KR19980074311A - Cathode electrode of lithium ion battery using metal net as current collector and manufacturing method thereof - Google Patents

Cathode electrode of lithium ion battery using metal net as current collector and manufacturing method thereof Download PDF

Info

Publication number
KR19980074311A
KR19980074311A KR1019970010063A KR19970010063A KR19980074311A KR 19980074311 A KR19980074311 A KR 19980074311A KR 1019970010063 A KR1019970010063 A KR 1019970010063A KR 19970010063 A KR19970010063 A KR 19970010063A KR 19980074311 A KR19980074311 A KR 19980074311A
Authority
KR
South Korea
Prior art keywords
lithium ion
ion battery
manufacturing
positive electrode
current collector
Prior art date
Application number
KR1019970010063A
Other languages
Korean (ko)
Other versions
KR100378011B1 (en
Inventor
선우준
강영태
이승연
Original Assignee
성재갑
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성재갑, 주식회사 엘지화학 filed Critical 성재갑
Priority to KR1019970010063A priority Critical patent/KR100378011B1/en
Publication of KR19980074311A publication Critical patent/KR19980074311A/en
Application granted granted Critical
Publication of KR100378011B1 publication Critical patent/KR100378011B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 금속망을 집전판으로 사용한 리튬 이온 전지의 양극 전극 및 그의 제조방법에 관한 것이다. 본 발명에서는 대형 리튬 이온 전지에서 용량에 기여 하지 않는 금속 집전판의 부피를 줄여서 리튬 이온 전지의 대용량화 및 대형화를 이루기 위해 금속망을 집전판으로 사용한 양극 전극 및 그의 제조방법에 관한 것으로서, 종래에 양극의 집전판으로 사용되던 알루미늄 호일을 알루미늄 금속망으로 교체하고 양극 필름의 두께를 증대 시키기 위해 용매 증발법 대신에 패이스트 (Paste) 에 의한 코팅을 하여 양극 필름의 두께를 250 ∼ 450 마이크로미터까지 증대시킨 금속망을 집전판으로 사용한 리튬 이온 전지의 양극 전극 및 그의 제조방법에 관한 것이다.The present invention relates to a positive electrode of a lithium ion battery using a metal net as a current collector plate and a method of manufacturing the same. The present invention relates to a cathode electrode using a metal mesh as a current collector plate and a manufacturing method thereof in order to reduce the volume of a metal current collector plate that does not contribute to capacity in a large lithium ion battery to achieve a large capacity and a large size of a lithium ion battery. In order to increase the thickness of the anode film, the aluminum foil used for current collector of aluminum was replaced by aluminum paste and coated with paste instead of solvent evaporation to increase the thickness of anode film from 250 to 450 micrometers. The positive electrode of a lithium ion battery using the made metal mesh as a collector plate, and its manufacturing method.

Description

금속망을 집전판으로 사용한 리튬 이온 전지의 양극 전극 및 그의 제조방법Cathode electrode of lithium ion battery using metal net as current collector plate and manufacturing method thereof

본 발명은 금속망을 집전판으로 사용한 리튬 이온 전지의 양극 전극 및 그의 제조방법에 관한 것이다.The present invention relates to a positive electrode of a lithium ion battery using a metal net as a current collector plate and a method of manufacturing the same.

종래의 리튬 이온 전지의 양극 전극 및 그의 제조방법은 알루미늄 호일위에 용매 증발법에 의하여 코팅 제조되었다.A positive electrode of a conventional lithium ion battery and a method of manufacturing the same have been prepared by coating a solvent on an aluminum foil by evaporation.

즉, 리튬 1 차 전지의 고전류 방전 특성을 향상시키기 위해 양극 활물질 필름의 두께를 얇게 하고, 금속 호일위에 용매 증발법 (Solvent Casting) 에 의하여 코팅을 하여 제조한다. 이와 같이 금속호일위에 용매 증발법에 의한 제조방법을 사용하는 것은 어떤 특별한 이유가 있다기 보다는 리튬 이온 전지 개발시 이미 개발되어 있는 리튬 1차 전지 양극 전극 제조 공정을 그대로 활용한 것이라고 할 수 있다. 이와 같은 제조방법은 휴대용 전자기기에서 요구되는 소형 2 차 전지에서는 커다란 문제가 없다. 그러나, 전기 자동차나 산업용 전지등에 사용되는 대형 고용량 전지에서는 전지의 용량에 아무런 기여도 하지 않는 금속 호일이 전극에서 차지하는 부분이 너무 많아 비효율적인 전지가 된다. 또한 현재 생산되고 있는 리튬 이온 전지의 경우, 한쪽 면만 코팅했을 때 양극 집전판인 알루미늄 호일의 두께가 20 마이크로미터가 되며 양극 필름의 두께는 약 70 마이크로미터가 된다. 이렇게 용량에 아무 기여도 하지 않는 알루미늄 호일의 양이 20% 이상을 차지하게 되며 용량의 효율성을 높이기 위해 알루미늄 호일위에 양면 코팅을 하였을 때에도 알루미늄 호일의 양이 13% 정도의 많은 부분을 차지한다. 이와 같이 전기 자동차나 산업용의 대형 전지를 현재의 제조방법으로 제조한다고 하였을 때 전체부피에서 집전판인 호일이 차지하는 부피는 상당히 크며, 따라서 비효율적인 전지를 양산하게 된다.That is, the thickness of the positive electrode active material film is made thin in order to improve the high current discharge characteristics of the lithium primary battery, and the coating is prepared on the metal foil by solvent evaporation (Solvent Casting). Thus, the use of the manufacturing method by the solvent evaporation method on the metal foil can be said to utilize the lithium primary battery cathode electrode manufacturing process already developed during the development of the lithium ion battery, rather than for any special reason. Such a manufacturing method does not have a big problem in a small secondary battery required in a portable electronic device. However, in large high-capacity batteries used in electric vehicles or industrial batteries, the metal foil, which does not contribute to the capacity of the battery, occupies too much of the electrode, resulting in an inefficient battery. In addition, in the case of lithium ion batteries currently produced, when only one surface is coated, the thickness of the aluminum foil, which is the positive electrode current collector plate, is 20 micrometers, and the thickness of the positive electrode film is about 70 micrometers. Thus, the amount of aluminum foil that does not contribute to the capacity occupies more than 20%, and the amount of aluminum foil occupies about 13% even when double-side coating on the aluminum foil to increase the efficiency of the capacity. As described above, when a large battery of an electric vehicle or an industrial battery is manufactured by the current manufacturing method, the volume of the foil, which is the current collector plate, in the total volume is considerably large, thus producing inefficient batteries.

따라서, 본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명에서는 대형 리튬 이온 전지에서 용량에 기여 하지 않는 금속 집전판의 부피를 줄여서 리튬 이온 전지의 대용량화 및 대형화를 이루기 위해 금속망을 집전판으로 사용한 양극 전극 및 그의 제조방법에 관한 것으로서, 종래에 양극의 집전판으로 사용되던 알루미늄 호일을 알루미늄 금속망으로 교체하고 양극 필름의 두께를 증대 시키기 위해 용매 증발법 대신에 패이스트 (Paste) 에 의한 코팅을 하여 양극 필름의 두께를 250 ∼ 450 마이크로미터까지 증대시킨 금속망을 집전판으로 사용한 리튬 이온 전지의 양극 전극 및 그의 제조방법에 관한 것이다.Accordingly, the present invention has been made to solve the above problems, in the present invention is to reduce the volume of the metal current collector plate that does not contribute to the capacity in a large lithium ion battery by collecting a metal network to achieve a large capacity and large size of the lithium ion battery The present invention relates to a positive electrode used as a front plate and a method of manufacturing the same, wherein a paste is used instead of a solvent evaporation method in order to replace the aluminum foil, which is conventionally used as a current collector of a positive electrode, with an aluminum metal mesh and increase the thickness of the positive electrode film. The present invention relates to a positive electrode of a lithium ion battery using a metal net with a thickness of 250 to 450 micrometers coated with a positive electrode as a current collector and a method of manufacturing the same.

도 1 은 본 발명에 의한 금속망을 집전판으로 사용한 리튬 이온 양극 전극의 반쪽 전지 충, 방전 시험결과를 나타내는 도면.BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the half-cell charge and discharge test result of the lithium ion positive electrode which uses the metal network as a collector plate by this invention.

상기한 목적을 달성하기 위한 본 발명에 의한 양극 전극은 금속망을 집전판으로 사용하였다. 또, 본 발명에 의한 리튬 이온 전지의 양극 전극의 제조방법에서는, 바인더인 폴리바이닐리딘 플로라이드 (PVDF) 를 용매인 엔엠피 (NMP) 에 녹여 균일한 바인더액을 제조하고, 상기 바인더액을 40℃ ∼ 70℃ 의 열을 가하여 폴리머를 용해하고 양극 활물질인 (LiCo02, LiNi02, LiMn204) 과 전자 전도물질인 아세틸렌 블랙을 볼밀에서 30 분 ∼ 90 분 정도의 볼밀링한 후, 바인더액과 믹싱하여 3 종류 LiCo02, LiNi02, LiMn204 의 코팅액 (패이스트) 을 제조하여, 상기 폴리바이닐리딘 플로라이드 용액속에 알루미늄 금속망을 5 초 ∼ 15 초 간 담근 후 꺼내어 60℃ ∼ 90℃ 에서 1 ∼ 4 분간 건조시켜 알루미늄 금속망 표면에 바인더 박막이 형성되도록 표면처리한다. 이러한 표면 처리는 폴리바이닐리딘 플로라이드가 성능이 우수한 바인더로서, 알루미늄금속망과의 접착력이 좋지 않으면 활물질인 LiCo02, LiNi02, LiMn204 끼리 강하게 접착되어 알루미늄 금속망과 양극 필름이 떨어지는 디레미네이션 (delamination) 현상이 발생하게 되는데, 상기 표면 처리는 이러한 현상을 방지하기 위함이다. 또한 상기 단계에서 바인더 박막으로 표면처리된 금속망위에 LiCo02, LiNi02, LiMn204 의 코팅액을 코팅한 후 90℃ ∼ 130℃ 의 온도에서 경화시켜, 양극 필름의 두께가 250 ∼ 450 마이크로미터 수준으로 금속망과 일체형의 전극 구조를 이루게 된다. 이때 집전판의 부피 비율은 7% 이하로 줄어든다.The anode electrode according to the present invention for achieving the above object was using a metal mesh as a current collector plate. Moreover, in the manufacturing method of the positive electrode of the lithium ion battery by this invention, polyvinylidene fluoride (PVDF) which is a binder is melt | dissolved in NMP (NMP) which is a solvent, and a uniform binder liquid is produced, and the said binder liquid is The polymer is dissolved by applying a heat of 40 ° C. to 70 ° C., and ball milling the cathode active material (LiCo02, LiNi02, LiMn204) and acetylene black, which are electron conducting materials, in a ball mill for 30 minutes to 90 minutes, and then mixing with a binder liquid. Three kinds of coating liquids (pastes) of LiCo02, LiNi02, and LiMn204 were prepared, and the aluminum metal mesh was immersed in the polyvinylidene fluoride solution for 5 seconds to 15 seconds, then taken out and dried at 60 ° C to 90 ° C for 1 to 4 minutes. Surface treatment to form a binder thin film on the surface of the aluminum metal mesh. This surface treatment is a binder having excellent performance of polyvinylidene fluoride, and if the adhesion to the aluminum metal mesh is poor, the active materials LiCo02, LiNi02, and LiMn204 are strongly bonded to each other so that the aluminum metal mesh and the anode film fall off. ) Phenomenon occurs, the surface treatment is to prevent this phenomenon. In addition, after coating the coating solution of LiCo02, LiNi02, LiMn204 on the metal mesh surface treated with a binder thin film in the above step and cured at a temperature of 90 ℃ ~ 130 ℃, the thickness of the anode film 250 to 450 micrometers and An integrated electrode structure is achieved. At this time, the volume ratio of the current collector plate is reduced to 7% or less.

또한, 도 1 은 본 발명에 의한 금속망을 집전판으로 사용한 반쪽 전지 충, 방전 시험결과를 나타내는 도면으로서, 상기한 구성과 방법에 의하여 제조된 반쪽 전지 (half cell) 는 리튬금속을 표준전극으로 하고, 격막으로는, 기존 리튬 전지에서 사용되는 폴리프로필렌 필름을 사용하며, 전해액으로는 프로필렌 카보네이트 (PC) 와 디메틸카보네이트 (DMC) 의 혼합 용액에 LiPF6 리튬염이 들어가 있는 전해액을 사용하였다. 또, 필름의 두께와 활물질의 양으로부터 세종류의 양극 이론 용량을 구한 후 반쪽 전지를 C/5 의 표준 전류로 방전하여 용량의 추이를 실험하였다. 이 결과 LiCo02, LiNi02, LiMn204 등의 세종류의 양극모두 표준 방전 속도에서 이론 용량의 100% 방전이 되었다. 따라서, 양극 필름의 두께증대에 따른 분극현상과 같은 악영향은 발생하지 않음을 알 수 있었다. 또한 용량과 충, 방전횟수 (Cycel life) 는 서로 상반된 관계가 있다. 일반적로 전지는 두 부류로 나뉘어진다. 고용량 저 충, 방전수명의 전지와 저용량 고 충, 방전수명의 전지로 동일 성분의 전지도 나뉘어지게 된다. 본 발명에 의한 전지는 고용량 전지로 분류할 수 있다. 그러므로, 고용량을 실천함에 있어서 충, 방전 횟수에 어느 정도 영향을 받는지를 알아보아야 한다. 따라서, 본 발명에 의한 LiCo02, LiNi02, LiMn204 등 세종류의 양극 전극에 의해 제조된 반쪽 전지를 충, 방전 시험기에서 충, 방전 시험을 하였다. 먼저, 충전은 C/10 의 전류속도로 전류를 흐르게 하여, 정전압으로 전환시키는 혼합방식을 채택하였으며, 방전은 C/5 의 표준 전류속도로 방전시켰다. 이 결과 도 1 에 나타난 것과 같이 충, 방전횟수 20 회에서 LiCo02 전극은 초기용량의 96% 를 유지하고 있으며, LiNi02 전극은 93%, LiMn204 전극은 89% 를 각각 기록하고 있음을 알 수 있다. 이것은 기존 리튬 이온 전지의 양극 반쪽전지 시험결과와 유사한 수치이다. 그러므로, 전극의 두께 증대 즉, 고용량화에도 불구하고 충, 방전수명에 큰 영향을 주지 않음을 알 수 있다.1 is a view showing the results of a half-cell charge and discharge test using the metal network according to the present invention as a current collector plate. The half-cell manufactured by the above-described configuration and method is made of lithium metal as a standard electrode. As the diaphragm, a polypropylene film used in a conventional lithium battery was used, and an electrolyte solution containing LiPF 6 lithium salt in a mixed solution of propylene carbonate (PC) and dimethyl carbonate (DMC) was used as an electrolyte solution. In addition, three kinds of positive electrode theoretical capacities were obtained from the thickness of the film and the amount of the active material, and then the half cell was discharged at a standard current of C / 5 to test the change in capacity. As a result, all three types of anodes such as LiCo02, LiNi02, and LiMn204 became 100% of the theoretical capacity at the standard discharge rate. Therefore, it can be seen that no adverse effects such as polarization due to the increase in the thickness of the positive electrode film occur. In addition, the capacity and the number of charge and discharge cycles (Cycel life) have a mutually opposite relationship. In general, batteries are divided into two classes. A battery of the same component is also divided into a high capacity low charge and discharge life battery and a low capacity high charge and discharge life battery. Batteries according to the present invention can be classified into high capacity batteries. Therefore, it is necessary to find out how much the number of charges and discharges is affected in the practice of high capacity. Therefore, the half-cell manufactured by three types of positive electrode, such as LiCo02, LiNi02, LiMn204 by this invention, was charged and discharged by the charge and discharge tester. First of all, charging adopts a mixing method in which a current flows at a current rate of C / 10 to switch to a constant voltage, and the discharge is discharged at a standard current rate of C / 5. As a result, as shown in FIG. 1, the LiCo02 electrode maintains 96% of the initial capacity at 20 charge / discharge cycles, 93% for the LiNi02 electrode, and 89% for the LiMn204 electrode. This is similar to the test result of the positive electrode half cell of the conventional lithium ion battery. Therefore, it can be seen that the increase in the thickness of the electrode, that is, the increase in capacity does not significantly affect the charge and discharge life.

이상에서 상세히 설명한 바와 같이, 본 발명에 의하면, 바인더 박막으로 표면처리된 금속망을 집전판으로 사용한 양극 전극 및 그의 제조방법을 제공함으로서, 양극 전극 필름의 두께를 증대시켜 고용량 전지를 얻을 수 있도록 하였으며, 집전판이 차지하는 비율 또한, 7% 이하로 줄였다. 이렇게 하여 리튬 이온 전지의 대용량 및 대형화에 기여 하였다. 또, 고용량화에도 불구하고 충, 방전수명에 큰 영향을 주지 않는 전지를 제조 가능케 하여, 앞으로 사용될 전기 자동차나 산업용의 대형전지의 부피를 현저히 줄여 소형화를 이룰 수 있는 효과가 있다.As described in detail above, according to the present invention, by providing a positive electrode and a manufacturing method thereof using a metal mesh surface treated with a binder thin film as a current collector plate, it is possible to obtain a high capacity battery by increasing the thickness of the positive electrode film. In addition, the ratio of the current collector plate is also reduced to less than 7%. This contributed to the large capacity and large size of the lithium ion battery. In addition, despite the high capacity, it is possible to manufacture a battery that does not significantly affect the charge and discharge life, it is possible to achieve a miniaturization by significantly reducing the volume of a large-sized battery of the electric vehicle or industrial to be used in the future.

Claims (4)

리튬 이온 전지의 양극 전극에 있어서, 상기 양극 전극의 집전판은 금속망으로 이루어지는 것을 특징으로 하는 리튬 이온 전지의 양극 전극.A positive electrode of a lithium ion battery, wherein the current collector plate of the positive electrode comprises a metal mesh. 리튬 이온 전지의 양극 전극의 제조방법에 있어서,In the manufacturing method of the positive electrode of a lithium ion battery, 바인더인 폴리바이닐리딘 플로라이드를 용매인 엔엠피에 녹여 균일한 바인더액을 제조하는 단계와,Dissolving polyvinylidene fluoride as a binder in NMP as a solvent to prepare a uniform binder liquid, 상기 바인더액을 40℃ ∼ 70℃ 의 열을 가해 폴리머를 용해하고 양극 활물질과 전자 전도물질인 아세틸렌 블랙을 볼밀에서 30 분 ∼ 90 분 정도의 볼밀링한 후, 바인더액과 믹싱하여 3 종류 LiCo02, LiNi02, LiMn202 의 코팅액을 제조하는 단계와,The binder liquid was heated at 40 ° C. to 70 ° C. to dissolve the polymer, and ball milling the cathode active material and acetylene black, which is an electron conductive material, in a ball mill for about 30 minutes to 90 minutes, and then mixed with the binder liquid to form three kinds of LiCo02, Preparing a coating liquid of LiNi02 and LiMn202, 상기 폴리바이닐리딘 플로라이드 용액속에 금속망을 5 초 ∼ 15 초 간 담근 후 꺼내어 60℃ ∼ 90℃ 에서 1 ∼ 4 분간 건조시켜 금속망 표면에 바인더 박막이 형성되도록 표면처리하는 단계와,Immersing the metal net in the polyvinylidene fluoride solution for 5 seconds to 15 seconds, taking it out, and drying it for 1 to 4 minutes at 60 ° C. to 90 ° C. to surface-treat a binder thin film to form on the surface of the metal net; 상기 단계에서 바인더 박막으로 표면처리된 금속망위에 LiCo02, LiNi02, LiMn204 의 코팅액을 코팅한 후 90℃ ∼ 130℃ 의 온도에서 경화시켜 양극 필름의 두께가 250 ∼ 450 마이크로미터 수준으로 금속망과 일체형의 전극 구조를 이루게 하는 단계를 포함하는 것을 특징으로 하는 리튬 이온 전지의 양극 전극의 제조방법.Coating the coating solution of LiCo02, LiNi02, LiMn204 on the metal mesh surface treated with the binder thin film in the above step, and then cured at a temperature of 90 ℃ ~ 130 ℃ to the thickness of the anode film 250 to 450 micrometers integral with the metal mesh A method of manufacturing a positive electrode of a lithium ion battery, comprising the step of forming an electrode structure. 제 2 항에 있어서, 상기 활물질은 LiCo02, LiNi02, LiMn204 중 어느 하나로 이루어지는 것을 특징으로 하는 리튬 이온 전지의 양극 전극의 제조방법.The method of manufacturing a cathode electrode of a lithium ion battery according to claim 2, wherein the active material is made of any one of LiCo02, LiNi02, and LiMn204. 제 2 항에 있어서, 상기 금속망은 알루미늄으로 이루어지는 것을 특징으로 하는 리튬 이온 전지의 양극 전극의 제조방법.The method of claim 2, wherein the metal mesh is made of aluminum.
KR1019970010063A 1997-03-24 1997-03-24 Cathode of lithium ion battery using aluminum mesh as collector KR100378011B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970010063A KR100378011B1 (en) 1997-03-24 1997-03-24 Cathode of lithium ion battery using aluminum mesh as collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970010063A KR100378011B1 (en) 1997-03-24 1997-03-24 Cathode of lithium ion battery using aluminum mesh as collector

Publications (2)

Publication Number Publication Date
KR19980074311A true KR19980074311A (en) 1998-11-05
KR100378011B1 KR100378011B1 (en) 2003-06-12

Family

ID=37417012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970010063A KR100378011B1 (en) 1997-03-24 1997-03-24 Cathode of lithium ion battery using aluminum mesh as collector

Country Status (1)

Country Link
KR (1) KR100378011B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396492B1 (en) * 2001-10-17 2003-09-02 삼성에스디아이 주식회사 Positive active material for lithium-sulfur battery and method of preparing positive active material composition comprising same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301786B2 (en) * 1992-07-30 2002-07-15 三洋電機株式会社 Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396492B1 (en) * 2001-10-17 2003-09-02 삼성에스디아이 주식회사 Positive active material for lithium-sulfur battery and method of preparing positive active material composition comprising same

Also Published As

Publication number Publication date
KR100378011B1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
US9728816B2 (en) Lithium-rich electrode sheet of lithium-ion battery and preparation method thereof
JP4159667B2 (en) Method for manufacturing electrode plate for lithium secondary battery
US20110217594A1 (en) Electrode body, and lithium secondary battery employing the electrode body
JP4352475B2 (en) Solid electrolyte secondary battery
CN101440188A (en) Lithium ionic cell gel type ion liquid / polymer electrolyte and preparation thereof
CN115133222A (en) Double-coating diaphragm capable of simultaneously inhibiting lithium dendrite and transition metal dissolution, preparation method and lithium metal battery applying diaphragm
KR100447792B1 (en) A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
KR20070094156A (en) Electrode with high capacity and preparation method thereof
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
KR100359605B1 (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
CA2477065C (en) Electrochemical cell with carbonaceous material and molybdenum carbide as anode
CN115548270A (en) Processing method of positive pole piece of solid-state lithium battery and lithium battery
KR100281828B1 (en) A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method
KR100378011B1 (en) Cathode of lithium ion battery using aluminum mesh as collector
JPH06188030A (en) Nonaqueous electrolyte battery
KR20010064617A (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same
CN113823848A (en) Lithium ion battery
CN113823851A (en) Lithium ion battery and lithium-supplementing negative plate thereof
CN113823850A (en) Lithium ion battery
KR100571457B1 (en) Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same
KR100382103B1 (en) Lithium ion polymer battery coated with composite solvent
KR19980026047A (en) Manufacturing method of electrode assembly for solid polymer battery
JP2001023615A (en) Flat nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051228

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee