을 균일하게 하여 각각의 튜브를 통과하는 냉매량을 동일하게 유지시킬 수 있고 이로 인해 각 튜브간의 온도편차가 감소되어 열교환량을 증대시킬 수 있다.According to this configuration, the tank cross sections of the first, second and third embodiments are gradually reduced in the refrigerant flow direction, so that the flow rate of the refrigerant is uniform, so that the amount of refrigerant passing through each tube can be kept the same. The temperature deviation can be reduced to increase the heat exchange amount.

도 1은 본 고안에 따른 제1실시예를 보인 적층형 열교환기를 보인 정면도,1 is a front view showing a laminated heat exchanger showing a first embodiment according to the present invention,

도 2는 본 고안의 제2실시예를 보인 단식열교환기,Figure 2 is a single heat exchanger showing a second embodiment of the present invention,

도 3은 본 고안의 제3실시예를 보인 복식열교환기.Figure 3 is a double heat exchanger showing a third embodiment of the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10;적층형열교환기 11;탱크10; stacked heat exchanger 11; tank

12;플레이트 13;플랫튜브12; plate 13; flat tube

14;코루게이트핀 15;입구파이프14; corrugated pin 15; inlet pipe

16;출구파이프16; outlet pipe

도 1은 본 고안의 카쿨러용 알루미늄제 적층형 증발기에 적용한 실시예를 도시한 것이다. 전체부호를 10으로 표시한 적층형 증발기는 탱크(11)가 일체로 사출성형되는 한쌍의 플레이트(12)를 대면접합하여 구성한 다수의 플랫튜브(13)들 사이에 코루게이트핀(14)이 개재되어 있다.Figure 1 shows an embodiment applied to the laminated evaporator made of aluminum for the cooler of the present invention. Multi-layer evaporator, denoted by 10, has a corrugated fin 14 interposed between a plurality of flat tubes 13 formed by facing a pair of plates 12 into which the tank 11 is integrally injection molded. have.

이러한 구성에 있어서, 본 고안은 상기 탱크(11)에 대해 냉매가 유입되어 유동하는 방향으로 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 단면적이 점차 증가되게 형성되어 있다.In this configuration, the present invention is formed to gradually reduce the cross-sectional area in the direction in which the refrigerant flows into the tank 11, and the cross-sectional area is gradually increased in the direction in which the refrigerant flows out.

이러한 구성에 의하면 입구파이프(15)를 통과하는 냉매는 유속저항에 의해 상대적으로 원거리를 유동할수록 유속이 완만하지만 입구파이프(15)로부터 원거리에 위치한 탱크(11)의 단면적이 점차 감소되기 때문에 탱크(11)를 유동하는 냉매의 유속이 균일하게 된다.According to this configuration, the refrigerant passing through the inlet pipe 15 has a slower flow rate as it flows relatively far from the inlet pipe, but the cross section of the tank 11 located far from the inlet pipe 15 gradually decreases. 11) the flow velocity of the refrigerant flowing through 11 is uniform.

따라서 상기 탱크(11)에서 플랫튜브(13)로 각각 분기되는 냉매는 상기 플랫튜브(13)의 단면적이 동일하기 때문에 이를 통과하는 냉매량이 균일하게 분포되므로 각 플랫튜브(13)간의 열교환량을 증대시킬 수 있다.Therefore, since the refrigerants branched from the tank 11 to the flat tube 13 are equal in cross-sectional area of the flat tube 13, the amount of refrigerant passing through the flat tube 13 is uniformly distributed, thereby increasing the amount of heat exchange between the flat tubes 13. You can.

반대로, 1차 열교환된 냉매가 플랫튜브(13)에 U턴하여 인접한 유로를 통과한 후 후방으로 유동하여 탱크(11)에서 혼합되며, 혼합된 냉매는 탱크(11)의 중앙부분을 지날 때 즉, 교축작용에 의해 유속이 빨라지면서 인접하는 탱크(11)로 유동하게 되며 이로부터 유동하는 냉매는 각각의 플랫튜브(13)에 대해 동일한 냉매량으로 통과하게 된다.On the contrary, the primary heat-exchanged refrigerant is U-turned on the flat tube 13, passes through an adjacent flow path, and then flows backward to be mixed in the tank 11, whereby the mixed refrigerant passes through the center portion of the tank 11, that is, As a result of the throttling action, the flow velocity is increased to flow to adjacent tanks 11, and the refrigerant flowing therefrom passes through the same amount of refrigerant for each flat tube 13.

즉, 냉매가 증발기의 중앙부분을 통과할 때 기상과 액상의 냉매가 열교환하여 혼합되는 효과가 증대될 뿐만 아니라 유속이 빠르기 때문에 액상의 냉매가 비산시되어 고르게 분배된다.That is, when the refrigerant passes through the central portion of the evaporator, not only the effect that the gaseous phase and the liquid phase refrigerant exchange by heat exchange is increased, but also because the flow velocity is high, the liquid phase refrigerant is scattered and distributed evenly.

이와 같이 후방에서 열교환된 냉매는 다시 플랫튜브(13)를 유턴하면서 열교환되어 전방으로 유동한 후 출구파이프(16)를 통해 압축기측으로 유동하게 된다.The refrigerant heat exchanged in the rear is heat exchanged while U-turning the flat tube 13 again and flows forward, and then flows to the compressor side through the outlet pipe 16.

도 2는 본 고안의 카쿨러용 알루미늄제 압출튜브를 사용하는 단식증발기에 적용한 제2실시예를 도시한 것이다. 전체부호를 20으로 표시한 단식증발기는 복수의 튜브(21)가 병렬로 배치됨과 동시에 인접 튜브사이에 코루게이트핀(22)이 배치되며, 각 튜브(21)의 양단에 한쌍의 중공 탱크(23)(24) 연통되어 있다.Figure 2 shows a second embodiment applied to a single evaporator using an extruded aluminum tube made of a car cooler of the present invention. In the single evaporator indicated by the numeral 20, a plurality of tubes 21 are arranged in parallel and a corrugated pin 22 is disposed between adjacent tubes, and a pair of hollow tanks 23 are provided at both ends of each tube 21. 24 is in communication.

이러한 구성에 있어서, 본 고안의 제2실시예는 제1실시예와 동일하게 냉매가 유입되어 유동하는 방향으로 탱크(23)(24)의 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 탱크의 단면적을 점차 증가되게 하는 것을 특징으로 한다.In this configuration, the second embodiment of the present invention gradually reduces the cross-sectional areas of the tanks 23 and 24 in the direction in which the refrigerant flows in and flows in the same way as the first embodiment, and flows the refrigerant in order to flow out. It characterized in that to gradually increase the cross-sectional area of the tank.

상기 탱크(23)(24)는 원통형으로 압출성형된 파이프형상이나 2부재로 결합된 타원형상이어도 좋다.The tanks 23 and 24 may be in the shape of a pipe extruded in a cylindrical shape or an elliptical shape combined with two members.

이와 같이 구성된 제2실시예는 탱크(23)(24) 내부에 배설된 배플(25-27))에 의해 사행의 경로로 냉매가 유동하게 되며, 탱크(23)(24)를 유동하는 냉매는 제1실시예의 작용과 동일하다.In the second embodiment configured as described above, the refrigerant flows in a meandering path by the baffles 25-27 disposed in the tanks 23 and 24, and the refrigerant flowing through the tanks 23 and 24 The operation is the same as in the first embodiment.

도 3은 본 고안의 카쿨러용 알루미늄제 응축기에 적용한 실시예를 표시한 것이다. 도면중 부호 30은 복식열교환기이고, 이 복식열교환기는 열교환용 공기 유통방향에 대해 전후 2단으로 병설된 전열열교환기(31)와 후열열교환기(40)로 되어 있다. 상기 전열열교환기(31)와 후열열교환기(40)는 동일한 구성으로 이루어지며, 이하 전열열교환기(31)를 중심으로 설명한다.Figure 3 shows an embodiment applied to the condenser made of aluminum for the cooler of the present invention. In the figure, reference numeral 30 denotes a double heat exchanger, and the double heat exchanger includes a pre-heat exchanger 31 and a post-heat exchanger 40 arranged in two front and rear stages in the air flow direction for heat exchange. The pre-heat exchanger 31 and the post-heat exchanger 40 is made of the same configuration, will be described below with respect to the pre-heat exchanger (31).

전열열교환기(31)는 수직상태로 좌.우방향으로 배설된 복수의 튜브(32)와, 인접하는 튜브간에 개재된 코루게이트핀(33)과, 상.하에 배설된 전열탱크(34)를 가지고 전체적으로 대칭으로 이루어져 있다.The heat exchanger (31) includes a plurality of tubes (32) disposed left and right in a vertical state, corrugated fins (33) interposed between adjacent tubes, and heat transfer tanks (34) disposed above and below. It is entirely symmetrical.

전열탱크(34)는 단면이 평활면인 알루미늄제로 형성되어 있으며, 탱크플레이트(35)와 전열캡플레이트(36)로 분할결합되어 입구파이프(37)와 출구파이프(38)가 결합되어 있다.The heat transfer tank 34 is formed of aluminum having a flat surface and is divided into a tank plate 35 and a heat transfer cap plate 36 to which the inlet pipe 37 and the outlet pipe 38 are coupled.

그리고, 상기 전열탱크(34)는 제1,2실시예와 동일하게 탱크의 단면이 냉매가 유입되어 유동하는 방향으로 단면적이 점차 감소되며, 냉매가 유출되기 위해 유동하는 방향으로 단면적이 점차 증대되게 형성되어 있다.In addition, as in the first and second embodiments, the heat transfer tank 34 has a cross-sectional area of the tank gradually reduced in the direction in which the refrigerant flows in, and a cross-sectional area of the heat transfer tank 34 gradually increases in the direction in which the refrigerant flows out. Formed.

상기 전열열교환기(31)와 후열열교환기(40)는 각각 탱크결합수단에 의해 연통되어 냉매회로를 형성하고 있다.The pre-heat exchanger 31 and the post-heat exchanger 40 communicate with each other by tank coupling means to form a refrigerant circuit.

그리고 전열열교환기(31)와 후열열교환기(40)의 탱크에는 냉매의 유로를 사행으로 전환하기 위한 도시되지 않은 배플을 설치하여 각 탱크의 중공부를 구획하고 있으며, 상기 배플들에 의해 냉매회로가 결정된다.The tanks of the front heat exchanger (31) and the post heat exchanger (40) are provided with baffles (not shown) for converting the coolant flow paths in meandering to partition hollow portions of the respective tanks. Is determined.

이와 같이 구성된 본 고안에 따른 냉매회로는 입구파이프(37)를 통해 냉매가 전열열교환기(31)의 탱크(34)로 유입되어 하방으로 유동하면서 열교환한 후 탱크결합수단을 경유하여 후열열교환기(40)로 유입된다. 후열열교환기(40)로 유입된 냉매는 상방으로 유동하여 후열탱크에서 다시 하방으로 유동하게 되고, 하방으로 유동한 냉매는 탱크결합수단을 경유하여 전열열교환기(31)로 거쳐 다시 상방으로 유동하면서 열교환된 후 출구파이프(38)를 통해 도시하지 않은 압축기로 유출된다.In the refrigerant circuit according to the present invention configured as described above, the refrigerant flows into the tank 34 of the pre-heat exchanger 31 through the inlet pipe 37 and flows downward while exchanging heat, and then through the tank coupling means. 40). The refrigerant introduced into the after-heat exchanger (40) flows upward and flows downward again from the after-heat tank, and the refrigerant flowing downward flows upward again through the pre-heat exchanger (31) via the tank coupling means. After the heat exchange, the outlet pipe 38 flows out to a compressor (not shown).

이러한 냉매의 유동과정에 있어서, 입구파이프(37)를 통과하는 냉매는 유속저항에 의해 상대적으로 원거리를 유동할수록 유속이 완만하지만 입구파이프(37)로부터 원거리에 위치한 탱크(34)의 단면적이 점차 감소되기 때문에 탱크(34)를 유동하는 냉매의 유속이 균일하게 된다.In the flow of the coolant, the coolant passing through the inlet pipe 37 has a slower flow rate as it flows relatively far from the inlet pipe 37, but the cross-sectional area of the tank 34 located far from the inlet pipe 37 gradually decreases. Therefore, the flow velocity of the refrigerant flowing through the tank 34 becomes uniform.

따라서 상기 탱크(34)에서 튜브(32)로 각각 분기되는 냉매는 상기 튜브(32)의 단면적이 동일하기 때문에 이를 통과하는 냉매량이 균일하게 분포되므로 각 튜브(32)간의 열교환량을 증대시킬 수 있다.Therefore, since the refrigerants branched from the tank 34 to the tubes 32 have the same cross-sectional area of the tubes 32, the amount of refrigerant passing therethrough is uniformly distributed, thereby increasing the amount of heat exchange between the tubes 32. .

반대로, 1차 열교환된 냉매가 후열열교환기(40)에 U턴하여 인접한 유로를 통과한 후 후방으로 유동하여 탱크에서 혼합되며, 혼합된 냉매는 탱크의 중앙부분을 지날 때 즉, 교축작용에 의해 유속이 빨라지면서 인접하는 탱크로 유동하게 되며 이로부터 유동하는 냉매는 각각의 튜브(32)에 대해 동일한 냉매량으로 통과하게 된다.On the contrary, the first heat-exchanged refrigerant is U-turned to the after-heat exchanger (40), passes through an adjacent flow path, and flows backward to be mixed in the tank, and the mixed refrigerant passes through the center portion of the tank, that is, by throttling. As the flow rate increases, it flows to adjacent tanks, and the refrigerant flowing therefrom passes at the same amount of refrigerant for each tube 32.

이와 같이 후방에서 열교환된 냉매는 다시 튜브(32)를 유턴하면서 열교환되어 전방으로 유동한 후 출구파이프(38)를 통해 압축기측으로 유동하게 된다.In this way, the refrigerant heat-exchanged at the rear side is heat-exchanged while U-turning the tube 32 to flow forward and then flows to the compressor side through the outlet pipe 38.

이상에서와 같이 본 고안은 탱크의 단면적을 냉매의 유동방향으로 점차 감소시켜 유속분포를 동일하게 함으로써 탱크와 연통된 튜브를 통과하는 냉매의 통과량을 균일하게 유지함으로써 열교환량의 증대를 도모할 수 있다.As described above, the present invention gradually increases the cross-sectional area of the tank in the flow direction of the coolant, thereby making the flow rate distribution the same, thereby increasing the amount of heat exchange by keeping the flow rate of the coolant passing through the tube communicating with the tank uniformly. have.

Claims (3)

탱크가 일체로 성형되는 한쌍의 플레이트를 대면접합하여 구성한 다수의 플랫튜브들 사이에 코루게이트핀이 개재되어 구성된 적층형 열교환기에 있어서, 상기 탱크는 냉매가 유입되어 유동하는 방향으로 단면적이 점차 감소되고, 냉매가 유출되기 위해 유동하는 방향으로 단면적이 점차 증가되게 하는 것을 특징으로 하는 열교환기.In a laminated heat exchanger configured by interposing a plurality of flat tubes formed by face-joining a pair of plates in which a tank is integrally formed, the tank has a cross-sectional area gradually decreasing in a direction in which refrigerant flows and flows therein. A heat exchanger characterized in that the cross-sectional area is gradually increased in the direction in which the refrigerant flows out. 복수의 튜브가 병렬로 배치됨과 동시에 인접 튜브사이에 핀이 배치되며, 각 튜브의 양단에 한쌍의 중공 탱크가 연통되어 접속된 열교환기에 있어서, 상기 탱크는 냉매가 유입되어 유동하는 방향으로 단면적이 점차 감소되고, 냉매가 유출되기 위해 유동하는 방향으로 단면적이 점차 증가되게 하는 것을 특징으로 하는 열교환기.In a heat exchanger in which a plurality of tubes are arranged in parallel and pins are arranged between adjacent tubes, and a pair of hollow tanks are connected to and connected to both ends of the tubes, the tank has a cross-sectional area gradually in a direction in which refrigerant flows and flows. And a cross sectional area is gradually increased in the direction in which the refrigerant flows to flow out. 복수의 튜브가 병렬로 배치됨과 동시에 인접 튜브사이에 핀이 배치되며, 각 튜브의 양단에 한쌍의 중공 탱크가 연통되어 접속된 열교환기의 복수개가 공기 유통방향에 대해 전.후로 병설된 전방열교환기 및 후방열교환기; 상기 전방열교환기 및 후방열교환기에 있어서, 냉매가 유입되어 유동하는 방향으로 탱크의 단면적을 점차 감소시키고, 냉매가 유출되기 위해 유동하는 방향으로 탱크의 단면적을 점차 증가되게 하는 것을 특징으로 하는 열교환기.A plurality of tubes are arranged in parallel and a fin is arranged between adjacent tubes, and a pair of hollow tanks are connected to both ends of each tube so that a plurality of connected heat exchangers are connected to each other in a forward and backward direction in the air flow direction. And rear heat exchanger; The front heat exchanger and the rear heat exchanger, the heat exchanger characterized in that to gradually reduce the cross-sectional area of the tank in the direction in which the refrigerant flows in, and to gradually increase the cross-sectional area of the tank in the direction in which the refrigerant flows out.
KR2019970028502U 1997-10-14 1997-10-14 heat transmitter KR200312065Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2019970028502U KR200312065Y1 (en) 1997-10-14 1997-10-14 heat transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2019970028502U KR200312065Y1 (en) 1997-10-14 1997-10-14 heat transmitter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR20-2002-0025521U Division KR200313694Y1 (en) 2002-08-27 2002-08-27 A heat exchanger

Publications (2)

Publication Number Publication Date
KR19990015272U true KR19990015272U (en) 1999-05-15
KR200312065Y1 KR200312065Y1 (en) 2003-08-02

Family

ID=49405833

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2019970028502U KR200312065Y1 (en) 1997-10-14 1997-10-14 heat transmitter

Country Status (1)

Country Link
KR (1) KR200312065Y1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079751A (en) * 2004-02-06 2005-08-11 한국델파이주식회사 Header-tank assembly for heat exchanger using in vehicle
KR100531016B1 (en) * 1998-12-31 2006-02-01 한라공조주식회사 Heat exchanger manifold plate and heat exchanger using the same to improve refrigerant flow
CN112880465A (en) * 2019-11-29 2021-06-01 杭州三花研究院有限公司 Flow collecting piece and heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531016B1 (en) * 1998-12-31 2006-02-01 한라공조주식회사 Heat exchanger manifold plate and heat exchanger using the same to improve refrigerant flow
KR20050079751A (en) * 2004-02-06 2005-08-11 한국델파이주식회사 Header-tank assembly for heat exchanger using in vehicle
CN112880465A (en) * 2019-11-29 2021-06-01 杭州三花研究院有限公司 Flow collecting piece and heat exchanger

Also Published As

Publication number Publication date
KR200312065Y1 (en) 2003-08-02

Similar Documents

Publication Publication Date Title
KR100562537B1 (en) Heat exchanger
US6705386B2 (en) Serpentine heat exchanger
CN101644512A (en) Heat exchanger
KR20080016588A (en) Multifluid heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
US20090151918A1 (en) Heat Exchanger for Automobile and Fabricating Method Thereof
US9951996B2 (en) Refrigerant evaporator
US20140374072A1 (en) Kit for a heat exchanger, a heat exchanger core, and heat exchanger
KR100497847B1 (en) Evaporator
US7051796B2 (en) Heat exchanger
US6397938B1 (en) Heat exchanger
KR200312065Y1 (en) heat transmitter
KR200313694Y1 (en) A heat exchanger
JP4164146B2 (en) Heat exchanger and car air conditioner using the same
JP4547205B2 (en) Evaporator
KR100528997B1 (en) Multilayer Heat Exchanger
JPH02171591A (en) Laminated type heat exchanger
CN220507311U (en) Microchannel heat exchanger and air conditioner
KR100506628B1 (en) Multilayer Heat Exchanger and Manufacturing Method
KR100531016B1 (en) Heat exchanger manifold plate and heat exchanger using the same to improve refrigerant flow
JP4164145B2 (en) Heat exchanger and car air conditioner using the same
KR100393585B1 (en) a heat exchanger
KR20000002366A (en) Heat exchanger
KR100966746B1 (en) Plate for evaporator
CN116817493A (en) Microchannel heat exchanger and air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
U106 Divisional application of utility model
E701 Decision to grant or registration of patent right
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20080327

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee